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1. Introduction
We propose an algorithm to solve some important
combinatorial problems with a linear objective func-
tion, subject to integer or binary variables over a
polyhedral set (Mitchell and Todd 1992). The solu-
tion method for this restricted class is formulated by
embedding the problem in an appropriate space, so
that at the solution, the variables will orJy assume
the permitted integer values. The advantage of this
method is that all the results of mathematical analysis
can be used to obtain the solution.

Many approaches have been tried to solve com-
binatorial problems (Nemhauser and Wolsey 1988):
enumeration techniques, implicit enumeration meth-
ods, branch-and-bound approaches, cutting planes,
relaxation, and heuristic methods (Rinooy Kan 1986,
Hochbaum 1997).

Direct nonlinear methods, such as the one to be
described in this paper, have also been formulated.
Here variables are constrained to allow only inte-
ger values, giving rise to a norUinear nonconvex con-
strained problem, which must be solved (Giannessi
and Nicolucci 1976).

In the next section a characterization of combinato-
rial problems will be given, together with the transfor-
mations adopted and the solution method. In §3 some
computational results will be presented for diverse
classes of problems, while in §4 the relevant conclu-
sions will be drawn.

2. The Solution Method
Combinatorial problems are defined over a discrete
structure, rendering the methods of mathematical

analysis difficult to apply. The aim of this section
is to show how many such problems can be trans-
formed into continuous problems and present a solu-
tion algorithm.

DEFINITION 1 (MITCHELL AND TODD 1992). A linear
combinatorial optimization problem is a combinato-
rial optimization problem, limited to variables that
can take on only binary values (0,1) defined over a
polyhedral constraint set and selected through a lin-
ear objective function.

Let c e R" and b G R'" be vectors and C an mxn
matrix. Then the linear combinatorial optimization
problem may be defined as:

^x: Cx + b>0] (1)

For all linear combinatorial problems the objective
function is bounded because there are finitely many
feasible points.

Further, let M be an n x n matrix, let q e R" he
a given vector, and let ;c e R" be the solution vector
to be deterrriined. Then the linear complementarity
problem (LCP) is:

Mx+q>0
x>Q (2)

This problem is a unifying formulation for many
problems in optimization and operations research,
such as quadratic programming, bimatrix games, mar-
ket equilibrium, optimal capital stock, and optimal
stopping problems (Cottle et al. 1992). Under suitable
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conditions, it is in fact a statement of the Kuhn-Tucker
necessary conditions for optimality for a quadratic
program.

Any linear combinatorial problem can be embedded
in a linear complementarity problem. If the objective
function exists, it can be added as a constraint and
the solutions must be recursively obtained by altering
the value of the affine term of this constraint, through
a dichotomous search on the parameter (Nemhauser
and Wolsey 1988).

Let e be a vector of ones of appropriate dimension, T
another nonnegative vector of appropriate dimension,
which will be null throughout, and û. a normegative
scalar, which will also be null throughout. Then any
linear combinatorial optimization problem can be rep-
resented by an LCP in the following form:

(3)

(4)

(5)

and the following result holds.
THEOREM 1. The linear combinatorial optimization

problem has an optimal solution with a value of the objective
function equal to k*, if the linear complementarity prob-
lem has a solution with the given parameter k = k* and the
variables F and ix are equal to zero. Conversely, let the lin-
ear complementarity problem have a solution with F and
IX equal to zero and a given value of k = k. This will be
a solution to the linear combinatorial optimization problem
if there is no k >k that solves the linear complementarity
problem.

PROOF. Let the linear combinatorial optimization
problem have an optimal solution with a value of
the objective function k* and solution vector x*. li the
parameter k is set at k = k* the solution is feasible for
the linear complementarity problem since it obviously
satisfies (3) and (4). Moreover, the solution satisfies (5),
since for the given value of the solution vector all ele-
ments satisfy the condition x,(l — x,) = 0, while the
other two vectors, being null, also ensure satisfaction
of the equation.

For the converse, assume that the linear comple-
mentarity problem has a solution. Then by the com-
plementarity condition (5) we have x,(l - x,) = 0. The
only values that will satisfy this equation are x,- = 0,1,
and the solution forms a binary-valued vector. More-
over the solution vector ensures that the constraints of
the linear combinatorial problem (1) are satisfied. The

objective function c'̂ x has an upper bound, so by a
simple dichotomous search procedure the least value
of —k that will still render the problem feasible can
be determined, while any decrease in —k will render
the linear complementarity problem infeasible. Finally
throughout F, and t̂ are null. This provides the opti-
mal solution to the linear combinatorial optimization
problem.

