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Thestory so far

Mathematical program. problem model consisting of
parameters, variables, objective function, constraints

Parameters | the problem input

Variables

Variables

. the problem output

may be continuous (€ R), integer (€ Z) or

binary (e {0, 1}); they may also be bounded (¢ [L, U])

Objective and constraints  are expressed as
mathematical functions of parameters and variables

Assumption. objective and constraints are linear forms
Modelling software: AMPL

Solution software: CPLEX

Many application examples J
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Hy Nonlinear Programming

f.o Mathematical methods for modelling and solving T
nonlinear problems

# = NonLinear Programming (NLP)

» |Nonconvex NLPs| (NLPs with at least one
nonconvex objective and/or constraint)

s (Mixed-lntegerNEPS! (MINLPs — with at least one
Integer variable)

# |n practice, it is much more difficult to solve (MI)NLPs
than (MI)LPs

# No truly standard software

# In general, no guarantee of optimality for nonconvex MINLPs

# Few successful general-purpose algorithms

® Can still use AMPL, though
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Nonlinear M odelling

Linear assumption is not always valid o

Logical “and” condition:

1. cost associated to conjunctive occurrence of two
conditions (if z; is 1 and x; is 1 then add a cost ¢;)

2. a constraint is valid iff a certain binary variable has
value 1 (if y is 1 then g(x) < 0)

Percentages and quantities: variables expressing
percentage and variables expressing guantity must be
multiplied together

Economies of scale: unit costs decrease with quantity
Problems involving 1-, 2- and co-norms

Nonlinear models of natural phenomena expressed in
constraints J
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IJ,;; Canonical MINL P formulation
T | \ -

min,

f(z)
>t Lli o) su Lip

Vie ZCA{l,...,n} ri €

where z, 2", 2V e R*; [,u e R™; f : R®” - R; g : R* — R™

® ['(P) = feasible region of P, L(P) = set of local optima,
G(P) = set of global optima

# Nonconvexity = G(P) C L(P)

. 1 .
min =x + sin(x
re[—3,6] 4 ()

- | [
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IJ& Reformulations

fDefn T

Given a formulation P and a formulation @), @) IS a reformu-
lation of P If there Is a mapping ¢ : F'(Q)) — F(P) such that

p(L(Q)) = L(P) and o(G(Q)) = G(P)
This means: ¢ restricted to L(Q) is onto L(P) and ¢
restricted to G(Q) is onto G(P)

# Reformulations are used to transform problems into
equivalent forms

# “Equivalence” here means a precise correspondence
between local and global optima via the same transformation

I Basic reformulation operations §

1. adding / deleting variables / constraints

2. replacing a term with another term (e.g. a product xy with a new
variable w)
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g, Product of binary variables

f.o Consider binary variables x,y and a cost ¢ to be added T
to the objective function only of zy = 1

#® — Add term czry to objective

#® Problem becomes mixed-integer (some variables are
binary) and nonlinear

#» Reformulate “xy” to MILP form (ProbBIN reform.):

1

8 ® replace zy by =

® z,yc{0,1} =

2 =Y J
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g{ Product of bin. and cont. vars.

9
9

°

PrRoDBINCoONT reformulation T

Consider a binary variable = and a continuous variable
y € [y*,y"], and assume product zy is in the problem

Replace xy by an added variable w

Add constraints:

Exercise 1

Exercise 2

PRODBIN

w < yUm
(T ny
w < y+y" (1)
w > y—y'(l—x)

: show that ProbBINCONT IS INdeed a reformulation

: show that if y € {0, 1} then ProbBINCONT iS equivalent to
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I_{&. Product of continuous variables

f.o Suppose a flow is composed by m different materials T
r

Let x; € |0, 1] Indicate the unknown fraction of material
i < m In the flow

® Let y be the unknown total flow

#® Getterms z;y in the problem to indicate the amount of
each material : < m in the flow

# Constraint ) z; = 1: all fractions sumup to 1

1<m

e > Nonconvex NLP

# No exact linear reformulation possible, but can be
approximated by discretization

#® Best way to solve it directly is by dedicated algorithm

L (e.g. SLP or SQP) J
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B Prod. cont. vars.. approximation
f.ﬂ BILINAPPROX approximation T

® Consider x ¢ [z, 2Y],y € [y",yY] and product zy

® Suppose 2V — 2zt < yY — y%, consider an integer d > 0

» Replace [z%, zY] by a finite set
D={zl4+(G—-1)v]1<i<d}, wherey= xz:fL
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BILINAPPROX

Replace the product zy by a variable w
Add binary variables z; for i < d
Add assignment constraint for z;’s

i<d
Add definition constraint for x:

T = Z(CEL + (i — 1))z

i<d
(z takes exactly one value in D)

