
Operations Research Course: Exam Projects

MISIC ISC612 2007

Leo Liberti

leoliberti@gmail.com

Each of the projects below has a difficulty rating out of 20 which indicates the maximum mark that
can be attained on the project. You can work in groups of 1-3 people. No problem should be taken by
more than one group, so please consult with each other before choosing your problem. In case of conflict,
you can either fight each other to first blood or agree to split and recombine the groups so that the most
motivated people for a given project are in the same group and will tackle the project at best. In case
of ties, use a round of poker game, dice, a coin, forecasts on the emissions of particles of a radioactive
isotope, or whatever else you may wish to call “chance”. In any case, read all the projects before choosing
one.

Warning: the projects marked “20” are really difficult and really refer to existing research project.
You mustn’t feel exceedingly frustrated if you don’t manage to actually get good computational results
or implementations that work perfectly (by contrast, I would expect good ideas and a display of good
modelling techniques).

And finally, you can also propose your own projects. Write a 1-page project proposal and send it to
me. I’ll read it, comment it and either validate it (and give you the maximum attainable mark) or modify
it, or reject it.

Every project will be supervised by one of the following researchers: Leo Liberti, Ruslan Sadykov,
Laura di Giacomo (supervision will mostly be carried out by e-mail). The deadline for submission is
friday 15/2/08.

1. Separation network planning [20]. A separation network carrying Q types of liquid consists of
one input node (carrying the input blended liquid), Q output nodes (one per type of liquid), B
blender nodes (which can blend two streams into one) and P separation nodes (each having one
input and two output streams) capable of separating a given type of liquid from the input stream.

input output blend separation

rest of blend

purified

The following data are known:

• the input flow on the input node is f0 liters per second

• for each j ≤ Q, the input blended liquid entering the network from the input node has a
fraction 1/qj of liquid of type j

• for each j ≤ Q, we desire an output flow of at least dj and a purity level of at least ϑj at each
output node j

• for each j ≤ Q, the unit market price of liquid j is cj .

• the B blender nodes simply mix the two streams together and convey the blended liquid to
the output stream

• for each i ≤ P , separation node i separates liquid of type τi (an integer in {1, . . . , Q}) with a
purity ηi ∈ [0, 1]: this means that a fraction ηi of the liquid of type τi contained in the input
stream of node i will go into the purified stream, and all the rest of the liquid types, blended
with the remaining fraction 1 − ηi of liquid τi, will go into the other output stream



2

The Separation Network Planning (SCP) problem consists in maximizing the revenues (sup-
posing each unit of output liquid is actually sold on the market) of the operation with respect to
the following variables: what is the network topology (i.e. what are the interconnections between
the various nodes)? what are the arc flows (i.e. what is the fraction of flow of liquid of type j in
each arc)? The capacities on the pipes (the arcs) are initially supposed infinite, in the sense that
the network will be built according to the capacities needed to convey the flows optimally.

Provide a mathematical programming model of the SCP problem and implement it in AMPL. Focus
on the following points.

(a) What are the parameters? Give a comprehensive list.

(b) What are the variables? Give a comprehensive list.

(c) What is the objective function?

(d) What are the constraints? Give a comprehensive list.

(e) To what category does the model belong? Linear Programming (LP), Mixed Integer Linear
Programming (MILP), Nonlinear Programming (NLP), Mixed-Integer Nonlinear Programming
(MINLP)?

(f) According to the answer to the previous point, suggest an algorithm or a solution technique
for solving the problem.

Create at least two feasible instances for this problem (i.e. create two sets of problem parameters
such that the problem has at least one solution) and test your AMPL model with both (for the
solution, you might need some help from me in order to choose the correct solver).

2. MINLP solution methods [20]. Look at the collection of MINLP problems on http://www.

gamsworld.org/minlp/minlplib/points.htm. You have AMPL, a (continuous) NLP solver (such
as minos or snopt) and a MILP solver (such as cplex) to work with. Put together a heuristic
algorithm for solving MINLPs. It should be simple enough so that you can code it with the tools
described above (AMPL and the solvers). In practice, you should find a smart way of separating
the nonlinear part of the problem from the mixed-integer part so that you can solve the first with
the NLP solver and the second with the MILP solver, then somehow obtain a solution for the whole
MINLP from the two partial solutions. Feel free to approach me for help on the implementation
once you have some good algorithmic ideas.

3. Modelling cellular automata [18] Read up some literature on Cellular Automata (CA) on Google
(you can start from http://mathworld.wolfram.com/CellularAutomaton.html and http://en.

wikipedia.org/wiki/Cellular automata) and write a mathematical programming model that
solves the following problem.

