
Modelling fixed points in genetic regulatory networks using
mathematical programming techniques

Leo Liberti1, Camilo La Rota2, Fabien Tarissan1

1 LIX, École Polytechnique, F-91128 Palaiseau, France

Email:{liberti,tarissan}@lix.polytechnique.fr
2 ISC, École Normale Supérieure, Lyon, France

Email:camilo.larota@ens-lyon.fr

October 2, 2007

Abstract

This paper employs mathematical programming and mixed integer linear programming techniques

for solving a problem arising in the study of genetic regulatory networks. More precisely, we solve

the inverse problem consisting in the determination of the arc weights in the digraph representing

the network in such a way that the number of fixed points is minimized.

1 Introduction

[to do]

The rest of this paper is organized as follows. In Sect. 2 we model the inverse problem as an op-
timization problem — in particular, in Sect. 2.2 we propose a nonlinear mathematical programming
formulation, and an exact linearization in Sect. 2.3. In Sect. 3 we discuss our computational results, and
Sect. 4 concludes the paper.

2 Modelling the problem

Given a directed graph G = (V,A), a discrete set of time instants T (which we suppose to be an initial
contiguous proper subset of N) and the following functions:

• a function α : A → {+1,−1} called the arc sign function;

• a function ω : A → R+ called the arc weight function;

• a function γ : V × T → {0, 1} called the gene activation function;

• a function ι : V → {0, 1} called the initial configuration;

• a function θ : V → R+ called the threshold function,

a gene regulatory network (GRN) is a 7-tuple (G,T, α, ω, γ, ι, θ) such that:

∀v ∈ V γ(v, 1) = ι(v) (1)

∀v ∈ V, t ∈ T r {1} γ(v, t) =

{

1 if
∑

u∈δ−(v)

α(u, v)ω(u, v)γ(u, t) ≥ θ(v)

0 otherwise,
(2)

2 MODELLING THE PROBLEM 2

where δ−(v) = {u ∈ V | (u, v) ∈ A} for all v ∈ V . Eqns. (1)-(2) together are called the evolution rules of
the GRN. For any particular t ∈ T , γ(·, t) : V → {0, 1} is called a configuration. Since the evolution rules
relate a configuration at time t with a configuration at time t−1, if γ(·, t) = γ(·, t−1) then γ(·, t′) = γ(·, t)
for all t′ > t: such configurations are called fixed points of the GRN. Furthermore, as long as the evolution
rules are purely deterministic (as is modelled above), a fixed point of a GRN is determined by its initial
configuration.

In this paper we deal with an inverse problem relating to parameter estimation in GRNs. More
precisely, we address the following.

Parameter Estimation in GRNs (PEGRN). Given a digraph G, a time instant set T ,
an arc sign function α, and a set C of initial configurations, find an arc weight function ω

and a threshold function θ with the property that for all ι ∈ C there exists a gene activation
function γ such that (G,T, α, ω, γ, ι, θ) is a GRN whose number of fixed points is minimum.

In other words, we attempt to estimate the arc weight and threshold functions of a GRN from the
knowledge of the digraph topology, the arc sign function in such a way that (a) the GRN evolution rules
are consistent with respect to a certain set of initial configurations and (b) the number of fixed points of
the GRN is minimized.

The methodolgy we shall follow is that of modelling the PEGRN by means of a mathematical pro-
gramming formulation [7]:

minx f(x)
subject to g(x) ≤ 0,

}

(3)

where x ∈ R
n are the decision variables and f : R

n → R is the objective function to be minimized subject
to a set of constraints g : R

n → R
m which may also include variable ranges or integrality constraints on

the variables. A problem where f, g are nonlinear is known as a Nonlinear Programming problem (NLP);
if some integrality constraints are present on the variable bounds the problem is known as a Mixed-
Integer NLP (MINLP). A mathematical programming problem which has some integer variables but
whose objective function and constraints are linear forms is called a Mixed-Integer Linear Programming
(MILP) problem. There exists general-purpose solution algorithms, both exact and heuristic, for all
problem forms in NLP, MINLP, MILP. Currently, MILP solution methods are the most advanced, and
the de facto standard solver is the ILOG CPLEX [2] solver. MINLPs and nonconvex NLPs can be solved
by many different global optimization methods such as BARON [6]. Most frequently, NLPs and MINLPs
undergo a reformulation stage before being solved [3, 4].

The primary concern in solving the PEGRN is thus modellistic rather than algorithmic. One of the
foremost difficulties is that of employing a static modelling paradigm — such as mathematical program-
ming — in order to describe a problem whose very definition depends on time. Another important
difficulty resides in describing the necessary and sufficient conditions for a configuration to be a fixed
point in a mathematical form suitable for use in a formulation like (3). We solve the first difficulty by
introducing variables indexed by a time instant t ∈ T . The solution of the second difficulty is discussed
below.

