

Modelling and solution of Nonlinear Programs

Leo Liberti

LIX, École Polytechnique, France

The story so far

- Mathematical program: problem model consisting of parameters, variables, objective function, constraints
- Parameters: the problem input
- Variables : the problem output
- Variables may be continuous ($\in \mathbb{R}$), integer ($\in \mathbb{Z}$) or binary ($\in \{0,1\}$); they may also be bounded ($\in [L,U]$)
- Objective and constraints are expressed as mathematical functions of parameters and variables
- Assumption: objective and constraints are linear forms
- Modelling software: AMPL
- Solution software: CPLEX
- Many application examples

Nonlinear Programming

- Mathematical methods for modelling and solving nonlinear problems
- → NonLinear Programming (NLP)
 - Nonconvex NLPs (NLPs with at least one nonconvex objective and/or constraint)
 - Mixed-Integer NLPs (MINLPs with at least one integer variable)
- In practice, it is much more difficult to solve (MI)NLPs than (MI)LPs
 - No truly standard software
 - In general, no guarantee of optimality for nonconvex MINLPs
 - Few successful general-purpose algorithms
 - Can still use AMPL, though

Nonlinear Modelling

Linear assumption is not always valid

- Logical "and" condition:
 - 1. cost associated to conjunctive occurrence of two conditions (if x_i is 1 and x_j is 1 then add a cost c_{ij})
 - 2. a constraint is valid iff a certain binary variable has value 1 (if y is 1 then $g(x) \le 0$)
- Percentages and quantities: variables expressing percentage and variables expressing quantity must be multiplied together
- Economies of scale: unit costs decrease with quantity
- Problems involving 1-, 2- and ∞-norms
- Nonlinear models of natural phenomena expressed in constraints

Canonical MINLP formulation

$$\min_{x} f(x) \\
\text{s.t.} \quad l \leq g(x) \leq u \\
x^{L} \leq x \leq x^{U}$$

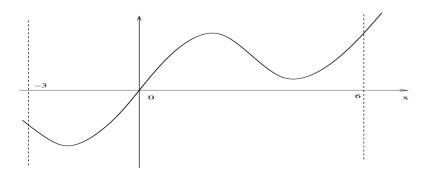
$$\forall i \in Z \subseteq \{1, \dots, n\} \quad x_{i} \in \mathbb{Z}$$

$$(1)$$

where $x, x^L, x^U \in \mathbb{R}^n$; $l, u \in \mathbb{R}^m$; $f : \mathbb{R}^n \to \mathbb{R}$; $g : \mathbb{R}^n \to \mathbb{R}^m$

- F(P) = feasible region of P, L(P) = set of local optima, G(P) = set of global optima
- Nonconvexity $\Rightarrow G(P) \subsetneq L(P)$

$$\min_{x \in [-3,6]} \frac{1}{4}x + \sin(x)$$



Reformulations

Defn.

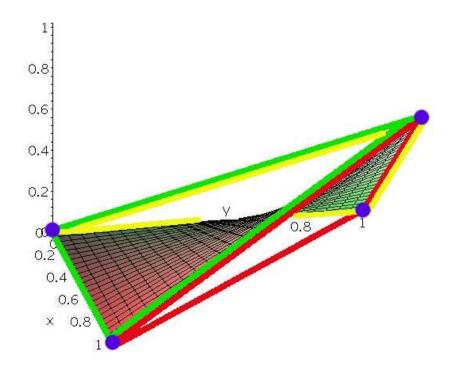
Given a formulation P and a formulation Q, Q is a *reformulation* of P if there is a mapping $\varphi:F(Q)\to F(P)$ such that $\varphi(L(Q))=L(P)$ and $\varphi(G(Q))=G(P)$

This means: φ restricted to L(Q) is onto L(P) and φ restricted to G(Q) is onto G(P)

- Reformulations are used to transform problems into equivalent forms
- "Equivalence" here means a precise correspondence between local and global optima via the same transformation
- Basic reformulation operations :
 - 1. adding / deleting variables / constraints
 - 2. replacing a term with another term (e.g. a product xy with a new variable w)

Product of binary variables

- Consider binary variables x, y and a cost c to be added to the objective function only of xy = 1
- ightharpoonup ightharpoonup Add term cxy to objective
- Problem becomes mixed-integer (some variables are binary) and nonlinear
- Reformulate "xy" to MILP form (PRODBIN reform.):



$$z \ge 0$$
, $z \ge x + y - 1$

$$x, y \in \{0, 1\} \Rightarrow$$

$$z = xy$$

Product of bin. and cont. vars.