Given an integer T , what is the initial configuration (the status of the CA at time 0) that
yields the shortest period greater than T (the number of timesteps elapsing between the
first and the second display of any configuration).

It is likely that your model will depend on the CA rule chosen. To what class (LP, MILP, NLP,
MINLP) does your model belong? How can you solve it? Implement it in AMPL and test it on the
CA rules 15, 30, 90.

4. A didactical implementation of the simplex method [14]. Write a C/C++ program that
implements the simplex algorithm in the tableau version (ask me for references: it’s equivalent to
the matrix version that we saw in class but it’s actually easier to implement because the inverse is
computed implicitly), displaying a nicely formatted tableau at each iteration. Data should be read
in either MPS or LP format (again, ask me for references if you choose this project).

5. Improving UML class diagrams [15]. Propose a mathematical programming model of the
problem of rationalizing software modules in UML class diagrams. Consider a real UML class
diagram with at least 30 classes (look for it on the internet or create it with software packages



3

such as Umbrello) and suppose you have three teams to implement the software described by the
class diagram. How do you assign classes to teams so that the interactions between different teams
(which are usually problematic) are minimized? Compose a set of 5 different instances and test
your AMPL model on these instances. What sort of instance size (number of classes, number of
class interconnections) can you solve in 1h of CPU time?

6. Eternity II puzzle [16]. Eternity II is an edge-matching puzzle which involves placing square
puzzle pieces into a 16 by 16 grid, constrained by the requirement to match adjacent edges. The
full rules are available at http://uk.eternityii.com/about-eternity2/download/. You aim is
not to solve this puzzle. You can imagine that, if there is a 2 million dollars prize for solving this
puzzle, it cannot be that easy (but still you can try!). What we ask you to do in this project, is to
propose and implement a model for it which is capable of solving a smaller version of the puzzle,
for example, on a 8 by 16 or 8 by 8 grid. To model the problem, you can use Integer Programming
or Constraint Programming (the latter is likely to be more effective). To implement an IP model,
you can use AMPL. To implement a CP model, there are several free CP solvers available (see
Wikipedia page for “Constraint Programming”). Another option is, instead of providing a model,
propose a heuristic algorithm for the problem (something more clever than a full search). The data
will be provided to those who choose this project.

7. Minimum Cost Flow problem [14]. Given a flow network (a directed graph) G(V,E) with
source s ∈ V and sink t ∈ V , where edge (u, v) ∈ E has capacity quv and cost cuv per unit of flow.
You are required to send an amount d of flow from source s to sink t. The objective is to minimize
the flow cost.

The problem can be formulated as a Linear Program. Additionally, there are several dedicated
algorithms available, for example, cycle-canceling algorithm, successive shortest path algorithm,
scaling algorithm or network simplex algorithm. The first part of the project is to choose two
dedicated algorithms, study them, and to produce a report, in which you should explain briefly
how they work.

The second part of the project is to implement the two algorithms chosen and compare their
practical efficiency on a set of randomly generated networks. In order to save the time, you can
find and use libraries which provide an implementation of the algorithms.

8. Resource Constrained Project Scheduling Problem [15]. We are given a project which
consists of activities. Each activity has a length in days. Additionally, there are precedence relations
between activities, for example, activity A cannot start before the end of activity B. The objective
is to complete the project as soon as possible.

The first part of the project is to formulate this problem as a graph problem and to propose a
polynomial algorithm to solve it. What is the complexity of this algorithm? How can you name
the problem in graph terms?

The second part of the project deals with a more complex version of the problem. Assume that each
activity requires a certain number of workers. For the whole project, you have a limited number
of workers. Of course, every day, the activities in process should not require in total more workers
than you have. Moreover, you cannot interrupt an activity once you have started it. Formulate the
problem as an Integer Program and test it using AMPL on a set of randomly generated projects.
How large are the instances you could solve?

9. Solutions of Linear Complementarity Problems (LCP) [20]. Some classical decision prob-
lems in computer science, such as the Knapsack Problem and the Satisfiability Problem can be
reformulated to Linear Complementarity Problems (LCP — i.e. problems without objective func-
tion, consisting of a set of linear constraints and a bilinear constraint of the type

∑
i xiyi = 0,

where xi, yi ≥ 0. The aim of this project is to formulate a solution algorithm for LCP based on the
simplex method, and implement this algorithm in C/C++ interfaced with CPLEX (some example
code for how to interface C/C++ with CPLEX will be provided).


