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École Polytechnique de Montréal
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nenad@crt.umontreal.ca
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Abstract

The pooling problem, which is fundamental to the petroleum industry, describes a
situation where products possessing different attribute qualities are mixed in a series
of pools in such a way that the attribute qualities of the blended products of the end
pools must satisfy given requirements. It is well known that the pooling problem can
be modeled through bilinear and nonconvex quadratic programming. In this paper, we
investigate how best to apply a new branch-and-cut quadratic programming algorithm
to solve the pooling problem. To this effect, we consider two standard models: one
is based primarily on flow variables, and the other relies on the proportion of flows
entering pools. A hybrid of these two models is proposed for general pooling problems.
Comparison of the computational properties of flow and proportion models is made
on several problem instances taken from the literature. Moreover, a simple alternating
procedure and a variable neighborhood search heuristic are developed to solve large in-
stances, and compared with the well-known method of successive linear programming.
Solution of difficult test problems from the literature is substantially accelerated, and
larger ones are solved exactly or approximately.

Key words: Pooling Problem, Bilinear Programming, Branch-and-cut, Heuristics,
Variable Neighborhood Search.

Résumé

Le problème de mélange multi-échelons (pooling problem) qui est fondamental pour
l’industrie pétrolière, décrit une situation dans laquelle des produits ayant des qualités
différentes pour divers attributs sont mélangés dans une série de réservoirs de sorte que
les qualités des attributs des produits mélangés dans les réservoirs finaux satisfassent
des conditions données. Il est bien connu que le problème de mélange avec étapes
intermédiaires peut être modélisé sous la forme d’un programme bilinéaire. Dans cet
article nous étudions deux modèles standards : le premier est basé principalement sur
des flots et le second sur la proportion des flots entrants dans les réservoirs. Un hy-
bride de ces deux modèles est proposé pour le problème de mélange multi-échelons
généralisé. Une comparaison des propriétés de calcul des modèles de flot et de pro-
portion est faite sur la base de plusieurs exemples de la littérature, résolus par un
algorithme de branchement et coupes. Une procédure alternante simple et une heuris-
tique de recherche à voisinage variable sont développés pour la résolution d’exemples
de grande taille et comparées avec la méthode bien connue d’approximations linéaires
récursives. La résolution de problèmes tests difficiles de la littérature est substancielle-
ment accélérée, et de plus grands problèmes sont résolus exactement ou approxima-
tivement.

Mots-clés : mélange multi-échelons, programme bilinéaire, branchement et coupes,
heuristique, recherche à voisinage variable.
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1 Introduction

The classical blending problem arises in refinery processes when feeds possessing different
attribute qualities, such as sulfur composition, density or octane number, are mixed directly
together into final products. A generalization known as the pooling problem is used to
model many actual systems which have intermediate mixing (or pooling) tanks in the
blending process. The latter problem may be stated in a general way as follows. Given the
availabilities of a number of feeds, what quantities should be mixed in intermediate pools
in order to meet the demands of various final blends whose attribute qualities must meet
known requirements? There are usually several ways of satisfying the requirements, each
way having its cost. The question to be answered consists in identifying that one which
maximizes the difference between the revenue generated by selling the final blends and the
cost of purchasing the feeds. The need for blending occurs, for example, when there are
fewer pooling tanks available than feeds or final products, or simply when the requirements
of a demand product are not met by any single feed. The classical blending problem may
be formulated as a linear program, whereas the pooling problem has nonlinear terms and
may be formulated as a bilinear program (BLP), which is a particular case of a nonconvex
quadratic program with nonconvex constraints (QP).

In this paper, we investigate how best to solve the pooling problem with a recent
algorithm for QP (Audet et al. 2000a). The results clearly show that the type of model
formulation chosen and initial heuristic used may significantly affect the performance of
the exact method.

The general bilinear programming (BLP) problem is usually formulated by dividing a
set of variables into two subsets: linear and nonlinear variables (see for example Baker and
Lasdon, 1985). The nonlinear variables may be further divided into two disjoint subsets,
called non complicating and complicating, respectively. This partition is based on the
simple fact that it is always possible to get a linear program when the variables from either
subset are fixed. It may be found by solving the minimal transversal of the corresponding
(unweighted) co-occurrence graph (Hansen and Jaumard, 1992), where vertices represent
variables and edges represent bilinear terms either in the objective function or in the
constraint set.

In order to formulate the BLP problem, which will be referred to in later sections, we
introduce the following notation:

n - number of variables
m - number of constraints
n1 - number of linear variables
n2 - number of nonlinear non-complicating variables
n3 - number of nonlinear complicating variables (n = n1 + n2 + n3)
m1 - number of linear constraints
m2 - number of nonlinear constraints (m = m1 + m2)
x = (x1, . . . , xn1

)T - linear variables



Les Cahiers du GERAD G–2000–23 – Revised 2

y = (y1, . . . , yn2
)T - nonlinear non-complicating variables

z = (z1, . . . , zn3
)T - nonlinear complicating variables

cx, cy, cz - constant vectors from Rn1 , Rn2 and Rn3 , respectively
C - n2 × n3 matrix (if cij 6= 0, then bilinear term yizj exists in the objective function)
b = (b1, . . . , bm)T - constants on the right-hand side of constraints
gi,x, gi,y, gi,z - constant vectors from Rn1 , Rn2 and Rn3 , respectively, i = 1, .., m
Gi - n2 × n3 matrix, (i = m1 + 1, . . . , m).

The general BLP problem may then be represented as

max f(x, y, z) = cT
x x + cT

y y + cT
z z + yT Cz

s.t.

gi(x, y, z) = gT
i,xx + gT

i,yy + gT
i,zz ≤ bi, i = 1, . . . ,m1

gi(x, y, z) = gT
i,xx + gT

i,yy + gT
i,zz + yT Giz ≤ bi, i = m1 + 1, . . . ,m

BLP is a strongly NP-hard problem since it subsumes the strongly NP-hard linear
maxmin problem (Hansen et al. 1992). Moreover, simply finding a feasible solution is
NP-hard as the constraint set generalizes the NP-hard linear complementarity problem
(Chung, 1989). The objective function is neither convex nor concave, and the feasible
region is not convex and may even be disconnected.

The nonlinear structure of the pooling problem was first pointed out in the famous small
example by Haverly (1978). In order to illustrate the potential difficulty of the problem,
a two step iterative algorithm was presented. It consists in estimating and fixing the
attribute qualities of the intermediate pools, then solving the resulting linear program. If
the resulting qualities coincide with the estimated ones, stop; otherwise update the values
and reiterate the steps. It is shown by Haverly (1978) that this process may not lead to a
global optimum.

Refinery modeling produces large sparse linear programs containing small bilinear sub-
problems. Successive Linear Programming (SLP) algorithms were designed for this type
of problem. Such algorithms solve nonlinear optimization problems through a sequence of
linear programs. The idea of the method consists in replacing bilinear terms by first-order
Taylor expansions in order to obtain a direction in which to move. A step (of bounded
length for convergence reasons) is taken in that direction, and the process is reiterated. The
first paper on SLP was that of Griffith and Stewart (1961) of Shell Oil, who referred to the
method as Mathematical Approximation Programming (later usage replaced that name by
SLP). Other SLP algorithms are detailed in Palacios-Gomez, Lasdon and Engquist (1982)
and Zhang, Kim and Lasdon (1985) and applications at Exxon are discussed in Baker and
Lasdon (1985). Lasdon and Joffe (1990) show that the method implemented in commercial
packages called Distributive Recursion is equivalent to SLP through a change of variables.
A method using Benders’ decomposition is detailed in Floudas and Aggarwal (1990). As
in the previous methods, this procedure does not guarantee identification of the global
optimum. Floudas and Visweswaran (1993a) propose a decomposition-based global opti-
mization algorithm (GOP), improved in Floudas and Visweswaran (1993b and 1996) and
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proven to achieve a global ǫ-optimum. Androulakis et al. (1996) discuss a distributed im-
plementation of the algorithm and present computational results for randomly generated
pooling problems with up to five pools, four blends, twelve feeds and thirty attributes.
Analysing continuous branch-and-bound algorithms, Dür and Horst (1997) show that the
duality gap goes to zero for some general non-convex optimization problems that include
the pooling problem.