- PRODBINCONT reformulation
- Consider a binary variable x and a continuous variable $y \in [y^L, y^U]$, and assume product xy is in the problem
- ullet Replace xy by an added variable w
- Add constraints:

$$w \leq y^{U}x$$

$$w \geq y^{L}x$$

$$w \leq y + y^{L}(1-x)$$

$$w \geq y - y^{U}(1-x)$$

- Exercise 1: show that PRODBINCONT is indeed a reformulation
- **Exercise 2**: show that if $y \in \{0,1\}$ then ProdBinCont is equivalent to

PRODBIN

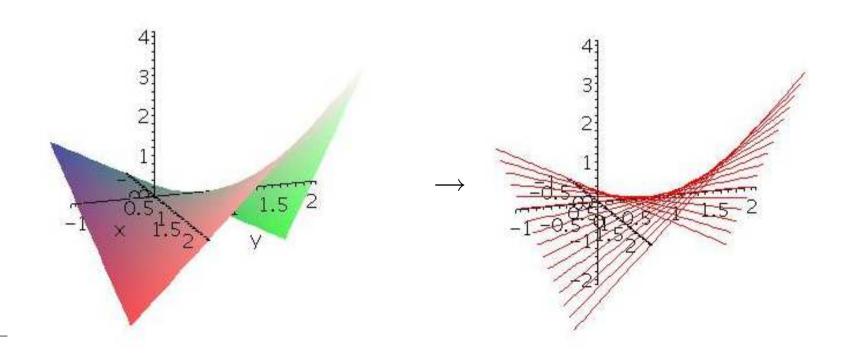
Product of continuous variables

- ullet Suppose a flow is composed by m different materials
- **▶** Let $x_i \in [0,1]$ indicate the unknown fraction of material $i \le m$ in the flow
- Let y be the unknown total flow
- Get terms x_iy in the problem to indicate the amount of each material $i \leq m$ in the flow
- Constraint $\sum_{i \leq m} x_i = 1$: all fractions sum up to 1
- Nonconvex NLP
- No exact linear reformulation possible, but can be approximated by discretization
- Best way to solve it directly is by dedicated algorithm (e.g. SLP or SQP)

Prod. cont. vars.: approximation

- BILINAPPROX approximation
- Consider $x \in [x^L, x^U], y \in [y^L, y^U]$ and product xy
- Suppose $x^U x^L \le y^U y^L$, consider an integer d > 0
- Replace $[x^L, x^U]$ by a finite set

$$D = \{x^L + (i-1)\gamma \mid 1 \le i \le d\}, \text{ where } \gamma = \frac{x^U - x^L}{d-1}$$



BILINAPPROX

- lacksquare Replace the product xy by a variable w
- lacksquare Add binary variables z_i for $i \leq d$
- ullet Add assignment constraint for z_i 's

$$\sum_{i \le d} z_i = 1$$

Add definition constraint for x:

$$x = \sum_{i \le d} (x^L + (i-1)\gamma)z_i$$

(x takes exactly one value in D)

Add definition constraint for w

$$w = \sum_{i \le d} (x^L + (i-1)\gamma)z_i y \tag{2}$$

PRODEST Reformulate the products $z_i y$ via PRODBINCONT

Conditional constraints

- Suppose \exists a binary variable y and a constraint $g(x) \le 0$ in the problem
- We want $g(x) \le 0$ to be active iff y = 1
- Compute maximum value that g(x) can take over all x, call this M
- Write the constraint as:

$$g(x) \le M(1-y)$$

ullet This sometimes called the "big M" modelling technique

Example:

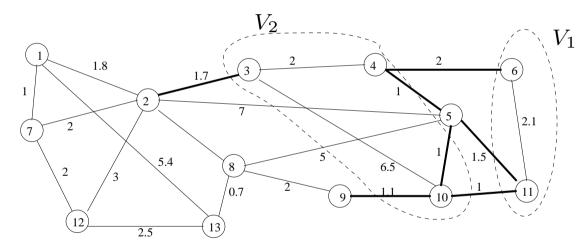
Can replace constraint (2) in BILINAPPROX as follows:

$$\forall i \le d - M(1 - z_i) \le w - (x^L + (i - 1)\gamma)y \le M(1 - z_i)$$

where M s.t. $w - (x^L + (i-1)\gamma)y \in [-M, M]$ for all w, x, y

Graph Partitioning Problem I

GPP: Given an undirected graph G = (V, E) and an integer $k \leq |V|$, find a partition of V in k disjoint subsets V_1, \ldots, V_k (called *clusters*) of minimal given cardinality M s.t. the number (weight) of edges with adjacent vertices in different clusters is minimized



$$V_3 = V \setminus (V_1 \cup V_2)$$

 $k = 3$
min. clusters card. = 2

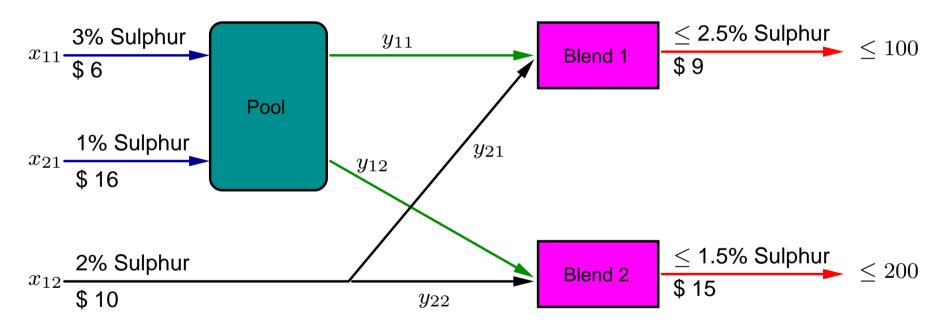
- Applications: telecom network planning, sparse matrix factorization, parallel computing, VLSI circuit placement
- Minimal bibliography: Battiti & Bertossi, IEEE Trans. Comp., 1999 (heuristics); Boulle, Opt. Eng., 2004 (formulations); Liberti 40R, 2007 (reformulations)

Graph Partitioning Problem II

- For all vertices $i \in V$, $h \le k$: $x_{ih} = 1$ if vertex i in cluster h and 0 otherwise
- Objective function: $\min \frac{1}{2} \sum_{h \neq l \leq k} \sum_{\{i,j\} \in E} x_{ih} x_{jl}$
- Assignment: $\forall i \in V \sum_{h \le k} x_{ih} = 1$
- Cluster cardinality: $\forall h \leq k \sum_{i \in V} x_{ih} \leq M$
- nonconvex BQP: reformulate or linearize to MILP, then solve with CPLEX

Pooling and blending I

Given an oil routing network with pools and blenders, unit prices, demands and quality requirements:



Find the input quantities minimizing the costs and satisfying the constraints: mass balance, sulphur balance, quantity and quality demands

Pooling and blending II

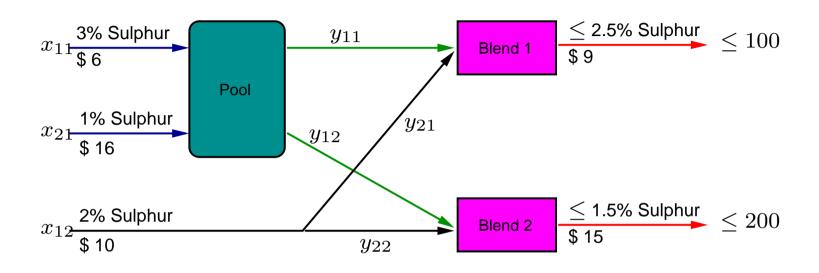
- Variables: input quantities x, routed quantities y, percentage p of sulphur in pool
- ullet Bilinear terms arise to express sulphur quantities in terms of p,y
- Sulphur balance constraint: $3x_{11} + x_{21} = p(y_{11} + y_{12})$
- Quality demands:

$$py_{11} + 2y_{21} \le 2.5(y_{11} + y_{21})$$

 $py_{12} + 2y_{22} \le 1.5(y_{12} + y_{22})$

Continuous bilinear formulation ⇒ nonconvex NLP

Haverly's pooling problem



$$\begin{cases} \min_{x,y,p} & 6x_{11}+16x_{21}+10x_{12}-\\ & -9(y_{11}+y_{21})-15(y_{12}+y_{22}) \quad \text{linear} \end{cases}$$
 s.t.
$$x_{11}+x_{21}-y_{11}-y_{12}=0 \quad \text{linear}$$

$$x_{12}-y_{21}-y_{22}=0 \quad \text{linear}$$

$$y_{11}+y_{21} \leq 100 \quad \text{linear}$$

$$y_{12}+y_{22} \leq 200 \quad \text{linear}$$

$$3x_{11}+x_{21}-p(y_{11}+y_{12})=0 \quad \text{bilinear}$$

$$py_{11}+2y_{21} \leq 2.5(y_{11}+y_{21}) \quad \text{bilinear}$$

$$py_{12}+2y_{22} \leq 1.5(y_{12}+y_{22}) \quad \text{bilinear}$$

Successive Linear Programming

- Heuristic for solving bilinear programming problems
- Formulation includes bilinear terms x_iy_j where $i \in I, j \in J$
- Problem is nonconvex ⇒ many local optima
- **▶** Fact: fix x_i , $i \in I$, get LP₁; fix y_j , $j \in J$, get LP₂
- Algorithm: solve LP₁, get values for y, update and solve LP₂, get values for x, update and solve LP₁, and so on
- Iterate until no more improvement
- Warning: no convergence may be attained, and no guarantee to obtain global optimum

SLP applied to HPP

Problem LP₁: fixing p

Problem LP₂: fixing y_{11}, y_{12}

$$\min_{x,y} 6x_{11} + 16x_{21} + 10x_{12} - 9y_{11} - 9y_{21} - 15y_{12} - 15y_{22}$$
s.t.
$$x_{11} + x_{21} - y_{11} - y_{12} = 0$$

$$x_{12} - y_{21} - y_{22} = 0$$

$$y_{11} + y_{21} \le 100$$

$$y_{12} + y_{22} \le 200$$

$$3x_{11} + x_{21} - \mathbf{p}y_{11} - \mathbf{p}y_{12} = 0$$

$$(\mathbf{p} - 2.5)y_{11} - 0.5y_{21} \le 0$$

$$(\mathbf{p} - 1.5)y_{12} + 0.5y_{22} \le 0$$

$$\min_{x,y_{21},y_{22},p} 6x_{11} + 16x_{21} + 10x_{12} - (9(\mathbf{y_{11}} + \mathbf{y_{21}}) + 15(\mathbf{y_{12}} + \mathbf{y_{22}}))$$
s.t.
$$x_{11} + x_{21} = \mathbf{y_{11}} + \mathbf{y_{12}}$$

$$x_{12} - y_{21} - y_{22} = 0$$

$$y_{21} \le 100 - \mathbf{y_{11}}$$

$$y_{22} \le 200 - \mathbf{y_{12}}$$

$$3x_{11} + x_{21} - (\mathbf{y_{11}} + \mathbf{y_{12}})p = 0$$

$$\mathbf{y_{11}}p - 0.5y_{21} \le 2.5\mathbf{y_{11}}$$

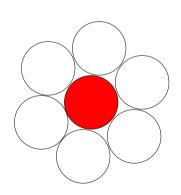
$$\mathbf{y_{12}}p + 0.5y_{22} \le 1.5\mathbf{y_{12}}$$

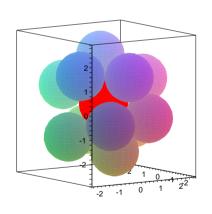
SLP Algorithm:

- 1. Solve LP₁, find value for y_{11}, y_{12} , update LP₂
- 2. Solve LP₂, find value for p, update LP₁
- 3. Repeat until solution does not change / iteration limit exceeded

Kissing Number Problem I

- Problem proposed by Newton
- Determine maximum number K of non-overlapping balls of radius 1 adjacent to a central ball of radius 1 in \mathbb{R}^D
- In \mathbb{R}^2 : K = 6
- In \mathbb{R}^3 : K = 12 (13 spheres prob.)