COROLLARY 1. If the cost elements of the objective func-
tion have integer values then the optimal solution can be
found by solving at most log2(Z) linear complementarity
problems, where Z is the maximum value of the objective
function.

The following algorithm has been proposed for
solving any LCP (Patrizi 1991). The LCP problem is
transformed into a linear program with a parametric
variation of a scalar parameter. Thus consider the LCP
(2) and embed the problem so as to form a new coef-
ficient matrix and affine vector with:

fl, = di -min[O, Qj, -qf. Qj e Q ]

/, / = 1 ,2 , . . . , n, z V ; rf, > 0 z = 1 ,2 , . . . , n

given by:

A = s =
—a

q — aa

where a is an upper bound to the sum of the elements
in the solution, and p is the largest positive eigenvector
of the positive matrix A. Note by this transformation
the matrix A is rendered all positive, while the affine
vector s is all negative. By a theorem of Frobenius, it
is assured that such an eigenvalue exists (Berman and
Plemmons 1979).

Let i e I he an index set of basic variables to the
linear-programming (LP) problem and let j e } he an
element belonging to the index set of variables that are
non basic. In obvious notation the essential result is
the following:

THEOREM 2 (FATRIZI 1991). A nontrivial and feasible
LCP has a solution x* such that the sum of the solution
elements is equal to or less than a given parameter a, i.e.
a > e^x*, if and only if the parametric LP problem with a
scalar parameter c^, given by:

c^u-\-c^z-\-Ci,u^ = MinZ

Au-\-{I- A)z -H ««„ -h s > 0

U „ , M , Z > O

has a dual nondegenerate solution for some c^ with all the
elements of the vector z non basic in the primal solution,
and with AjjAj,^ > 0 for some j e J. From a primal opti-
mal solution (M*, 0, H*) to the parametric LP problem above,
which satisfies the conditions, a solution to the original LCP
(2) is obtained immediately by letting x* = M*.
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Thus to solve an LCP, an LP is defined, as indicated
in the theorem, and the solution is determined, with a
parametric variation on the scalar variable Cg. If a solu-
tion results that is nondegenerate in the dual and if the
condition on the coefficients is satisfied, then by The-
orem 1 it is a solution to the combinatorial problem.

Computationally, the combinatorial problems may
be ill-conditioned and the transformation of the lin-
ear combinatorial problem may lead to an LCP with
many rows that may be linearly dependent. The con-
ditions of the theorem may, therefore, be difficult to
satisfy with sufficient accuracy given the specific finite
precision of the LP routine used.

So a branch-and-bound procedure has been devised
to enforce the conditions in such cases, given that the
problem has a solution.

Thus consider the noncomplementary solution to
the problem obtained after a full parametric variation
of the coefficient c^ and choose the feasible solution
that exhibits the least violation in the complementarity
condition. The first variable that appears in the feasible
solution without the integrality condition is set to one,
while the associated variables in the constraints are set
to zero. This will result in one fixed variable and a new
iteration is carried out with the full parametric varia-
tion on Cg. Either a complementary solution will result,
or once more a feasible non complementary solution is
found, which will cause the process to be repeated for
a second variable, and so on until, if necessary, all the
combinations of these non integer variables have been
verified, as in a normal branch-and-bound process.

This procedure is obviously finite, and it need only
be applied to the fixed variables that receive noninte-
gral values due to finite precision or dual degeneracy.
It is used, for instance in the problems that are logical
contradictions, which accounts for the large comput-
ing times in Table 1.

Table 1 Selected Results of the Solution of Satisfiability Problems

Name

ulmO27rO
ulmO54r1
ulmO81r1
ulm189r1
ulmbc040
ulmbp160'
ulmbs180
real2b12
real2l12
real2q11
real2x11
hole8'
hole9'
holelO'

Note. Time
•Solution
'instance

Literals

25
46
92

161
40

160
180
15
15
16
14
72
90

110

Clauses

64
128
256
448
340
485
540
111

119
100
77

297
415
561

is in seconds.
not feasible.
is logicai

GLPK

5.00
6.00
5.00
7.00
6.00
•

•

6.00
6.00
5.00
6.00

150.00
•
•

contradiction.