Lodwick (1992) discusses pre-optimization and post-optimization analyses of the bilin-
ear programming model. This work allows identification of some constraints that will be
tight and others that will be redundant at optimality. Foulds, Haugland and Jörnsten
(1992) apply Al-Khayyal and Falk’s (1983) branch and bound algorithm for bilinear pro-
gramming to the pooling problem. This method finds in finite time a solution as close
as desired to a globally optimal solution. The general idea consists in replacing each bi-
linear term by a linear variable, and to add linear constraints in order to force the linear
variable to be equal to the bilinear term. This is done by taking the convex and concave
envelopes of the bilinear function g : IR2 → IR, g(x, y) 7→ xy over an hyper-rectangle. The
branching rule of the algorithm then splits the hyper-rectangle in its middle and recur-
sively explores the two parts. The method is extremely sensitive to the bounds on the
variables. Computational time increases rapidly with the number of variables that are
not at one of their bounds at optimality. Audet et al. (2000a) strengthen several aspects
of Al-Khayyal and Falk’s (1983) algorithm (the improvements will be discussed later in
the paper when computational results are presented). This algorithm is also based on the
Reformulation-Linearization Techniques of Sherali and Tuncbilek (1992), (1997a), (1997b).

Ben-Tal et al. (1994) use the proportion model (detailed in subsection 2.2 below) to
solve the pooling problem. The variables are partitioned into two groups: q and (x, y).
The bilinear program can then be written

max
q∈Q

max
(x,y)∈P (q)

f(q, x, y),

where Q is a simplex, P (q) is a set that depends on q, and f is a bilinear function. By
taking the dual of the second parameterized program, the bilinear problem can be rewritten
into an equivalent semi-infinite linear program, in which the constraints must be satisfied
for all the proportion vectors q of the simplex Q. This problem is relaxed by taking only
the constraints corresponding to the vertices of Q. These steps are integrated into a branch
and bound algorithm that partitions Q into smaller sets until the duality gap is null.

Grossmann and Quesada (1995) study a more sophisticated modelization for general
process networks (such as splitters, mixers and linear process units that involve multicom-
ponent streams), with two different formulations, based on components compositions and
total flows. They use a reformulation-linearization technique (Alameddine and Sherali,
1992) to obtain a valid lower bound given by a LP-relaxation. This reformulation is then
used within a spatial branch-and-bound algorithm.
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Amos, Rönnqvist and Gill (1997) use cumulative functions describing the distillation
yield to model the pooling problem through a nonlinear constrained least-square problem.
Promising results are shown on examples derived from the New Zealand Refining Company.

Adhya et al.(1999), after an exhaustive literature review, obtain tighter lower bounds
with their Lagrangian approach, because of the original choice of the relaxed constraints,
which is not made in order to obtain easier to solve subproblems (in fact, after reformu-
lation, they have a mixed-integer problem). They test their algorithm with the global
optimization software BARON (Sahinidis, 1996), on several problems from the literature
and on four new difficult instances.

This paper is divided into three parts. In the next section, we analyze two different
ways of modeling the pooling problem into bilinear programming problems. The variables
are either partitioned into flow and attribute variables (as suggested in Haverly (1978),
and made more formal in Foulds et al. (1992)) or into flow and proportion variables (as
in Ben-Tal et al., 1994). A combination of these two, called the hybrid model, is also
presented for the generalized pooling problem. The type of formulation is seen to affect
the number of nonlinear variables obtained in the model. The second part of the paper
applies a recent branch-and-cut algorithm (Audet et al., 2000a) to the flow and proportion
models of several problem instances taken from the literature. The results suggest that
the proportion formulation is preferable for this algorithm. The computational results
also demonstrate that good heuristics are needed to obtain starting solutions for exact
methods and/or to solve larger problem instances approximately. The last part of the
paper introduces a new variable neighborhood search heuristic (VNS) and compares this
method to the successive linear programming method and the Alternate procedure. VNS
is seen to outperform the existing heuristics on the same set of problem instances from the
literature as well as on large randomly-generated problem sets.

2 Model formulation

The classical blending problem determines the optimal way of mixing feeds directly into
blends. The basic structure of the pooling problem is similar except for one set of additional
intermediate pools where the feeds are mixed prior to being directed to the final blends.
Therefore, there are three types of pools: source pools, having a single purchased feed as
input, intermediate pools with multiple inputs and outputs, and final pools having a single
final blend as output. The objective function is derived through the input of the source
pools and the output of the final pools.

It is assumed that the intermediate pools receive flow from at least two feeds, and are
connected to at least two blends. The motivation behind these conditions is that if either
is not satisfied, the intermediate pool can be eliminated by merging it to the feed or the
blend, thus trivially simplifying the model. Let Fi, Pj and Bk denote feed i, pool j and
blend k, respectively. The following parameters are introduced:
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nF , nP , nB , nA number of feeds, intermediate pools, blends and attribute qualities
X the set of indices {(i, k) : there is an arc from Fi to Bk}
W the set of indices {(i, j) : there is an arc from Fi to Pj}
Y the set of indices {(j, k) : there is an arc from Pj to Bk}

pF
i , pB

k prices of feed i and blend k for i = 1, 2, . . . nF and k = 1, 2, . . . nB

ℓF
i , uF

i lower and upper bounds on the availability of feed i for i = 1, 2, . . . nF

ℓB
k , uB

k lower and upper bounds on the demand of blend k for k = 1, 2, . . . nB

ℓFB
ik , uFB

ik lower and upper bounds on the capacity of arc (i, k) ∈ X
ℓP
j , uP

j lower and upper bounds on the capacity of pool j for j = 1, 2, . . . nP

ℓFP
ij , uFP

ij lower and upper bounds on the capacity of arc (i, j) ∈ W

ℓPB
jk , uPB

jk lower and upper bounds on the capacity of arc (j, k) ∈ Y

sa
i attribute quality a of feed i for a = 1, 2, . . . nA and i = 1, 2, . . . nF

ℓa
k, ua

k lower and upper bounds on the requirements of attribute quality a
of blend k for for a = 1, 2, . . . nA and k = 1, 2, . . . nB

Throughout the paper, the following notation concerning sets of pairs of indices such as
X is used. For a given first element i of a pair of indices, X(i) is defined to be the set

of forward indices {k : (i, k) ∈ X} and for a given second element k, X−1
(k) is the set of

backward indices {i : (i, k) ∈ X}. The set of forward and backward indices of elements of
W and Y are defined in a similar fashion. The flow conservation property allows reduction
of the number of variables. In order to do so, at each intermediate pool, the flow of one
of the entering feeds is deduced by the difference of the total exiting blend and the sum
of the other entering feeds. An additional index parameter that identifies which entering
feed is deduced from the others is required; we denote by

i(j) the smallest index of W−1
(j) for j = 1, 2, . . . nP .

When different products are mixed together, it is assumed that the attribute qualities
blend linearly: the attribute quality of the pool or blend is the weighted sum of the entering
streams, where each weight is the volume proportion of the corresponding entering stream
over the total volume. In what follows, we assume that all attribute qualities blend in
this manner. DeWitt et al. (1989) present more precise models for octane and distillation
blending. However, due to their complexity (they contain logarithms or fourth order terms)
these models are not considered in this paper.

The flow variables are given by:

xik flow from Fi to Bk on the arc (i, k) ∈ X
wij flow from Fi to Pj on the arc (i, j) ∈ W
yjk flow from Pj to Bk on the arc (j, k) ∈ Y .

We present two bilinear formulations of the pooling problem that differ in the representation
of the flow from the feeds to the intermediate pools. To our best knowledge, these are the
first complete formulation of the pooling problem which provide for automated construction
of the model and comparison of the computational aspects of the two forms.
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2.1 Flow Model of the Pooling Problem

In this subsection, we develop a bilinear programming model of the pooling problem based
on the primary flow variables. For each arc (i, j) in W , the flow originating from feed i to
pool j is denoted by the variable wij , except when i is the index i(j). Recall that i(j) ∈ W−1

(j)

is defined to be the smallest index of the input feed connected to the intermediate pool
Pj . The flow conservation property ensures that the flow on the arc (i(j), j) of W is the
difference between the total flow exiting Pj and the flows on the other arcs entering Pj :

wi(j)j =
∑

k∈Y(j)

yjk −
∑

i∈W
−1
(j)

:

i6=i(j)

wij .