- In \mathbb{R}^4 : K=24 (recent result)
- Next open case: $D = 5 \ (40 \le K \le 45)$

Kissing Number Problem II

- Reduce to a decision problem (can N spheres be arranged in a kissing configuration?)
- Variables: let $x^i \in \mathbb{R}^D$ be the center of the *i*-th ball
- Continuous quadratic formulation:

$$\max \qquad \alpha$$

$$\forall i \leq N \qquad ||x^{i}||^{2} = 4$$

$$\forall i < j \leq N \qquad ||x^{i} - x^{j}||^{2} \geq 4\alpha$$

$$\alpha \geq 0$$

$$\forall i \leq N \qquad x^{i} \in \mathbb{R}^{D},$$

- If global optimum has $\alpha \geq 1$, then N balls can be arranged, otherwise they cannot
- [Kucherenko et al., DAM 2007]

The Hartree-Fock problem I

- Consider the time-independent non-relativistic Schrödinger equation $H_{el}\Psi=E_{el}\Psi$ for the electrons in a molecule
- Solution to Schrödinger equation are products of n molecular orbitals ψ_i
- Each ψ_i is composed of a spatial orbital $\bar{\varphi}_i$ and a spin orbital $\bar{\vartheta}_i$
- Spatial orbitals approximated by suitable bases $\{\chi_s\}_{s=1}^b$:

$$\varphi_i = \sum_{s=1}^b c_{si} \chi_s \qquad \forall i \le n$$

where φ_i is the approximation of $\bar{\varphi}_i$

The Hartree-Fock problem II

- Given b and $\{\chi_s\}_{s=1}^b$, determine the coefficients c_{si} such that the approximation is "best"
- Approximation is "best" when the energy E(c) (quartic polynomial in c) of approximated spatial orbitals φ_i is minimum
- Orthogonality constraints on φ_i (to enforce lin. ind.)
- Coefficients c vary over a known range $c^L \leq c \leq c^U$
- Continuous quartic formulation:

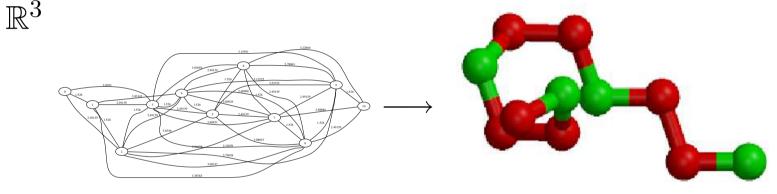
$$\min_{c} E(c)$$
s.t. $\langle \varphi_i \mid \varphi_j \rangle = \delta_{ij} \quad \forall i \leq j \leq n$

$$c^L \leq c \leq c^U$$

[Lavor et al., EPL 2007]

Molecular Distance Geometry

- lacksquare Known set of atoms V, determine 3D structure
- Some inter-atomic distances d_{ij} known (NMR)
- Find atomic positions $x^i \in \mathbb{R}^3$ which preserve distances \Rightarrow given weighted graph G = (V, E, d), find immersion in



Continuous quartic formulation:

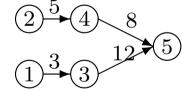
$$\min_{x} \sum_{\{i,j\} \in E} (||x^i - x^j||^2 - d_{ij}^2)^2 \tag{3}$$

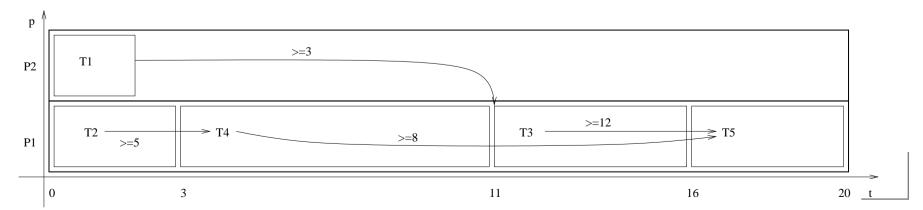
[Lavor et al. 2006]