Add definition constraint for w

w= 3"+ (i~ D))y

1<d
Reformulate the products z;y via PRODBINCONT

(2)

|
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B Conditional constraints

f.o Suppose d a binary variable y and a constraint g(z) < 0 T
In the problem

#® We want g(x) < 0to be active iff y = 1

o Compute maximum value that g(x) can take over all x,
call this M

® \Write the constraint as:
g(z) < M(1-y)

® This sometimes called the “big M modelling technique

Example:
Can replace constraint (2) in BiLinArprox as follows:

Vi<d —MQ1-2z)<w-—(@'+GE—-1)7y)y<MQ1-z)

Lwhere M st w— (zF + (i — 1)y)y € [-M, M] for all w, z, y J
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Graph Partitioning Problem |

GPP: Given an undirected graph G = (V, E/) and an T
Integer £ < |V|, find a partition of V' in £ disjoint subsets
Vi,..., V. (called clusters) of minimal given cardinality M

s.t. the number (weight) of edges with adjacent vertices

In different clusters is minimized

V3 :V\(V1UV2)
k=3
min. clusters card. = 2

Applications: telecom network planning, sparse matrix
factorization, parallel computing, VLSI circuit placement

Minimal bibliography: Battitl & Bertossi, IEEE Trans. Comp.,
1999 (heuristics); Boulle, Opt. Eng., 2004 (formulations); J
Liberti 40R, 2007 (reformulations)
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B Graph Partitioning Problem I

- N

o Forallvertices: eV, h <k:
x;;, = 1 If vertex i in cluster h and O otherwise

o |
® Objective function: mins > > xipay)
hA<k {ij}€E

® Assignment:VieV > x;,=1
h<k

® Cluster cardinality: Vh <k > ..,z <M

#® nonconvex BQP: reformulate or linearize to MILP, then
solve with CPLEX

o |

ISC612 — p. 14



B:
=

9

Pooling and blending |
-

Given an oll routing network with pools and blenders,
unit prices, demands and quality requirements:

- -
o

Y21

< 2.5% Sulphur

3% Sulphur L <100
$9

T
11$6

1% Sulphur
$ 16

21

< 1.5% Sulphur

2% Sulphur > < 200
$15 -

$ 10 Y22

Find the input quantities minimizing the costs and
satisfying the constraints: mass balance, sulphur
balance, quantity and quality demands J
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B Pooling and blending ||

- N

# Variables: input quantities z, routed quantities y,
percentage p of sulphur in pool

# Bilinear terms arise to express sulphur quantities in
terms of p, y

#® Sulphur balance constraint: 3z11 4+ 221 = p(y11 + y12)
# Quality demands:

2.5(y11 + y21)
1.5(y12 + y22)

pYy11 + 2y921

<
py12 + 2Y29 <

® Continuous bilinear formulation = nonconvex NLP

o |
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B Haverly’s pooling problem
s et

1L$6
Y21

_ 1% Sulphur
" $16

2

_ 2% Sulphur

< 1.5% Sulphur
$10 Y22

min 6x11 + 16x291 + 10x12—

—9(y11 + y21) — 15(y12 + y22) linear
st x11+ 21 — Y11 — Y12 =0 linear
12 — Y21 — Y22 =0 linear
\ Y11 + y21 < 100 linear
Y12 + y22 < 200 linear
3x11 + x21 — p(y11 + y12) = 0  bilinear
py11 + 2y21 < 2.5(y11 + y21) bilinear
L \ py12 + 2y22 < 1.5(y12 + y22) bilinear J
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B Successive Linear Programming

- N

# Heuristic for solving bilinear programming problems

o Formulation includes bilinear terms z;y; where
iel,jed

# Problem is nonconvex = many local optima

e

Fact: fix z;,7 € I, get LPy; fix y;,5 € J, get LPs

# Algorithm: solve LPq, get values for y, update and solve
LP-, get values for x, update and solve LP;, and so on

°

Iterate until no more improvement

# Warning: N0 convergence may be attained, and no
guarantee to obtain global optimum

o |
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( .
min
,y

S.t.

SLP Al

1. Solve LPq, find value for y11, y12, update LP,

SLP applied to HPP

fProbIem LP: fixing p

6x11 + 16221 + 1010 —

—9y11 — 9y21 — 15y12 — 15y22
11 + 221 — Y11 — Y12 =0
x12 — Y21 —y22 =0
y11 + y21 < 100
y12 + y22 < 200
3z11 + 21 — pPY11 — py12 =0
(p —2.5)y11 — 0.5y21 <0
(p— 1.5)y12 + 0.5y22 <0

gorithm:

min
T,Y21,Y22,P

S.t.

2. Solve LP,, find value for p, update LP;

Problem LP5: fixing y11, y12 T

6x11 + 16221 + 10120 —

—(9(y11 +y21) + 15(y12 + y22))
T11 + 221 = y11 + Y12

x12 —y21 —y22 =20

y21 < 100 —y11

y22 < 200 — y12

3x11 + 221 — (y11 +y12)p =0
y11p — 0.5y21 < 2.5y11

y12p + 0.5y22 < 1.5y12

3. Repeat until solution does not change / iteration limit exceeded
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Kissing Number Problem |

Problem proposed by Newton T

Determine maximum number K of non-overlapping
balls of radius 1 adjacent to a central ball of radius 1 in

]RD
INR?: K =6
In R3: K = 12 (13 spheres prob.)