XPRESS

2.00
4.00
3.00
4.00
3.00
4.00
5.00
4.00
4.00
4.00
4.00
4.00
6.00
3.00

FORTiVlP

3.00
3.00
2.00
4.00
4.00

63.00
18.00
2.00
2.00
3.00
3.00

27.00
193.00
301.00

LCP

0.53
2.72
4.12

145.49
2.96

5,762.73
9,558.82

0.21
0.17
0.24

0.15
518.06

5,770.87
19,505.87

3. Computational Results
Problems of three classes have been solved with this
procedure and the computational results are presented
in §§3.1, 3.2, and 3.3.

This LCP approach to solve combinatorial problems
of the t5^e indicated is a general technique and there-
fore should be compared to other general techniques
to solve combinatorial problems, rather than special-
ized heuristics. Thus the comparisons proposed serve
to indicate the computational difficulties in the prob-
lems attempted.

It should be noticed, however, that the benchmark
algorithms are production codes for various branch-
and-bound implementations, while this LCP code is
a preliminary experimental code that is in no way
optimized. Thus the significance of this research is
to provide a comparison of the feasibility of this
approach compared to the well-known branch-and-
bound methodology.

The codes used for comparison were taken from the
Neos Server (http://www-neos.mcs.anl.gov/neos/)
during 2002-2003 and included:

• GLPK, a package formerly available on the
Neos server and is now available for download. The
package is intended for solving large-scale LP, mixed-
integer programming (MIP), and other related prob-
lems. It is a set of routines written in ANSI C and
organized in the form of a callable library.

• XPRESS-MP (version 12.13) is a commer-
cial product of Dash Optimization (http://www.
dashoptimization.com/). It uses a branch-and-bound
algorithm to solve the problems. As there may be an
exponential number of possible solutions, the package
reduces the number of solutions to a manageable size
by applying various cutting planes. A presolver is
also used to tighten the formulation, which should
improve the quality of initial solutions and enables
better cutting planes to be generated.

• FortMP 3.2e is a mathematical-programming sys-
tem designed by N.A.C. (National Algorithmic Group,
http://www.nag.co.uk/) and others to solve large scale
LP, integer-programming (IP) and quadratic mixed-
integer programming (QMIP) models by solving LP
models, namely, sparse simplex (SSX) algorithms com-
prising PRIMAL and DUAL, and interior-point method
(IPM) algorithms based on the primal-dual logarith-
mic (predictor-corrector) barrier method.

• CPLEX (version 8.0) is a commercial product
of Hog (http://www.ilog.com/products/cplex/) very
similar to XPRESS-MP driven by the operating system
Windows 2000. The machine is an HP 920 at 181.851
Mflops on the basis of the Dongarra Benchmark test
suite. The solution method to be applied to solve these
problems was determined automatically, as CPLEX
has an evaluation facility to determine if a presolver
should be called or cutting planes should be used or
when branch and bound should be applied. This pack-
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age was used only for the third set of experiments,
since for the other tests the package was not available.

While these provide some of the most popular rou-
tines available, the Neos server timing facility was,
during the experimentation period, not very accurate
in providing an estimate of the time required to find
a solution. The times reported are based on the time
required to unpack the package, compile the code, and
solve the problem.

This provides an order-of-magnitude estimate of
solution times, which can be very useful to evaluate
the feasibility of this LCP approach for combinato-
rial problems, as comparisons can be made with other
benchmark test problems on the Neos server and on
the preferred machine and solver, so that the relative
times may be evaluated. The computational results
reported should be sufficiently extensive and in line
with the aim of the paper. Further comparisons are left
to the interested reader.

The computational times for the CPLEX experimen-
tation are indicated with the solution results and were
converted, for comparison purposes, through the Don-
garra benchmark suite to equivalent times on a Digi-
tal 4100 workstation with two processors at 600 MHZ
running OSFl 4.0, which was the machine on which
the LCP routine to solve the emergency-service prob-
lem was run.

3.1. Satisfiability Problems in Normal Conjunctive
Form

A satisfiability problem in conjunctive normal form is
represented as the intersection of a set of m clauses,
where each clause is the union of a set of up to n lit-
erals, which may receive the value of true or false (1
for true and 0 for false). Representing these literals as
boolean variables, each literal can be indicated in affir-
mative form by Xji = l,2,... ,noTm the negated form
as 1 — Xj. Thus, without loss of generality, any clause
may be represented with the index set of affirmative
literals I and the index set of negated literals /. The
clause is true if

As all the clauses must be true for the expression to
be true, the satisfiability problem may be rewritten in
terms of the real number system as:

Cx-\-b>0

-'i^ <bj <n — l, j = 1,... ,m.
This can be written as an LCP with coefficient matrix

and affine vector

M ~\ C o)

lent results on the problems attempted and a selection
of the results is shown in Table 1.