Thus, the variable wi(j)j is not required in the model.

For each attribute quality a ∈ {1, 2, . . . , nA}, a variable taj is introduced to represent
the attribute quality of the intermediate pool Pj . Assuming that the attribute qualities
blend linearly, we obtain that

taj =

sa
i(j)

(

∑

k∈Y(j)

yjk −
∑

i∈W
−1
(j)

:

i6=i(j)

wij

)

+
∑

i∈W
−1
(j)

:

i6=i(j)

sa
i wij

∑

k∈Y(j)

yjk

.

This equation simplifies to the bilinear constraint
∑

k∈Y(j)

(sa
i(j) − taj )yjk −

∑

i∈W
−1
(j)

:

i6=i(j)

(sa
i(j) − sa

i )wij = 0.

The attribute quality a = 1, 2, . . . , nA of blend k = 1, 2, . . . , nB may be calculated as the
ratio:

∑

i∈X
−1
(k)

sa
i xik +

∑

j∈Y
−1
(k)

taj yjk

∑

i∈X
−1
(k)

xik +
∑

j∈Y
−1
(k)

yjk

.

The flow bilinear programming formulation which maximizes the net profit of the pool-
ing is shown in Figure 1.

Observe in the flow formulation that the objective function and all constraints are
linear except for those constraints dealing with the attribute qualities of pools and final
blends. The bilinear variables are divided into two sets: {taj} and {yjk}, giving a total of

nAnP + |Y | nonlinear variables. Furthermore there are as many as nA(nP + 2nB) bilinear
constraints.
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max
t,w,x,y

∑

(

i(j),j
)

∈W

pF
i(j)

(

∑

i∈W
−1
(j)

i6=i(j)

wij−
∑

k∈Y(j)

yjk

)

−
∑

(i,j)∈W
i6=i(j)

pF
i wij+

∑

(i,k)∈X

(

pB
k −pF

i

)

xik+
∑

(j,k)∈Y

pB
k yjk

subject to :

supply i = 1, 2, . . . , nF :

ℓF
i ≤

∑

(

i(j),j
)

∈W

i=i(j)

(

∑

k∈Y(j)

yjk −
∑

i∈W
−1
(j)

i6=i(j)

wij

)

+
∑

j∈W(i):

i6=i(j)

wij +
∑

k∈X(i)

xik ≤ uF
i

demand k = 1, 2, . . . , nB : ℓB
k ≤

∑

i∈X
−1
(k)

xik +
∑

j∈Y
−1
(k)

yjk ≤ uB
k

pool capacity j = 1, 2, . . . , nP : ℓP
j ≤

∑

k∈Y(j)

yjk ≤ uP
j

attribute a = 1, 2, . . . , nA of pool j = 1, 2, . . . , nP :
∑

k∈Y(j)

(

sa
i(j) − taj

)

yjk −
∑

i∈W
−1
(j)

i6=i(j)

(

sa
i(j) − sa

i

)

wij = 0

requirement of attribute a = 1, 2, . . . , nA of blend k = 1, 2, . . . , nB :

ℓa
k

(

∑

i∈X
−1
(k)

xik+
∑

j∈Y
−1
(k)

yjk

)

≤
∑

i∈X
−1
(k)

sa
i xik+

∑

j∈Y
−1
(k)

taj yjk ≤ ua
k

(

∑

i∈X
−1
(k)

xik+
∑

j∈Y
−1
(k)

yjk

)

capacity of the arcs: ℓFP
i(j)j ≤

∑

k∈Y(j)

yjk −
∑

i∈W
−1
(j)

i6=i(j)

wij ≤ uFP
i(j)j ,

(

i(j), j
)

∈ W

ℓFP
ij ≤ wij ≤ uFP

ij , (i, j) ∈ W : i 6= i(j)
ℓFB
ik ≤ xik ≤ uFB

ik , 4(i, k) ∈ X
ℓPB
jk ≤ yjk ≤ uPB

jk , (j, k) ∈ Y
non-negativity: w ≥ 0, x ≥ 0, y ≥ 0

Figure 1: Flow model

Note also that if the taj variables are fixed at a feasible point in the solution subspace,
a feasible solution of the pooling problem is obtained by solving the resulting LP on the
flow variables. Given a feasible set of flow values, the taj are the unique solution obtained
directly from the attribute constraints for the pools.

2.2 Proportion Model of the Pooling Problem

A bilinear formulation is presented in this subsection based upon the proportion of flow
entering at the intermediate pools. The parameters are the same as for the flow model,
including the index i(j). However, instead of incorporating explicitly the flow variables
from the feeds to the intermediate pools, and the attribute variables, only proportion
variables are introduced as follows; we denote by
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qij the proportion of the total flow into Pj from Fi along the arc (i, j) ∈ W , for all i 6= i(j).

The proportion variables allow computation of the flow on the arc (i, j) ∈ W , i 6= i(j),
as:

wij = qij

∑

k∈Y(j)

yjk.

The flow on the arc (i(j), j) ∈ W is:

wi(j)j =

(

1 −
∑

h∈W
−1
(j)

:

h6=i(j)

qhj

)

∑

k∈Y(j)

yjk.

The total flow leaving Fi, i = 1, 2, . . . nF , is given by:

∑

k∈X(i)

xik +
∑

j∈W(i):

i6=i(j)

qij

∑

k∈Y(j)

yjk +
∑

j∈W(i):

i=i(j)

(

1 −
∑

h∈W
−1
(j)

:

h6=i(j)

qhj

)

∑

k∈Y(j)

yjk.

The attribute a = 1, 2, . . . , nA of intermediate pool j = 1, 2, . . . , nP is:

∑

i∈W
−1
(j)

:

i6=i(j)

sa
i qij + sa

i(j)

(

1 −
∑

i∈W
−1
(j)

:

i6=i(j)

qij

)

= sa
i(j) +

∑

i∈W
−1
(j)

:

i6=i(j)

(

sa
i − sa

i(j)

)

qij .

The attribute quality a = 1, 2, . . . , nA of blend k = 1, 2, . . . , nB is:

∑

i∈X
−1
(k)

sa
i xik +

∑

j∈Y
−1
(k)

(

sa
i(j) +

∑

i∈W
−1
(j)

:

i6=i(j)

(sa
i − sa

i(j))qij

)

yjk

∑

i∈X
−1
(k)

xik +
∑

j∈Y
−1
(k)

yjk

.

The proportion bilinear programming formulation is given in Figure 2.

Note that the objective function is no longer linear. The bilinear variables are now
given by the two sets, {qij} and {yjk}. Hence, the total number of nonlinear variables
equals |W | − nP + |Y |, which is independent the number of attribute qualities. Including
arc capacities, there are as many as 2(nF + nAnB) + |W | bilinear constraints. Also note
that given any feasible point in the solution subspace (qij), the feasible region of the (yjk)
is defined by a polyhedron, and vice-versa.
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max
x,y,q

∑

(

i(j),j
)

∈W

pF
i(j)

(

∑

h∈W
−1
(j)

h6=i(j)

qhj − 1

)

∑

k∈Y(j)

yjk −
∑

(i,j)∈W :
i6=i(j)

pF
i qij

∑

k∈Y(j)

yjk

+
∑

(i,k)∈X

(

pB
k − pF

i

)

xik +
∑

(j,k)∈Y

pB
k yjk

subject to :

supply i = 1, 2, . . . , nF :

ℓF
i ≤

∑

(

i(j),j
)

∈W

i=i(j)

(

1−
∑

h∈W
−1
(j)

h6=i(j)

qhj

)

∑

k∈Y(j)

yjk +
∑

j∈W(i)

i6=i(j)

qij

∑

k∈Y(j)

yjk +
∑

k∈X(i)

xik ≤ uF
i

demand k = 1, 2, . . . , nB : ℓB
k ≤

∑

i∈X
−1
(k)

xik +
∑

j∈Y
−1
(k)

yjk ≤ uB
k

pool capacity j = 1, 2, . . . , nP : ℓP
j ≤

∑

k∈Y(j)

yjk ≤ uP
j

requirement of attribute a = 1, 2, . . . , nA of blend k = 1, 2, . . . , nB :

ℓa
k

(

∑

i∈X
−1
(k)

xik +
∑

j∈Y
−1
(k)

yjk

)

≤
∑

i∈X
−1
(k)

sa
i xik +

∑

j∈Y
−1
(k)