Scheduling with delays I

- T: tasks of length L_i with precedences given by DAG G=(V,A,c), where $c_{ij}=$ amount of data passed from i to j
- P: homogeneous processors with distance d_{kl} between processors k, l in architecture
- Delays γ_{ij}^{kl} occur if dependent tasks i,j are executed on different processors k,l

$oxed{i}$	1	2	3	4	5
L_i	2	3	5	8	4





Scheduling with delays II

- ldea: pack $L_j \times 1$ "task rectangles" into a $T_{\sf max} \times |P|$ "total time" rectangle
- Use binary assignment variables $z_{jk}=1$ if task $j\in T$ is executed on processor $k\in P$
- Use continuous scheduling variables $t_j = \text{starting time}$ of task j
- Model communication delays with quadratic constraints:

$$t_j \ge t_i + L_i + \sum_{k,l \in P} \gamma_{ij}^{kl} z_{ik} z_{jl} \quad \forall j \in V, i : (i,j) \in A$$

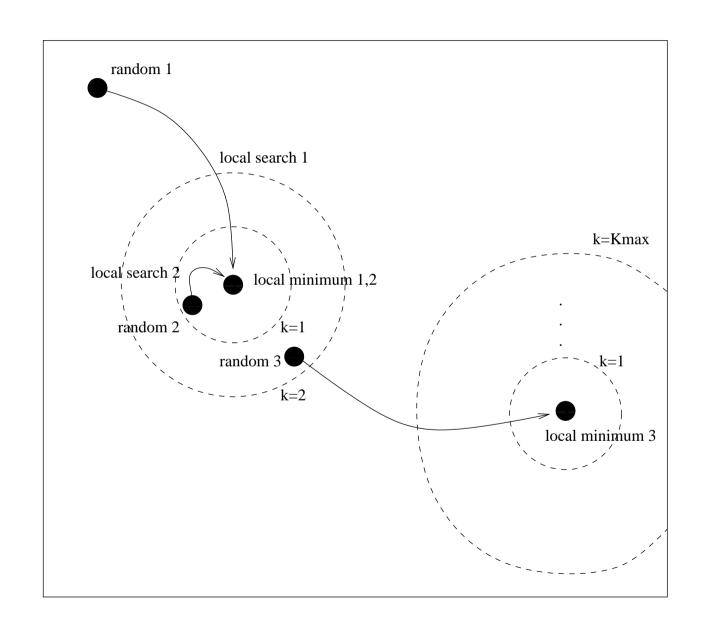
- Mixed-integer quadratic formulation
- [Davidović et al., MISTA Proc. 2007]

Variable Neighbourhood Search

- Applicable to discrete and continuous problems
- Uses any local search as a black-box
- In its basic form, easy to implement
- Few configurable parameters
- Structure of the problem dealt with by local search
- Few lines of code around LS black-box

ISC612 - p. 27

VNS algorithm I



VNS algorithm II

Input: max no. k_{max} of neighbourhoods

loop

Set $k \leftarrow 1$, pick random point \tilde{x} , perform a local search to find a local minimum x^* .

while $k \leq k_{\text{max}}$ do

Let $N_k(x^*)$ neighb. of x^* s.t. $N_k(x^*) \supset N_{k-1}(x^*)$

Sample a random point \tilde{x} from $N_k(x^*)$

Perform a local search from \tilde{x} to find a local minimum x'

If x' is better than x^* , set $x^* \leftarrow x'$ and $k \leftarrow 0$

Set $k \leftarrow k+1$

Verify termination condition; if true, exit

end while

end loop

Neighbourhoods in continuous space

- Use hyper-rectangular neighbourhoods $N_k(x')$ proportional to the region delimited by the variable ranges
- May also employ hyper-rectangular "shells" of size k/k_{max} of the original domain