The three procedures used for comparison are gen-
eral branch-and-bound linear LP algorithms. The algo-
rithm presented here compares favorably to the results
obtained. No routine or special selection procedures
were enacted to take advantage of the special nature
of the problem. The calculations were performed on
IBM 6000 240 and PowerPC machines and the compar-
ison is between different general procedures described
above. The time estimates quoted are the actual times
reported by the solvers.

Better results could be obtainable if the special-
ized structure of the problem were exploited, but
this would make the algorithms no longer general
procedures.

The first four problems were recursively generated
by the addition of binary equalities, to a set of base
problems, while the next three problems are particu-
lar combinatorial problems, such as determining how
many queens can be placed on an « x n chess board
so that no queen can capture another. The next set of
four are real problems arising from VLSI tests and thus
deal with practical applications. Finally the last three
hole problems are unsolvable logical problems (Hin-
tikka 1955).

The solution found for each problem was checked
that it was a binary solution and that it was feasible
for the complete problem.

3.2. Knapsack Problems
The knapsack problem maximizes the value of the
items carried in a knapsack, subject to a capacity con-
straint, which must always be active to make the prob-
lem interesting.

Any knapsack problem may be expressed as a com-
binatorial problem in the following way:

x: a'^x-b<0]

It is a simple problem containing an objective func-
tion and a single constraint.

The objective function must be transformed into an
inequality constraint, so that a two-row matrix results:

The coefficient k must be increased from iteration to
iteration, by dichotomous search, as indicated in §2.

Thus the LCP formulation of any knapsack prob-
lem is:

This algorithm has been applied to more than 94 sat-
isfiability problems (Mayer et al, 1995) and gave excel-
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Table 2 Average Solution Results of Five Knapsaci( Probiems with
Different Routines and Distributionai Assumptions

where the notation is as before and the variables y, /x
are scalars that remain at their zero value throughout
the solutioti procedure, as is evident.

The LCP routine was implemented and compared to
the three alternative solvers, as indicated above. The
test set was constructed by considering five instances
per group. Each instance in a group was formulated
by considering a specific probability distribution with
differing parameters to generate the coefficients of the
instances to be solved.

Instances of various sizes were generated by sam-
pling the value of an object and its weight from the
probability distributions that were considered. Use
was made of the R statistical package (Dalgaard 2002)
for the distributions (uniform and geometric).

• Uniform distribution: the weights and values for
these instances were drawn from a tiniform distribu-
tion on [0, n] where n is the number of items. Five
instances for every size class were generated.

• Geometric distribution: the geometric distribu-
tion depends on a parameter 0 <p <1, and has a mass
function given by /„ = p(l - p)"-\ The mean of the
distribution for a given p is fj, = l/p while the vari-
ance of the distribution is jitj = (1 ~ P)/P^ (Kendall and
Stuart 1958). Thus for low values of the parameter p
the geometric distribution is similar to a tiniform dis-
tribution, while for increasing values of the parame-
ter p it becomes more and more peaked and bunched
so that the probability of selecting identical values or
ones that are arbitrarily close increases greatly. Here,
this will imply that many objects have similar weights
and values. The test set was generated for values from
p = 0.4 through 0.9, and five instances were generated
for each value.

• Mixed distributions: the same procedure as above
was carried out for the weights and for the values of
the objects, by generating the data in exactly the same
way from the appropriate distribution.

As can be seen from Table 2, in many cases, the
branch-and-bound procedures are very fast and accu-
rate in determining a solution. This is especially true
for the problems generated from the uniform distribu-
tion, but the solution times for the problems become
progressively worse as the weights and the values of
the objects are bunched together. This is obtained by
using different probability distributions with smaller
variances.

Thus, in general the solution times for these ran-
domly generated problems depend on the parameter

Distribution

Uniform

Geometric p = 0.4
Geometric p - 0.5
Geometric p = 0.6
Geometric p = 0.8

Geometric p = 0.9

Geom/uniform p-0.4
Uniform/geom p = 0.4

Size

100
200
500
100
100
100
100
200
100
200
500
500

Note. Time is in seconds.
'No termination before 1,200

GLPK

6.00
6.25
9.50

222.30
7,320.00

%
%
%
%
%
%
%

sees.