(

sa
i(j) +

∑

i∈W
−1
(j)

i6=i(j)

(sa
i − sa

i(j))qij

)

yjk

≤ ua
k

(

∑

i∈X
−1
(k)

xik +
∑

j∈Y
−1
(k)

yjk

)

capacity of the arcs: ℓFP
i(j)j ≤

(

1 −
∑

h∈W
−1
(j)

h6=i(j)

qhj

)

∑

k∈Y(j)

yjk ≤ uFP
i(j)j ,

(

i(j), j
)

∈ W

ℓFP
ij ≤ qij

∑

k∈Y(j)

yjk ≤ uFP
ij , (i, j) ∈ W : i 6= i(j)

ℓFB
ik ≤ xik ≤ uFB

ik , (i, k) ∈ X
ℓPB
jk ≤ yjk ≤ uPB

jk , (j, k) ∈ Y

non-negativity and proportion j = 1, 2, . . . , nP : x ≥ 0, y ≥ 0, q ≥ 0,
∑

h∈W
−1
(j)

h6=i(j)

qhj ≤ 1

Figure 2: Proportion model
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2.3 Comparison of the Flow and Proportion Models

For comparison purposes, the following ten examples are taken from the literature: Haver-
ly’s (1978) pooling problem (referred to as H1), Ben Tal et al.’s (1994) fourth and fifth
pooling problems (BT4, BT5), Rehfeldt and Tisljar’s (1997) first and second problems
(RT1, RT2), Foulds et al.’s (1992) second problem (F2) and the four examples proposed
in Adhya et al.(1999), referred to as AST1,2,3 and 4. For brevity, only RT2 is shown in
detail in the Appendix. The data describing all examples considered in the paper can be
found at www.gerad.ca/Charles.Audet.

A complete description of the number of variables and constraints for these ten examples
appears in Table 1. The table is divided into four groups of columns. The left one (Lin Var)

Example
Lin Bilinear Bilinear Constraints
Var Var (Pool+Flow) Trm

∑

(Pool×Flow) L≤ Q≤ Q=

Flow Model

AST1 3 16 (8+8) 32 (4×4)+(4×4) 10 32 8
AST2 3 20 (12+8) 48 (6×4)+(6×4) 10 48 12
AST3 5 30 (18+12) 72 (6×4)+(6×4)+(6×4) 13 48 18
AST4 6 18 (8+10) 40 (4×5)+(4×5) 11 40 8
BT4 4 3 (1+2) 2 (1×2) 6 4 1
BT5 14 21 (6+15) 30 (2×5)+(2×5)+(2×5) 18 20 6
F2 10 10 (2+8) 8 (1×4) + (1×4) 12 8 2
H1 3 3 (1+2) 2 (1×2) 6 4 1
RT1 7 12 (7+5) 17 (4×2)+(3×3) 16 20 7
RT2 8 14 (8+6) 24 (4×3)+(4×3) 14 21 8

Proportion Model

AST1 0 11 (3+8) 12 (1×4)+(2×4) 7 37 0
AST2 0 11 (3+8) 12 (1×4)+(2×4) 7 53 0
AST3 0 17 (5+12) 20 (1×4)+(2×4)+(2×4) 9 56 0
AST4 0 14 (6+8) 24 (3×4)+(3×4) 9 48 0
BT4 2 4 (2+2) 4 (2×2) 5 7 0
BT5 5 24 (9+15) 45 (3×5)+(3×5)+(3×5) 14 24 0
F2 8 10 (2+8) 8 (1×4)+(1×4) 8 12 0
H1 2 3 (1+2) 2 (1×2) 4 6 0
RT1 5 7 (2+5) 5 (1×2)+(1×3) 9 23 0
RT2 4 10 (4+6) 12 (2×3)+(2×3) 11 24 0

Table 1: Summary of the number of variables and constraints

shows the number of variables that are not involved in bilinear terms (the linear variables).
The second group details the number of bilinear variables. They are partitioned in two
subsets (each bilinear term consists of the product of one variable from each subset), and
the number of variables in each subset of the partition is between parentheses (Pool Flow).
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Flow is the number of flow variables, and Pool is the number of attribute or proportion
variables (depending on the model used). These numbers are decomposed in the next group
to explain the total number of bilinear terms (Trm) introduced by the intermediate pools.
For example, the flow model of RT2 has four attributes and three exiting feeds, at each
pool, P1 and P2. The number of bilinear terms is the number of cross-product elements of
{t11, t

2
1, t

3
1, t

4
1}×{y11, y12, y13} and {t12, t

2
2, t

3
2, t

4
2}×{y21, y22, y23}; therefore, there are a total

of 4× 3 + 4× 3 = 24 bilinear terms. The last group of columns gives the number of linear
inequalities L≤, quadratic inequalities Q≤, and quadratic equalities Q= in the constraint
set of each problem.

The difficulty of the bilinear programming problem can be roughly estimated by the
number of bilinear variables, terms and constraints. The advantage of the flow model
occurs when there are few attributes. The number of complicating variables (the taj ) will
then be small. When the number of attributes increases, the advantage of the proportion
model becomes apparent since the number of bilinear variables and terms stays the same.
These numbers are determined by the number of entering and exiting flows at the inter-
mediate pools. (For total number of bilinear variables, the turnover between the flow and
proportional models occurs when nA = |W |/nP −1, that is, the average number of entering
arcs at the intermediate pools less one.) Referring to Table 1, we see that the proportion
models of Examples RT1 and RT2 are considerably smaller than the corresponding flow
models. At first glance, the flow model appears to be simpler than the proportion in BT5.
We will see in the next section when these problems are solved exactly that this is not the
case. The number of bilinear constraints is also an important factor.

2.4 Generalized Pooling Problem

The complexity of the model increases when several pools are linked together in parallel
or in series. We present in Figure 3 (and Table 2) an example in which the intermediate
pools are allowed to be interconnected. The pooling problem is thus extended to the case
where exiting blends of some intermediate pools are entering feeds of others.

F1

F2

F3

±°
²¯
P1

±°
²¯
P2

B1

B2

B3

x11

y21

y12

x32

y23

-
HHHHj

³³³³1

©©©©©©*

»»»»»»»»»»»»:

PPPPPPPq
@@R

¡
¡

¡
¡¡µ
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@@R

Figure 3: A Generalized Pooling Problem (GP1)
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Feed Price Attribute Max Pool Max Blend Price Max Attribute
$/bbl Quality Supply Capacity $/bbl Demand max

F1 6 3 18 P1 20 B1 9 10 2.5
F2 16 1 18 P2 20 B2 13 15 1.75
F3 10 2 18 B3 14 20 1.5

Table 2: Characteristics of GP1

The proportion model of the generalized pooling problem is not a bilinear program,
since the variables are not partitioned into two sets. Some bilinear terms will be of the
form qijqlm. Therefore, this formulation belongs to the class of quadratically constrained
quadratic programs.

A hybrid formulation may be used for the generalized problem. The flow model is ap-
plied to intermediate pools that receive flow from at least one other intermediate pool, and
the proportion model is used otherwise. In both cases, the exiting flow of an intermediate
pool is modeled through flow variables.

A hybrid model for GP1 is given below where v12 denotes the flow from P1 to P2 (all
other variables are defined as before).

max
q,t,v,w,x,y

−6(x11 + y12 + v12 − q21(y12 + v12)) − 16q21(y12 + v12) − 10(x32 + y21 + y23 − v12)

+9(x11 + y21) + 13(y12 + x32) + 14y23

s.t.
supply: x11 + y12 + v12 − q21(y12 + v12) ≤ 18

q21(y12 + v12) ≤ 18
x32 + y21 + y23 − v12 ≤ 18

demand: x11 + y21 ≤ 10
y12 + x32 ≤ 15
y23 ≤ 20

capacity: y12 + v12 ≤ 20
y21 + y23 ≤ 20

attribute: (3 − 2q21)v12 + 2(y21 + y23 − v12) − t12(y21 + y23) = 0
3x11 + t12y21 ≤ 2.5(x11 + y21)
2x32 + (3 − 2q21)y12 ≤ 1.75(x32 + y12)
t12 ≤ 1.5

pos. flow: y21 + y23 − v12 ≥ 0
q ≥ 0, t ≥ 0, v ≥ 0, w ≥ 0, x ≥ 0, y ≥ 0, q21 ≤ 1.

