Formulating the Alternating Current Optimal Power Flow problem

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

191026

Outline

Introduction

Complex Formulations

Natural formulation
Edge formulation
Arc formulation

Real formulations

Arc formulation

Software

MATPOWER

The quantities

- charge (basic measure)
- ightharpoonup current I = charge per surface unit per second
- ▶ electric field = force vector at point acting on unit charge
- \triangleright voltage V = potential energy of unit charge in electric field
- power $S = \text{voltage} \times \text{current}$ (in units of measure)

[Bienstock 2016, p. 2]

Optimal Power Flow

- Decide power flows on electrical cables to minimize costs
- ► Alternating Current:
 generated by magnetic field induced by a 50-60 Hz mechanical rotation
- Current traverses grid 50 to 60 times per second consider average over time
- ► ACOPF: static approximation of a dynamic problem approximation yields modelling/numerical difficulties

 Example 1: lines directed for flow injection but undirected for admittance

 Example 2: voltage V, current I, power S are complex quantities
- ▶ Different approximations by different stakeholders
 ⇒ ambiguities, lack of accepted formal definitions

Notation

- ► Complex number: $x = x^{r} + ix^{c} \in \mathbb{C}$ most ACOPF literature uses j instead of i, reserved for current
- Complex conjugate: $conj(x) = x^{r} ix^{c}$ $x conj(x) = (x^{r})^{2} + (x^{c})^{2} = |x|^{2}$
- Polar representation: $\alpha e^{i\vartheta} = \alpha \cos \vartheta + i\alpha \sin \vartheta$

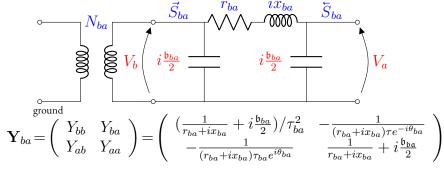
$$x^{\mathsf{r}} = \alpha \cos \vartheta$$
 $\alpha = \sqrt{(x^{\mathsf{r}})^2 + (x^{\mathsf{c}})^2}$
 $x^{\mathsf{c}} = \alpha \sin \vartheta$ $\vartheta = \arccos(x^{\mathsf{r}}/\alpha) = \arcsin(x^{\mathsf{c}}/\alpha),$

 α called "magnitude", ϑ "angle"/"phase"

On the word "flow"

- Power does not "flow" as does liquid or gas in a pipe electrons do not move much in cables: think more in terms of wave propagation
- For a line $\{b, a\}$, think of voltage difference between b and a as "influencing" the injection of power at b or a

The π -model of a line $\{b,a\}$



- V_b, V_a : voltage differences with ground
- $ightharpoonup ec{S}_{ba}$: power injected on $\{b,a\}$ at b (vice versa for \overleftarrow{S}_{ba})
- ightharpoonup used in Ohm's law: current $= \mathbf{Y} \left(V_b, V_a \right)^{\top}$
- $ightharpoonup r_{ba} + ix_{ba}$: series impedance of the line $\{b, a\}$
- **b**_{ba}: charging susceptange of the line $\{b, a\}$
- $lackbox{N}_{ba} = au_{ba} e^{i heta_{ba}}$: tap ratio of transformer at b on line $\{b,a\}$

Outline

Introduction

Complex Formulations

Natural formulation Edge formulation Arc formulation

Real formulations

Arc formulation Parallel lines

Software

MATPOWER AMPI

Subsection 1

Natural formulation

Sets

- ▶ B: set of buses (nodes) of the power grid
- L: set of lines (links) in the power grid edge $\{b, a\}$ will index entity E as E_{ba}
- ► G: set of generators set \mathcal{G}_b of generators at bus b, $\bigcup_b \mathcal{G}_b = G$

Decision variables

- ▶ Voltage $V_b \in \mathbb{C}$ at bus $b \in B$
- Current $\mathbf{I}_{ba} = (\vec{I}_{ba}, \overleftarrow{I}_{ba}) \in \mathbb{C}^2$ on line $\{b, a\} \in L$
- Power $\mathbf{S}_{ba} = (\vec{S}_{ba}, \overleftarrow{S}_{ba}) \in \mathbb{C}^2$ on line $\{b, a\} \in L$
- ▶ Power $\mathscr{S}_{bq} \in \mathbb{C}$ for a generator $g \in \mathscr{G}_b$ at bus $b \in B$