XPRESS

5.00
5.25
3.50
6.20
5.00

744.20
379.20
240.00

3,607.00
945.00

3.00
3.00

FORTIVIP

3.40
4.75
3.50
7.20

12.33
11.20

%
%
%
%

18.0
10.0

LCP

23.53
64.64

390.17
22.24
24.18
22.82
25.41
85.09
24.80
72.06

310.37
332.17

and the type of probability distribution used and not
only on the size of the problem.

On the other hand, with the LCP routine, an LP
is solved and the parametric variation of the scalar
parameter is carried out, so the computational times
will depend on the size of the problem, which is what
is evident in the table. The distributional characteris-
tics have hardly any influence on the solution times
with this algorithm and the small variations in the
computational times may be due to the parametric
variation rather than the lack of dual feasibility.

3.3. The Emergency-Service Problem
The emergency-service problem consists of distribut-
ing optimally over a territory a limited number of
services in relation to the possible demand so as to
ensure a given service level. Typically, the ambulance
emergency-service problem determines the optimal
location of ambulances over a territory (Mercuri 1992).

Usually the locations consider two types of points:
service points, where the ambulances just wait for a
service call, and facility points such as hospitals, where
ambulances deliver the patients and, often for want of
better planning, await the next call.

The IP problem is:
N T b,i

E E E Q(P>' ^tAk-1))(1 - q>)q';-'a,y^,, = MinZ (6)
i = l (=1 k=l

E

- ChtZht < 0

e integer

(7)

(8)

(9)

(10)
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The index sets I, J, J' and T are respectively fhe
index sets of demand nodes, service nodes, facilify
nodes, and the time period considered. The integer
and binary variables to be determined are: i/,(., = 1
if demand node / e J is not covered by k services
at time t; z,,, = 1 if a facility node is covered at ^ e
/' at time t; Xj, is the number of emergency services
assigned to node ; e / U /' at time t.

Thus, let fl,, be the number of service requests at
demand node i at time t, q, be the probability that a
service unit is busy at time t and bj, be the number of
service units required to cover node i at time t with
probability (3 that will depend on the request pattern
and the desired probabihty level of service (Mercuri
1992). Then (6) attempts to minimize the probability
of not covering the emergency requests with a service
coming from a node in the set of service or facility
points given by M,,, which is an index set of service
and facility points that cover demand point i at time t,
within the required distance.

The set of constraints (7) requires that for every
demand node / at each time f e T the number of ser-
vices available plus the services that are missing is
greater than or equal to the number of services nec-
essary to ensure that the requests are covered with
at least the given probability of service. The total num-
ber of services available at all service nodes must be
less than the number available at time t, i.e., p, (8).
The number of emergency units stationed at a facility
node he }' must not be greater than its capacity c,,, (9),
while all possible facility nodes should be less than or
equal to a given number for every time period t eT
(10). Finally, the variables are either integer or binary.

The LCP version of this IP was applied to two well-
known problems (Mirchandani 1985, Torregas et al.
1971) and to a number of large applications regard-
ing Florence and Rome. The integer variables required
were defined by a suitable number of binary variables,
through the binary expansion of the integers. This is
a very straightforward way to transform a combinato-
rial problem defined over the integers to a combina-
torial problem defined over binary variables and thus
suitable for this LCP formulation without altering the
algorithm in any way.

The structure and the computational results for each
problem are presented in Tables 3 and 4. In the Table 3
the first column has the name of the problem instance
and in the next three columns its composition is spec-
ified regarding the number of demand points of a ser-
vice point and the number of time periods considered.
Column five has the number of vehicles present per
period. For the six-period Mirchandani instance, either
two or three vehicles were available at each period, for
a total of 16 vehicles over the interval, or an average
number of vehicles per period of 2.67. Similar consid-
erations apply to the next problem, while for the set

Table 3

Name

iVIirchandani
Torregas
Fiorencel
Florence2
Florence3
Romel
Rome2
Rome3
Rome4
Rome5

Solution of the Emergency-Vehicle Problem: Many
gency Vehicles

Demand
pts.

10
30
30
80
95

100
120
220
150
200

Service
pts.

10
30
30
80
95

100
120
220
150
200

Periods

6
3
6
2
2
2
1
1
1
1

Vehicies

2.67-
7.67*

40
40
40
40
40
40
40
40

Cpiex'

7.77
5.55
8.88

11.00
13.20
16.5
8.8

33.0 1
16.5
27.50 2

Emer-

LCP

0.77
62.96

585.40
397.95
742.39
242.77
457.49
,825.16
507.94

,229.12

Note. Time is in seconds.
'iVIachine equivaient times (Dongarra) ratio cpiex/Lcp = 110.
•Average ot emergency veiiicies availabie over the periods.

of problems regarding the Italian cities the number of
vehicles was kept constant throughout the day.