2.1 GRN fixed point conditions

Let C be a set of initial configurations, and x : C → {0, 1} be a function such that ∀ι ∈ C, x(ι) = 1 iff ι

evolves into a fixed point of the GRN. Furthermore, let y : C × V × T → {0, 1} be a function such that
for all ι ∈ C, v ∈ V, t ∈ T , y(ι, v, t) = γ(v, t) when the GRN evolves from the initial configuration ι.

2.1 Lemma
If x(ι) = 1 for some ι ∈ C, then

∏

t∈Tr{1}

∑

v∈V

(y(ι, v, t) − y(ι, v, t − 1))2 = 0.

2 MODELLING THE PROBLEM 3

Proof. If x(ι) = 1 then ι is an initial configuration evolving into a fixed point of the GRN. This means that
there is a t ∈ T such that γ(v, t) = γ(v, t−1) for all v ∈ V , or alternatively (y(ι, v, t)−y(ι, v, t−1))2 = 0.
Thus the product over all t of all such squared differences is also zero. 2

2.2 Lemma
If x(ι) = 0 for some ι ∈ C, then

∏

t∈Tr{1}

∑

v∈V

(y(ι, v, t) − y(ι, v, t − 1))2 ≥ 1.

Proof. If x(ι) = 0 then ι does not evolve into a fixed point of the GRN. This means that for all
t ∈ T there exists v ∈ V such that γ(v, t) 6= γ(v, t − 1). Since γ maps into {0, 1}, this implies that
(y(ι, v, t)− y(ι, v, t− 1))2 = 1, which in turn means that

∑

v∈V (y(ι, v, t)− y(ι, v, t− 1))2 ≥ 1. The result
follows. 2

2.3 Corollary
The following relationships hold:

∀ι ∈ C x(ι)
∏

t∈Tr{1}

∑

v∈V

(y(ι, v, t) − y(ι, v, t − 1))2 = 0 (4)

∀ι ∈ C x(ι) +
∏

t∈Tr{1}

∑

v∈V

(y(ι, v, t) − y(i, v, t − 1))2 ≥ 1. (5)

Cor. 2.3 provides a way to count the fixed points in the GRN (
∑

ι∈C x(ι)) and to relate this number
to the gene activation function. We now have all the elements to describe the PEGRN by means of a
mathematical programming formulation.

2.2 Mathematical programming formulation

• Sets:

1. set V of genes in the network;

2. set A of arcs in the network;

3. set C of possible initial configurations;

4. set T of time instants.

• Parameters:

1. α : A → {+1,−1} is the sign of the arc weights;

2. for all i ∈ C, v ∈ V , y
boundary
iv ∈ {0, 1} are the initial configurations (activation value of gene v

in initial configuration i);

3. θL, θU are the bounds on the threshold values;

4. wL, wU are the bounds on the arc weights.

• Variables:

1. for all i ∈ C, xi = 1 if initial configuration i evolves into a fixed point or 0 otherwise;

2. for all i ∈ C, v ∈ V, t ∈ T , yivt ∈ {0, 1} is the activation status of gene v at time t from initial
configuration i;

3. θ : V → R is the threshold function;

4. w : A → R+ is the arc weight function;

2 MODELLING THE PROBLEM 4

5. M : a “large enough” real value.

• Objective function:

min
∑

i∈C

xi.

• Constraints:

1. evolution rule:

∀i ∈ C, t ∈ T r {1}, v ∈ V
∑

u∈δ−(v)

αuvwuvyi,u,t−1 ≥ θvyivt − M(1 − yivt) (6)

∀i ∈ C, t ∈ T r {1}, v ∈ V
∑

u∈δ−(v)

αuvwuvyi,u,t−1 ≤ θv(1 − yivt) + Myivt; (7)

2. fixed point conditions:

∀i ∈ C xi

∏

t∈Tr{1}

∑

v∈V

(yivt − yi,v,t−1)
2 = 0 (8)

∀i ∈ C xi +
∏

t∈Tr{1}

∑

v∈V

(yivt − yi,v,t−1)
2 ≥ 1; (9)

3. boundary conditions:
∀i ∈ C, v ∈ V yiv1 = y

boundary
iv .

The value to be assigned to M should be an upper bound to |
∑

u∈δ−(v) αuvwuvyi,u,t−1| over all

v ∈ V, t ∈ T r {1}.

2.3 Linearization

In this section we discuss an exact reformulation [4] that transforms the problem of Sect. 2.2 into a
MILP. Both the evolution rule and the fixed point condition constraints in the formulation of Sect. 2.2 are
nonconvex constraints because of the presence of the multiplication between variables or terms involving
variables:

• in Constraints (6)-(7) we have two types of products, both multiplying a binary variable by a
continuous variable: wuvyi,u,t−1 and θvyiut;

• in Constraints (8)-(9) we have several types of products of variables/terms: y2
ivt, yivtyi,v,t−1, the

product
∏

t τit where τit =
∑

v(yivt − yi,v,t−1)
2 and the product xi

∏

t τit.