2.5 Simplification of some pooling problem instances

It is sometimes useful to analyze the basic structure of a given pooling problem in order to
attempt to simplify it. Consider, for example, the instance detailed in RT1 and reproduced
in the left part of Figure 4 below.
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Figure 4: Simplification of Rehfeldt and Tisljar’s first pooling problem (RT1)

A closer look at the definition of the problem allows considerable simplifications. Ob-
serve that the flows x21, x31 and y21 entering blend B1 originate solely from the two feeds
F2 and F3. A positive flow y21 of any feasible solution could be transferred to the un-
constrained flows x21 and x31 without affecting feasibility, or objective function value.
Therefore, we can assume without any loss of generality that the flow variable y21 is fixed
to zero.

Similarly, by considering the flows y13, x13 and x33, we can deduce that y13 can be
fixed to zero. This observation has important consequences: the pool P1 has therefore
a unique exiting flow y12, and thus that pool can be combined with the final pool B2.
The flow from F3 to B2 is bounded above by the capacity of pool P1. This constraint is
however redundant, since the maximum demand of B2 is less than that capacity. These
simplifications are illustrated on the right part of Figure 4 and they lead to new ones.
Indeed, consider the flow from the feed F3 to the intermediate pool P2: it can be transferred
to x32 and x33 without altering feasibility or objective function value, thus allowing fixing it
to zero. It follows that the intermediate pool P2 can be combined with F2 as the capacity of
pool P2 is greater than the availability of feed F2. Therefore, this example can be reduced
to an equivalent blending problem since all intermediate pools may be eliminated. Thus,
Rehfeldt and Tilsjar’s (1997) first pooling problem can be solved by linear programming!

The instances F3, F4 and F5 of Foulds et al. (1992) can also be simplified. In fact, the
linear structure describing these instances allows an analytical solution. We will show how
to solve F3; F4 and F5 can be treated similarly. In that instance, the single attribute value
and cost of the 11 feeds are s1

i = 9+i
10 and pF

i = 21 − i for i = 1, 2, ..., 11. The capacities of
the arcs and pools are unlimited. Each of the 16 blends has a maximal demand of 1. Their
price and maximal attribute values are pB

k = 41−k
2 and u1

k = 1 + .05k for k = 1, 2, ..., 16.

A consequence of this linear structure is that the cost of producing a unit amount
of a blend with fixed attribute α ∈ [1, 2] comprises a constant purchase cost, 30 − 10α,
independent of which feeds are blended together. Therefore, a strategy to get the optimal
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solution is to simply direct 9.2 units of feed F1 into pool P1 and 6.8 units of F11 into
P8, then blend 2 − u1

k units of P1 together with u1
k − 1 units of P8 into blend Bk, for

k = 1, 2, ..., 16. This optimal solution is displayed in Figure 5.
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ipF
i

B1
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...

...
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Figure 5: Simplification of F3, F4 and F5

3 Computational Results for Exact Solution

Since the objective function and feasible region are nonconvex, the pooling problem requires
a global optimization approach. Methods using local searches along descent directions, such
as successive linear programming (SLP), are only guaranteed to find a local optimum, the
quality of which is unknown.

The pooling examples described in the preceding section are solved to global optimality
using a recent branch-and-cut algorithm by Audet et al. (2000a) for the general class of
nonconvex quadratically constrained quadratic programs. Their method is inspired by Al-
Khayyal and Falk’s (1983) branch and bound algorithm for bilinear programming and the
Reformulation-Linearization Techniques of Sherali and Tuncbilek (1992), (1997a), (1997b).
The improvement to these methods are: (i) selection of the branching value: splitting of
the hyper-rectangle is done in a way that minimizes the resulting potential error, and thus
not necessarily in its middle; (ii) approximation of bilinear terms: instead of systematically
adding all linear inequalities defining the convex and concave envelopes, only those violated
are added to the model thus keeping the linear program size from growing too fast; (iii)
introduction of a new class of cuts: cuts derived from under-approximation of the convex
paraboloid are used to force linear variables to approach the corresponding bilinear term;
(iv) the proposed algorithm is of the branch and cut type: cuts introduced at any node of
the exploration tree are valid at all other nodes.
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Example [ref] nF nP nB nA solution

AST1 [1] 5 2 4 4 549.803
AST2 [1] 5 2 4 6 549.803
AST3 [1] 8 3 4 6 561.048
AST4 [1] 8 2 5 4 877.649

BT4 [11] 4 1 2 1 45
BT5 [11] 5 3 5 2 350

F2 [20] 6 2 4 1 110

H1 [27] 3 1 2 1 40
H2 [27] 3 1 2 1 60
H3 [27] 3 1 2 1 75

RT1 [32] 3 2 3 4 4136.22
RT2 [32] 3 2 3 4 4391.83

GP1 3 2 3 1 60.5

Table 3: Instances characteristics

Computational experiments were completed on a Sun Ultra-60 (UltraSPARC II 360
MHz processor), with a C++ implementation of the algorithm. The tested instances have
been reviewed in Section 2, and their characteristics are summarized in Table 3. We also
include two variants of H1 given by Haverly (1978), which are denoted by H2 and H3,
respectively, and the generalized pooling problem GP1.

The following tables display the computing time in seconds of the pre-processing phase
and the exploration of the search tree phase, as well as the total time. The total number of
nodes in the search tree, as well as the number of additional variables (Var) and constraints
(Cstr) generated by the algorithm are also presented.

For all instances, the algorithm was executed twice. A first execution was done to solve
the instance without any additional information. A second execution was done to evaluate
the performance of the algorithm when jointly used with a good heuristic method. The
optimal solution (from execution 1) was fed to the algorithm, and the second execution
used to prove the optimality of the solution.

Table 4-(i) displays the computational results on the flow model of the pooling problems.
The pre-processing time is listed under column P.P., and the tree exploration phase under
Tree. The “-” for the AST2 and AST3 instances indicate that the memory limit imposed
by the current implementation of the algorithm was reached.

Table 4-(ii) shows the performance of the optimality proof on the flow model of the
pooling problems. An additional constraint that bounds the objective value is added to
shrink the feasible region. At the early nodes of the enumeration algorithm, branching is
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Example
Time (sec)

Nodes
Additional

P.P. Tree Total Var Cstr
AST1 7.39 7778.65 7786.04 4145 108 6991
AST2 - - - - - -
AST3 - - - - - -
AST4 13.87 940.03 953.9 723 50 3414
BT4 .17 .05 .22 9 4 41
BT5 5 660.63 665.63 97 30 5776
F2 .51 .16 .67 15 10 128
H1 .2 .06 .26 9 4 41
H2 .13 .03 .16 3 2 20
H3 .14 .03 .17 3 1 15
RT1 2.12 29.69 31.81 179 38 1546
RT2 3.97 201.02 204.99 489 63 2581

(i) Flow model, complete solution

Example
Time (sec)

Nodes
Additional

P.P. Tree Total Var Cstr
AST1 .47 8.59 9.06 245 40 838
AST2 .39 9.28 9.67 267 35 777
AST3 2.45 66.06 68.5 537 38 1065
AST4 2.83 175.15 177.98 693 48 205
BT4 .15 .88 1.03 43 14 197
BT5 1.81 29.29 31.1 39 20 1274
F2 .35 .05 .4 1 0 24
H1 .17 .05 .22 9 6 57
H2 .13 .04 .17 13 6 41
H3 .13 .04 .17 7 4 35
RT1 .55 .05 .6 7 4 37
RT2 .85 1.11 1.96 59 19 347

(iii) Proportion model, complete solution

Model
Time (sec)

Nodes
Additional

P.P. Tree Total Var Cstr
Flow .19 .59 .78 47 18 238
Prop. .22 2.5 2.72 35 18 457
Hybrid .68 .53 1.21 27 12 225