.
[
@

In R*: K = 24 (recent result)
Next open case: D =5 (40 < K < 45) J

ISC612 — p. 20



B Kissing Number Problem I

f.o Reduce to a decision problem (can N spheres be T
arranged in a kissing configuration?)

# Variables: let ¢ € R? be the center of the i-th ball
# Continuous quadratic formulation:

max o
Vi < N |z'||* = 4
Vi<j<N |zt — 27||* > 4a
a >0

Vi < N 2t € RV,
# If global optimum has « > 1, then N balls can be
arranged, otherwise they cannot
\_.’ [Kucherenko et al., DAM 2007] J
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TheHartree-Fock problem |

-

Consider the time-independent non-relativistic
Schrodinger equation H,; ¥ = E_;V for the electrons in a
molecule

Solution to Schrodinger equation are products of n
molecular orbitals 1;

Each v; Is composed of a spatial orbital ¢, and a spin
orbital v,

Spatial orbitals approximated by suitable bases {;}°_;:

b

P = Z CsiXs Vi <n
s=1

where o, Is the approximation of p; J

ISC612 — p. 22



B¢
f.ﬂ

9o

e

TheHartree-Fock problem I

Given b and {x;}°_,, determine the coefficients c; such T
that the approximation is “best”

Approximation is “best” when the energy E(c) (quartic
polynomial in ¢) of approximated spatial orbitals ¢; IS
minimum

Orthogonality constraints on ¢; (to enforce lin. ind.)
Coefficients c vary over a known range ¢* < ¢ < ¢V
Continuous quartic formulation:

min, E(c) \
st {gilgj) =05 Vi<j<n o
ok <c< U )

[Lavor et al., EPL 2007] J
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Molecular Distance Geometry

Known set of atoms V', determine 3D structure T
Some inter-atomic distances d;; known (NMR)

Find atomic positions z* € R> which preserve distances
= given weighted graph G = (V, E/, d), find immersion in

Continuous guartic formulation:

min Y ([[a’ — 27| = df)? (3)

{i,j}eFE

[Lavor et al. 2006] J
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B Scheduling with delays |

Cien

f.o T': tasks of length L; with precedences given by DAG T
G = (V, A, c), where ¢;; = amount of data passed from
to j

#® P homogeneous processors with distance d;; between
processors k., [ in architecture

» Delays ~;/ occur if dependent tasks i, j are executed on
different processors k,

5
. (248
i 1121345 . 130

L 213|584 0226

P2 T1

T2 T4 T3 — TS5
P1 >=5 >=8 N

0 3 11 16 20 _t
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Scheduling with delays ||

ldea: pack L; x 1 “task rectangles” into a Tmax x |P| T

“total time” rectangle

Use binary assignment variables z;, = 1 iftask j € T'Is
executed on processor k € P

Use continuous scheduling variables ¢; = starting time
of task j

Model communication delays with quadratic constraints:

t;j >t + L; + Z fyzjzzkz]l VieVi:(i,7) € A
k,le P

Mixed-integer quadratic formulation
[Davidovic et al., MISTA Proc. 2007]

|
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B Variable Neighbourhood Search

f Applicable to discrete and continuous problems T
Uses any local search as a black-box

In its basic form, easy to implement

Few configurable parameters

Structure of the problem dealt with by local search

Few lines of code around LS black-box

© o o o o 0

o |
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VNSalgorithm |

random 1

local search 1

! // \
local searchf
' |

|

o
) localyminimum 1,2 .
\ ! !
\ | / !

\ /
random 2~ _ k=1 ) )
\

A
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B VNS algorithm ||

|7 Input: max no. kmax Of neighbourhoods T

loop
Set k£ «+— 1, pick random point z, perform a local search to find a local
minimum x*.
while k£ < kmax do
Let Ni(x*) neighb. of z* s.t. Ni(z*) D Ng_1(z*)
Sample a random point & from Ny (x*)
Perform a local search from z to find a local minimum 2z’
If 2’ is better than z*, set x* «— 2’ and k + 0
Setk— k+1
Verify termination condition; if true, exit
end while
end loop

o |
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B Neighbourhoods in continuous space

- N

# Use hyper-rectangular neighbourhoods Ny (z')
proportional to the region delimited by the variable
ranges

# May also employ hyper-rectangular “shells” of size
klkmax Of the original domain

N2 (CC,) \\\\\ k=k_max=4

/ RN
/ S
7/ S
/ S
’ RN
’ RS
/ RS
7/ S
/ ~ ~
original domain (variable ranges)
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