We remark that aside from the product
∏

t τit, all the other products only have two multiplicative
terms, one of which only takes on values in {0, 1}. Without loss of generality, we are going to suppose
that all continous variables will be bounded both above and below: this does not lose generality because
of the fundamentally physical nature of this problem. For such products, an exact linearization is readily
available. Consider two variables q ∈ {0, 1} and r ∈ [rL, rU]. Whenever it appears, the product qr can be
replaced by a (continuous) linearization variable s, as long as the following (linear) constraints are also
added to the problem:

s ≤ rUq (10)

s ≥ rLq (11)

s ≤ r + (|rU | + |rL|)(1 − q) (12)

s ≥ r − (|rU | + |rL|)(1 − q). (13)

3 COMPUTATIONAL EXPERIMENTS 5

In other words, if q = 0, then (10)-(11) force s = 0 and (12)-(13) are inactive. If q = 1, then (10)-(11)
are inactive and (12)-(13) force s = r. The particular case where r is also a binary variable can be more
appropriately dealt with by adding the following constraints:

s ≤ q (14)

s ≤ r (15)

s ≥ r + q − 1 (16)

s ≥ 0. (17)

The only extant case is the squared term y2
ivt. Notice that since yivt ∈ {0, 1}, yivt = y2

ivt, so squared
binary terms can simply be replaced by their argument (in this case yivt).

In order to deal with the term
∏

t τit, for all t ∈ C and t ∈ T we introduce binary variables χit defined
as follows:

χit =

{

1 if τit > 0
0 otherwise.

The relation contraints between χ and τ :

∀i ∈ C, t ∈ T
∑

v∈V

(yivt − yi,v,t−1)
2 ≤ χitM

∀i ∈ C, t ∈ T
∑

v∈V

(yivt − yi,v,t−1)
2 ≥ (χit − 1)M

force χit to be 1 if the corresponding τit is positive, and 0 if τit = 0. We now re-write the fixed point
constraints (8)-(9) by means of the χ variables as follows:

∀i ∈ C xi

∏

t∈Tr{1}

χit = 0 (18)

∀i ∈ C xi +
∏

t∈Tr{1}

χit ≥ 1. (19)

In order to linearize (18) and (19) we extend the idea of (14)-(17) to work with products of several
variables. Consider m binary variables q1, . . . , qm. Whenever it appears, the product

∏

i≤m qi can be
replaced by a (continuous) linearization variable s as long as the following linear constraints are added
to the formulation:

∀i ≤ m s ≤ qi (20)

s ≥
∑

i≤m

qi − m + 1 (21)

s ≥ 0. (22)

By employing the reformulation techniques explained in this session, all the nonlinear terms can
be replaced by linearization variables and linear constraints without changing the set of optima of the
problem. This yields a MILP formulation with a polynomial number of variables and constraints (in
terms of the size of the problem instance) that models the PEGRN. We also remark that the linearized
formulation only involves binary and continuous variables (i.e. no variable is integer but non-binary).

3 Computational experiments

3.1 The solution algorithm

MILP problems are usually solved by implicit enumeration via a Branch-and-Bound (BB) algorithm.
A BB algorithm works by recursively partitioning the domain of selected integer variables. This gives

4 CONCLUSION 6

rise to a search tree whose corresponds to sub-problems where a subset of the variables are subject to
tighter constraints imposed by the branching (in the case where all integer variables are binary, each
node corresponds to a sub-problem where some of the variables have been fixed to either 0 or 1). A node
is fathomed (i.e. no further branching occurs on the node) either because the global optimum restricted
to the node has been found, or because the global optimum restricted to the node cannot be better
than the overall best solution found so far (the incumbent). In order to test these two conditions at
each node, we compute a lower bound and an upper bound to the objective function value of the node’s
problem restriction. The first condition is verified if these bounds have the same value, and the second
if the lower bound for the node exceeds the incumbent (for minimization problems — for maximization
problems, if the upper bound for the node is lower than the incumbent). The most important stages
for a BB algorithm are the branching policies and the tightness of the lower bound (for minimization,
upper bound for maximization). Branching policies are usually defined by a complex set of heuristics [1],
and bounding is really a research field on its own. The CPLEX solver [2] uses a continuous relaxation
which is tightened by the addition of general-purpose and instance-specific cuts (i.e. inequalities which
are redundant in the original problem but valid and hopefully active in the continuous relaxation).

3.2 Results

4 Conclusion

References

[1] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters,
33:42–54, 2005.

[2] ILOG. ILOG CPLEX 8.0 User’s Manual. ILOG S.A., Gentilly, France, 2002.

[3] L. Liberti. Writing global optimization software. In Liberti and Maculan [5], pages 211–262.

[4] L. Liberti. Reformulation techniques in mathematical programming, in preparation. Thèse
d’Habilitation à Diriger des Recherches.

[5] L. Liberti and N. Maculan, editors. Global Optimization: from Theory to Implementation. Springer,
Berlin, 2006.

[6] N.V. Sahinidis. Baron: Branch and reduce optimization navigator, user’s manual, version 4.0.
http://archimedes.scs.uiuc.edu/baron/manuse.pdf, 1999.

[7] H.P. Williams. Model Building in Mathematical Programming. Wiley, Chichester, 4th edition, 1999.