(v) Generalized pooling problem (GP1), complete solution

Time (sec)
Nodes

Additional
P.P. Tree Total Var Cstr

10.23 4258.53 4268.76 3177 80 5801
- - - - - -
- - - - - -

55.43 4587.01 4642.44 2355 43 3656
.19 .03 .22 1 0 7

1.28 .16 1.44 1 0 90
3.66 6.34 10 155 33 687
.21 .02 .23 1 0 7
.4 0 .4 0 0 0

.17 .02 .19 1 0 6
13.69 .48 14.17 43 10 225
8.37 366.28 374.65 1381 62 2626

(ii) Flow model, optimality proof

Time (sec)
Nodes

Additional
P.P. Tree Total Var Cstr
1.26 14.47 15.73 391 48 874
1.91 2.55 4.46 139 18 408
2.19 173.67 175.86 911 44 1416
5.91 681.14 687.05 2127 47 2324
.75 .14 .89 27 8 112
.52 0 .52 0 0 0
.32 .02 .34 1 0 24
.18 .02 .2 1 0 7
.14 .01 .15 0 0 0
.23 .03 .26 11 5 37
.4 .05 .45 1 0 15

6.89 .31 7.2 47 11 175
(iv) Proportion model, optimality proof

Time (sec)
Nodes

Additional
P.P. Tree Total Var Cstr
.62 .07 .69 13 6 78

1.23 .17 1.4 17 8 132
.62 0 .62 0 0 0

(vi) GP1, optimality proof

Table 4: Computational results
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done on the incumbent variables involved in quadratic terms that are not at either their
lower or upper bound. This allows a more precise linearization near the incumbent solution.
Computational times remain comparable for the small instances, but drop significantly for
the larger problems, except for AST4 where proving optimality is more expensive than
searching from scratch. This seems to justify the joint use of a heuristic to obtain a good
incumbent solution.

Results of the algorithm on the proportion model of the pooling problem are displayed
in Table 4-(iii). For the larger instances, the proportion model is significantly easier to
solve than the flow model, even for BT5 where this model has a greater number of bilinear
variables and terms than the former one. Note, however, that the proportion model of BT5
has fewer bilinear constraints than the flow model (11 versus 16). The significant difference
in computation times in Tables 4-(i) and 4-(iii) suggests that care should be taken initially
to choose the right model.

Optimality proof performance on the proportion model of the pooling problems appears
in Table 4-(iv). Again, the proportion model seems easier to solve than the flow model.
Moreover, the time required for the optimality proof is less or comparable to the time of
solving the original problem, except for the problems AST and for Example RT2 where
the computational time increased. As for the remaining examples, the pre-processing time
increased, but the tree exploration phase decreased. This is explained by the addition of
the non-linear constraint to bound the feasible region. The feasible region becomes small
and hard to approximate by outer-approximations.

Tables 4-(v) and 4-(vi) display computing times for solving the three equivalent formu-
lations of the generalized pooling problem presented in Example GP1. Contrary to the
standard pooling problem, the proportion model of the generalized problem appears to be
harder to solve than the flow model. The addition of the variable q22 that represents the
product of two proportion variables adds a level of complexity to the outer-approximation
scheme. It seems that the hybrid model is the easiest one to solve. The proportion variables
allow elimination of the attribute variable of pool P1 without adding complexity.

Table 5 shows a computational results comparison, similar to that of Adhya et al.
(1999). For the easier problems, i.e. BT4, BT5, F2, H1, H2 and H3, the state-of-the-art
algorithm of Adhya et al. (1999) takes less computer time than the algorithm of Audet et
al. (2000a) ; however for the three difficult instances AST1, AST2 and AST3, the CPU
times of this last algorithm are 46 to 282 times (or 17 to 104 times, taking into account
the relative CPU speeds) less than those of Adhya et al. (1999). So use of the proportion
model and Audet et al. (2000a) algorithm appears to notably advance the state-of-the-art.

4 Heuristic Methods

As inferred in the preceding section, heuristic approaches to the pooling problem are re-
quired to (i) obtain good solutions for larger problem instances, and (ii) obtain good initial
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Example
Foulds 92[20] Floudas 93[18] Floudas 96[19] Adhya et al. 99[1] Audet et al. 02

CDC 4340 HP9000/730 HP9000/730 RS6000/43P Ultra-60
25 Mhz 67 Mhz 67 Mhz 100-133 Mhz 360 Mhz

AST1 - - - 425 9.06
AST2 - - - 1115 9.67
AST3 - - - 19314 68.5
AST4 - - - 182 177.98

BT4 - 44.54 .95 .11 .22
BT5 - 40.31 5.8 1.12 31.1

F2 3 - - .1 .4

H1 .7 .95 .22 .09 .22
H2 - 3.19 .21 .09 .16
H3 - - .26 .13 .17

RT1 - - - - .6
RT2 - - - - 1.96

GP1 - - - - .78

Table 5: Comparative CPU times for exact solution

solutions for use in exact algorithms. In this section, we propose a local search procedure
which alternately fixes the non-complicating and complicating variables (y and z respec-
tively) and solves the linear program in the resulting subspace. The polyhedron structure
of both feasible sets leads to a natural neighborhood structure, defined by the number of
pivots from a current extreme point. This will allow us to develop a new variable neigh-
borhood search procedure. The alternating and variable neighborhood search methods
are applied to the problem cases of Section 2 and to a large set of randomly-generated
pooling problems. The results are compared with the commonly-used successive linear
programming (SLP) method.

4.1 Alternate heuristic (ALT)

The principle of the ALT heuristic consists, given two subsets of variables, in alternately
solving the problem with the variables of one of the subsets fixed. These two problems, by
the choice of the subsets, must be linear. When one of these linear problems is solved, its
solution becomes a set of parameters in the other one. For the general BLP given in the
introduction, we proceed with the steps described in Figure 6.

In the proportion model, z denotes the set of qij variables, y the set of yjk’s and x the
xik’s. For the flow model, z becomes the attribute variables taj , y remains the same, and
x includes the xik and wij variables. Observe that in the flow formulation, if both sets of
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[1]
give some feasible initial values for the complicating variables
z (or non-complicating variables y)

[2] solve the resulting LP in (x, y) (or in (x, z))

[3]
for y (or z) found in the previous step, solve the LP in (x, z)
(or in (x, y))

[4]
repeat steps 2 and 3 until stability is reached (with a given
tolerance)

Figure 6: Alternate heuristic (ALT)

flow variables x and y found in the previous iteration are fixed (not only y as in ALT), the
taj may be updated directly from the equality constraints for the attribute values at the
pools. Repetitively solving for (x, y) and updating the taj leads to the popular recursive
technique first given by Haverly (1978). This recursive procedure (in its original form) does
not extend to the proportion model. The alternate heuristic is a natural solution approach
to the bilinear program. It has been suggested before in other contexts than the pooling
problem (e.g., see Brimberg et al., 1997). However, to our best knowledge, this is the first
time that computational experience is reported.

Proposition 4.1 Assuming a unique solution in each iteration of steps 2 and 3, ALT
converges to a local optimum.

Proof: Fixing feasible values in z (or y) leads to an LP with a non-empty feasible region
in (x, y) (or (x, z)). Thus, the sequence of LP’s will maintain feasibility and provide a
monotonic sequence of improving solutions. Since a well-formulated pooling problem must
have a bounded feasible region, we conclude that the sequence of solutions will converge to
a unique finite value of the objective function. Since there are no ties in the LP iterations,
this must correspond to a unique attraction point. Furthermore, local ascent is not possible
since the (x, y) and (x, z) subspaces only permit local descent. 2

4.2 Variable Neighborhood Search (VNS)

We assume a knowledge of the basic rules of variable neighborhood search (VNS). For a
review of VNS and its applications to a range of problems, see Hansen and Mladenović
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(1997 and 1999). In a nutshell, the variable neighborhood search consists in repeating the
following two steps : (i) perturb the current solution within a neighborhood of length k
(initially set to 1); (ii) from this perturbed point, find a new point with a local search. If
this new local optimum is better, it becomes the new current point, and the k parameter
is set again to 1; else the original current point is kept and the k parameter is increased,
for a bigger perturbation in step (i).

Let s =(x′, y′, z′) be a feasible solution obtained by ALT. It follows that (x′, y′) and
(x′, z′) are extreme points of a polyhedron in the respective subspaces. Let us denote these
two polyhedrons by P1(s) and P2(s). The first neighborhood N1(s) is represented by the
union of all feasible extreme points adjacent to either (x′, y′) (in P1(s)) or (x′, z′) (in P2(s)).
Thus, the cardinality of N1(s) is less than or equal to 2n1 + n2 + n3, since the number
of adjacent points in a polyhedron cannot be larger than the dimension of the space.
The equality occurs when the LP problems are not degenerate (in both (x, y) and (x, z)
subspaces). N2(s) would then be the set of adjacent extreme points on P1(s) or P2(s)
obtained by changing exactly two elements in the respective bases; N3(s) exactly three
elements; and so on. It is easy to see that the cardinality of Nk(s) increases exponentially
with k.