In Table 3 the number of vehicles is relatively large,
in line with the actual number of ambulances available
in the municipalities. As the vehicles are abundant,
complete covering was available in most cases.

Computational solution times obtained for the
CPLEX routine have been multiplied by 110, which
is the ratio of the performance efficiency of the two
machines, (Dongarra 2004). The particular calculation
was carried out with Linpackjava (www.netlib.org/
benchmark / linpackjava).

Apart from the first instance, which is a fairly small
problem, all the other instances run much faster with
CPLEX. Moreover, the relative difference between
computational times increases with increasing size of
the problem, which indicates a much better handling
facility for large data sets in CPLEX compared to
the LCP.

In Table 4, completely different computational re-
sults appear, for the case in which the emergency vehi-
cles are relatively scarce. In this set of problems only
the Italian-city instances are considered and the num-
ber of emergency vehicles is reduced to eight vehicles
per period. The results for the Italian-city instances

Table 4 Solution of fhe Emergency-Vehicle Problem: Scarce
Emergency Vehicles

Name

Fiorencel
Fiorence2
Fiorence3
Romel
Rome2
Rome3
Rome4
Rome5

Demand
pts.

30
80
95

100
120
220
150
200

Service
pts.

30
80
95

100
120
220
150
200

Periods

6
2
2
2
1
1
1
1

Vehicies

8
8
8
8
8
8
8
8

Cplex'

30.8
21,567.70

..»
116.60

*

LCP

318.91
319.91
678.26
761.91
350.33

1,891.96
488.14

1,443.40

Note. Time is in seconds.
'Machine equivaient times (Dongarra) ratio cpiex/Lcp = 110.
•Not soived in 3,000 sees of actuai machine time.
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in Tables 3 and 4 should be compared. The compu-
tational times for the instances that can be solved
with CPLEX in Table 4, considering an upper com-
putational time limit of 50 minutes (3,000 seconds)
increase many-fold compared to those in Table 3.
Instead for the LCP routine, the tighter constraints due
to a smaller number of emergency vehicles tend to
reduce the computational times.

Exactly the same LP must be solved for the LCP
routine in both cases, with a different right-hand side
in some inequalities. It is obvious that computational
times will be very similar, except for the computa-
tion of the parametric variation, which appears to be
reduced for the more heavily constrained problems.

Where CPLEX was unsuccessful within the time
limits imposed, there seems to be a critical ratio of the
number of service points per emergency vehicle per
period, which seems to be around ten. If this ratio is
above ten then the number of branch-and-bound itera-
tions becomes excessive, except in the Romel instance.

Once again the results are very encouraging and
show that effectively large locational problems can be
solved by the LCP algorithm, as in all the other prob-
lem types considered.

4. Conclusions
The method adopted provides reliable and reasonably
fast results to the solution of combinatorial problems,
which can be applied to any linear combinatorial
optimization problem with binary variables. Since
parametric linear programming is recognized as an
NP-complete algorithm (Murty 1972) no polynomial
results are claimed for this algorithm, which is also
apparent from considering the computational results.

Due to its generality, the LCP algorithm can be tried
as a first approach to solving a given problem, where-
upon a specialized procedure can be constructed if
desired.

It is the only solver that consistently solves all the
problem instances considered. Its computational times
are relatively invariant with respect to the structure of
the problem and depend only on the number of vari-
ables and constraints present in the instance. This is
often important in experimental work, where changes
in the structure of the coefficient matrix may intervene.
While these modifications may have a marked effect
on the solution times of the branch-and-bound proce-
dure, they will affect only marginally those of the LCP
procedure.

Further, given a new instance of a combinatorial
problem in a given number of variables the estimate
of the time taken to solve the problem with a branch-
and-bound procedure is likely to be very uncertain,
while with the LCP routine this is likely to be much
less so.

The algorithm applied should be demonstrably con-
vergent (either a solution is specified, or the fact that

the problem does not have a solution is indicated),
within a reasonable time span (Curry 1963). Further,
the chosen algorithm should be semantically ade-
quate, which implies that it should solve the problem
or indicate that no solution exists, for all variations in
the structure of the coefficient matrix or of the right-
hand side.

From the limited computational results provided
here, it appears that the LCP algorithm satisfies these
criteria to a greater extent than do the other branch-
and-bound procedures, but much more experimenta-
tion is required on this score.
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