For solving BLP by VNS, we define the shaking operator with respect to the neighbor-
hoods Nk. That is, a point s′ from Nk(s) (k = 1, . . . , kmax), is taken at random. A local
search is then carried out from s′ using ALT. In the description of the VNS heuristic that
follows, we use a Boolean variable δ that has values 1 or 0 if the search is performed in
P1 or P2, respectively. If the shaking is done in P1, the search by ALT will start in P2.
The next shaking operation will also be carried out in P2. That is, we alternate between
subspaces by setting δ to its complement δ. The detailed VNS algorithm is shown on
Figure 7. Note that the second step of the algorithm can be repeated several times, which
is decided by the parameter nt (see section 4.3.1).

Implementation of the VNS rules to solve BLP is not hard. However, there are the-
oretical questions that need to be clarified. The current reduction (discretization) of the
continuous solution space to the extreme points of P1 and P2 does not mean that the
global optimum necessarily belongs to the set ∪kNk(s), as is the case in combinatorial
optimization. This last set depends on the current solution s = (x′, y′, z′), i.e., for each
s = (x′, y′, z′) we can construct a different exponential discretization of the continuous
solution space Rn. In fact, in solving the continuous BLP problem, we first introduce the
finite set Ss that consists of all feasible extreme points of P1(s) and P2(s). A distance
function ρs is then specified for the set Ss (subscript s indicates that the discretization
depends on the current solution). Let s1 and s2 be any two solutions that belong to Ss,
and let B1 and B2 be the corresponding sets of basic variables. We say that

ρs(s1, s2) = k ⇐⇒ |B1 \ B2| = |B2 \ B1| = k,

that is, the distance metric is defined by the symmetric difference of two sets.
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[1] Initialization

find an initial feasible solution s
choose a stopping condition nt
it ← 1

[2] While it ≤ nt

k ← 1
While k ≤ kmax

[i] Shaking
get s′ from Nk(s) at random using current value of δ

[ii] Local search

δ ← δ
use ALT with s′ as initial solution to obtain local

optimum s′′

[iii] Move or not
if s′′ better than s

move to s′′ (s ← s′′)
k ← 1
update the neighborhoods Nk(s) for the new

current solution (i.e., update the simplex
table, or polyhedron, where s” is found)

else k ← k + 1
it ← it + 1

Figure 7: VNS algorithm

4.3 Computer Results

Three heuristic methods were tested: an efficient version of SLP (noted as SLPR in
Palacios-Gomez et al., 1982), and the alternate and VNS procedures given above. All
three heuristics were coded in C++ and run on the Ultra-60 station as before. Recall that
finding a feasible initial solution (a requirement for all three heuristics) is in itself a very
difficult problem. For example, in RT2, 10,000 sets of proportion values were generated at
random, and not one feasible solution was found by ALT. The following “tricks” were used
to significantly improve the rate of success:

(i) since the solutions of the LPs typically have many zero-valued variables, set every
variable in z (or y) to zero with probability .5; if the variable is decided to be non-
zero, set its value randomly;
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(ii) for some problem instances, we observe that it is better to start with random values
of z, while for others, a feasible solution is easier to find if the variables from y are
fixed at random. Therefore, we choose to start with y or z with probability 0.5.

The above procedure allowed us to obtain about 25% feasible solutions in RT2. The choice
of the set of variables to be fixed has in general no important incidence on the efficiency
of this method, except for the AST problems under the flow formulation: no feasible point
was generated when the set of smallest cardinality was chosen.

In order to improve the quality of the solutions, multistart versions of SLP and ALT
(referred to as MSLP and MALT, respectively) were used. The rule above was taken for
the starting values of MALT. The starting procedure suggested in Palacios-Gomez et al.
(1982) was applied in MSLP. If the starting solution was found to be infeasible, iterations
of ALT were allowed to continue until a feasible point was found. The best solution from
MALT was taken as the initial solution for VNS. In Tables 6 and 7, a “-” means that the
MSLP method could not find a solution or that the memory limit was reached for the exact
algorithm.

4.3.1 Pooling problems from the literature We first tested the heuristics on the
problem instances discussed in Section 2 and 3, and for which exact solutions were already
found. The results are summarized in Table 6 for flow and proportion models. In this
table, we give the parameters used for the 3 methods MSLP, MALT and VNS. They are:

nsp number of starting points for the MSLP and MALT algorithms
kmax VNS parameter, maximum length of the neighborhood
nt VNS parameter, number of repetitions of VNS’s phase 2

(see the algorithm on Figure 7).

Because the proportion formulation of GP1 is not a bilinear problem, only the resolution
with flow formulation is made.

Given that the initial solution of VNS is the best solution of MALT, the CPU times
given for the VNS include the time of MALT. If no improvement can be made by the VNS,
the kmax and nt parameters are set to zero, and the times for MALT and VNS are the
same.

Table 6 shows that there is not a significant difference between the flow and proportion
formulations (except for AST3 and F2). We note that MALT gives the optimal solution
for five instances, MSLP in only three instances, and VNS obtained the exact solution in
all cases except the AST problems. This is caused by the degeneracy in the AST problems,
which does not allow efficient shaking. Note that any improvements by VNS to MALT
were obtained very quickly.
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Example
Parameters Solution CPU time (s) Error (%)
nsp kmax nt Exact MSLP MALT VNS MSLP MALT VNS MSLP MALT VNS

Flow Model

AST1 1000 10 1 549.803 276.661 532.901 545.27 2.20 2.45 2.81 49.68 3.07 .82
AST2 1500 10 1 549.803 284.186 535.617 543.909 9.18 5.21 5.68 48.31 2.58 1.07
AST3 1000 10 1 561.048 255.846 397.441 412.145 18.71 4.96 5.34 54.35 29.09 26.47
AST4 230 0 0 877.649 - 876.206 876.206 .82 .77 1.01 - .16 .16

BT4 5 0 0 45 39.6970 45 45 .01 .01 .01 11.78 0 0
BT5 10 15 2 350 327.016 324.077 350 .03 .09 1.11 6.57 7.41 0

F2 120 10 1 110 100 107.869 110 .07 .44 .57 9.09 1.94 0

H1 5 0 0 40 40 40 40 .02 .01 .01 0 0 0
H2 5 0 0 60 60 60 60 .02 .01 .01 0 0 0
H3 5 3 1 75 60.7332 70 75 .02 .01 .03 19.02 6.67 0

RT1 5 0 0 4136.22 126.913 4136.22 4136.22 1.34 .04 .04 96.93 0 0
RT2 5 5 1 4391.83 - 4330.78 4391.83 .04 .47 .60 - 1.39 0

GP1 50 5 1 60.5 28.732 35 46 .01 .04 .08 52.51 42.15 23.97

Proportion Model

AST1 1000 10 1 549.803 544.307 532.901 533.783 1.14 2.38 2.61 1 3.07 2.91
AST2 1500 10 1 549.803 548.407 535.617 542.54 3.04 4.97. 5.37 .25 2.58 1.32
AST3 1000 10 1 561.048 551.081 397.441 558.835 4.98 4.98 5.93 1.68 29.09 .3
AST4 230 0 0 877.649 - 876.206 876.206 1.19 1.21 1.55 - .16 .16

BT4 5 0 0 45 39.7019 45 45 .01 .02 .02 11.77 0 0
BT5 10 15 2 350 292.532 323.12 350 .12 .16 1.53 16.42 7.68 0

F2 120 0 0 110 110 110 110 .15 .49 .49 0 0 0

H1 5 0 0 40 40 40 40 .02 .01 .01 0 0 0
H2 5 0 0 60 60 60 60 .02 .01 .01 0 0 0
H3 5 3 1 75 69.9934 70 75 .02 .01 .02 6.68 6.67 0

RT1 5 0 0 4136.22 3061.03 4136.22 4136.22 .07 .03 .03 25.99 0 0
RT2 5 5 1 4391.83 4391.02 4330.77 4391.82 .04 .58 .72 .02 1.39 0

Table 6: Pooling test problems from the literature

4.3.2 Randomly generated pooling problems We generated 19 problems with the
following predetermined characteristics:

number of feeds nF varies from 6 to 12
number of pools nP varies from 3 to 10
number of blends nB varies from 4 to 11
number of attributes nA varies from 3 to 30.

All other input parameters of the model are generated at random within intervals derived
from feasibility requirements. For comparison purposes, the data describing these examples
can be found at www.gerad.ca/Charles.Audet.

Computer results for the random pooling problems are summarized in Table 7. The
flow formulation is used here, and we use the same following parameters for all the in-
stances: nsp = 100, kmax = 100 and nt = 1.
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Ex
Parameters Dimensions Solution CPU time (s) Error (%)

nF nP nB nA Lin Bilinear Constraints Exact MSLP MALT VNS Exact MSLP MALT VNS MSLP MALT VNS
Var Var Trm L≤ Q≤ Q=

R1 6 3 5 3 10 12 18 11 18 6 888 888 888 888 1.23 .39 .51 .51 0 0 0
R2 6 3 5 3 13 12 9 10 18 9 572 394 572 572 1.33 .55 .6 .6 31.12 0 0
R3 6 3 5 3 14 12 18 13 24 6 1626.41 1542.41 1626.41 1626.41 5.03 .56 .94 .94 5.17 0 0
R4 6 3 5 3 19 17 24 14 24 9 634.71 464 634.71 634.71 4.29 1.89 .69 .69 26.9 0 0
R5 6 3 5 3 20 26 42 17 24 12 1553 1553 1553 1553 7.87 3.32 .46 .46 0 0 0
R6 6 3 5 3 20 19 30 17 30 9 257 257 257 257 8.29 1.42 .63 .63 0 0 0
R7 6 4 5 3 34 29 51 19 30 12 302 302 302 302 16.48 6.37 .55 .55 0 0 0
R8 6 5 5 3 27 31 48 20 30 15 904 904 904 904 17.05 7.63 .6 .6 0 0 0
R9 7 5 6 3 42 35 60 23 36 15 2129.85 2071 2129.85 2129.85 17.82 15.35 .66 .66 2.76 0 0
R10 8 5 7 3 47 40 75 24 42 15 2457.89 2073.01 2457.89 2457.89 26.18 15.83 .83 .83 15.66 0 0
R11 8 6 7 3 46 38 60 26 42 18 3291.11 2938.69 3291.11 3291.11 28.05 16.96 .99 .99 10.71 0 0
R12 9 6 8 3 56 33 45 29 48 18 2332.52 2311.52 2332.52 2332.52 32.98 14.39 1.08 1.08 .9 0 0
R13 9 7 8 3 58 59 114 30 48 21 - 2171.16 2736.75 2736.75 - 37.42 1.29 1.29 - - -
R14 10 7 9 3 76 56 105 33 54 21 - 3545 4967.46 4967.46 - 47.55 2.51 2.51 - - -
R15 10 8 9 3 90 66 126 34 54 24 - 2711.49 2887.32 2887.32 - 68.24 25.66 25.66 - - -
R16 10 9 9 3 96 75 144 36 54 27 - 2169.34 2276.74 2410.69 - 123.58 25.76 48.83 - - -
R17 12 5 4 4 44 31 44 24 32 20 - 1262 1623.69 1626 - 16.3 .95 9.94 - - -
R18 10 5 4 30 46 162 360 22 240 150 - - 689.161 689.161 - - 11.61 11.61 - - -
R19 12 10 11 4 119 93 212 43 88 40 - 3717.17 3928.26 3928.37 - 726.57 703.53 763.15 - - -

Table 7: Randomly generated pooling test problems
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Observe that (i) VNS always gives the best results, (ii) MALT and VNS outperform
MSLP in all cases, (iii) the improvements made by VNS are obtained in small amounts
of additional computing time over that of MALT, (iv) the exact algorithm solves larger
instances than done previously, in very moderate time, and (v) the largest instances (R13
and above) could not be solved by the current version of the exact algorithm, due to
memory limitation.

5 Discussion

Three general bilinear programming formulations of the pooling problem are developed:
these represent the flow and proportion models, and a new hybrid model which may be
used when intermediate pools are configured in series as well as in parallel. Using sample
problems from the literature, a key observation is made that the type of formulation chosen
can significantly impact the complexity of the model, and as a result, the computational
effort required to solve it.

A recently developed branch and cut algorithm is tested on the sample problems. The
results show the computational time increases rapidly with the number of bilinear variables
and constraints. Furthermore, using a good heuristic in conjunction with the exact proce-
dure is demonstrated to substantially reduce this time. Also observe that a combination
of branch-and-cut and of best model formulation can yield much better computation times
than those of state-of-the-art algorithms.

Two new heuristic procedures are proposed. The first, a simple iterative scheme applied
to two LPs, differs from previous recursive methods by identifying a set of linear variables
and including them in both LPs. As a local search, the new alternating procedure (ALT)
is seen to perform as well or better than the well-studied method of successive linear pro-
gramming (SLP) on a set of randomly-generated pooling problems. Furthermore, ALT
automatically produces a sequence of feasible solutions once an initial feasible solution is
found without any need for step-size adjustments. Some heuristic rules are also provided
which appear to work well in generating initial feasible solutions. The second heuristic pro-
cedure performs a variable neighborhood search (VNS) on a set of extreme points identified
at any current solution. The shaking operation chooses a random point at progressively
further pivots from the current solution. A local search using ALT is then carried out at
the random point. Our preliminary results suggest that VNS will improve the quality of
solutions obtained by multistart versions of SLP and ALT, particularly for larger problem
instances, within a modest increase in computing time.

Reformulation is a powerful tool of mathematical programming. In Audet et al. 1997 it
was used to study relationships between structured global optimization problems and al-
gorithms, revealing embeddings of algorithms one into the other, and unifying them. Here,
its effect on computational performance is investigated for the pooling problem. Other
structured global optimization problems can be studied in the same way. For instance, this
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approach led to determination of the octagon with unit diameter and largest area (Audet
et al. 2002) and to the first exact algorithm for fractional goal programming (Audet et al.
2000b). Several other such problems will be investigated in future work.

Appendix

The following figure and table summarize the second pooling problem in Rehfeldt and
Tisljar (1997).
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Figure 8: Rehfeldt and Tisljar’s second pooling problem

Feed Price supply Pool capacity Blend Price Demand Arc ×102bbl
DM/bbl ×102bbl ×102bbl DM/bbl min ×102bbl max

F1 49.2 60.9756 P1 12.5 B1 190 5 x12 7.5
F2 62.0 161.29 P2 17.5 B2 230 5 x31 7.5
F3 300.0 5 B3 150 5

Attribute Minimum Maximum
Feed DEN BNZ ROZ MOZ Blend DEN ROZ MOZ DEN BNZ
F1 .82 3 99.2 90.5 B1 .74 95 85 .79 -
F2 .62 0 87.9 83.5 B2 .74 96 88 .79 .9
F3 .75 0 114 98.7 B3 .74 91 - .79 -

Table 8: Characteristics

Since each feed may enter each intermediate pool, and each intermediate pool is con-
nected to each final blend, we may assume without any loss of generality that the flow in
the largest pool is greater than or equal to that of the smallest. This additional constraint
reduces significantly the feasible region.
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[20] FOULDS L.R, HAUGLAND D. and JÖRNSTEN K.(1992), “A Bilinear Approach to the Pooling
Problem,” Optimization 24, 165–180.



Les Cahiers du GERAD G–2000–23 – Revised 28

[21] GRIFFITH R.E. and STEWART R.A.(1961), “A Nonlinear Programming Technique for the Opti-
mization of Continuous Processing Systems,” Management Science 7, 379–392.

[22] GROSSMANN I.E. and QUESADA I.(1995), “Global Optimization of Bilinear Process Networks with
Multicomponents Flows,” Computers & Chemical Engineering 19(12), 1219–1242.

[23] HANSEN P. and JAUMARD B.(1992), “Reduction of Indefinite Quadratic Programs to Bilinear
Programs,” Journal of Global optimization 2, 41–60.

[24] HANSEN P., JAUMARD B. and SAVARD G.(1992), “New Branch-and-Bound Rules for Linear
Bilevel Programming,” SIAM Journal on Scientific and Statistical Computing 13, 1194–1217.
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