Parameters

- $lackbox{ Voltage magnitude in } [\underline{V}_b,\overline{V}_b]\in\mathbb{IR}$ at each bus $b\in B$
- ▶ Phase difference in $[\underline{\omega}_{ba}, \overline{\omega}_{ba}] \subseteq [-\pi, \pi]$ at each line $\{b, a\} \in L$
- lacksquare A reference bus $r\in B$ s.t. $V_b^{\mathsf{c}}=0$ and $V_b^{\mathsf{r}}\geq 0$
- ▶ Power demand $\tilde{S}_b \in \mathbb{C}$ at bus $b \in B$ there can be buses with negative demand
- ▶ Magnitude of power injected on a line $\{b, a\} \in L$ bounded above by $\bar{S}_{ba} = \bar{S}_{ab} \in \mathbb{R}$
- Power generated by $g \in \mathscr{G}_b$ installed at bus $b \in B$ in $[\mathscr{S}_{bg}, \overline{\mathscr{S}_{bg}}] \in \mathbb{IC}$
- Admittance matrix $\mathbf{Y}_{ba} \in \mathbb{C}^{2\times 2}$ for a line $\{b, a\} \in L$
- ▶ Shunt admittance $A_b \in \mathbb{C}$ at bus $b \in B$

Bounds

▶ Bounds on power

$$\forall \{b,a\} \in L \quad |\mathbf{S}_{ba}| \leq \bar{S}_{ba}\mathbf{1}$$
 where $|\mathbf{S}_{ba}| = (|\vec{S}_{ba}|, |\bar{S}_{ba}|)^{\top}$

 Bounds on generated power (enforced on real/imaginary parts)

$$\forall b \in B, g \in \mathscr{G}_b \quad \underline{\mathscr{L}}_{bg} \le \mathscr{S}_{bg} \le \overline{\mathscr{F}}_{bg}$$

► Bounds on voltage magnitude

$$\forall b \in B \quad \underline{V}_b \le |V_b| \le \overline{V}_b$$

▶ Reference bus

$$V_r^{\mathsf{c}} = 0 \quad \wedge \quad V_r^{\mathsf{r}} \ge 0$$

Phase difference bounds

Constraints:

$$\forall \{b, a\} \in L \quad \underline{\omega}_{ba} \le \theta_b - \theta_a \le \overline{\omega}_{ba} \quad (\star)$$

- Issue: we don't use phase variables θ and cartesian \rightarrow polar mapping is nonlinear
- ▶ Prop.

$$\overline{(\star)} \equiv \left[\tan(\underline{\omega}_{ba}) \le \frac{(V_b \mathsf{conj}(V_a))^{\mathsf{c}}}{(V_b \mathsf{conj}(V_a))^{\mathsf{r}}} \le \tan(\overline{\omega}_{ba}) \wedge (V_b \mathsf{conj}(V_a))^{\mathsf{r}} \ge 0 \right]$$

$$\underline{Pf}. \tan(\theta_b - \theta_a) = \frac{\sin(\theta_b - \theta_a)}{\cos(\theta_b - \theta_a)} = \frac{|V_b| |V_a| \sin(\theta_b - \theta_a)}{|V_b| |V_a| \cos(\theta_b - \theta_a)}$$

$$= \frac{|V_b| \sin \theta_b |V_a| \cos \theta_a - |V_b| \cos \theta_b |V_a| \sin \theta_a}{|V_b| \cos \theta_b |V_a| \cos \theta_a + |V_b| \sin \theta_b |V_a| \sin \theta_a}$$

$$= \frac{V_b^c V_a^r - V_b^r V_a^c}{V_b^r V_a^r + V_b^c V_a^c} = \frac{(V_b \text{conj}(V_a))^c}{(V_b \text{conj}(V_a))^r}$$

and tan is monotonically increasing

Constraints

► Power flow equations

$$\forall b \in B \quad \sum_{\{b,a\} \in L} \vec{S}_{ba} + \tilde{S}_b = -\mathrm{conj}(A_b)|V_b|^2 + \sum_{g \in \mathscr{G}_b} \mathscr{S}_g$$

► Power in terms of voltage and current

$$\forall \{b, a\} \in L \quad \mathbf{S}_{ba} = \mathbf{V}_{ba} \odot \mathsf{conj}(\mathbf{I}_{ba})$$

where $\odot \equiv$ entrywise prod. and $\operatorname{conj}(\mathbf{I})_{ba} = (\operatorname{conj}(\vec{I}_{ba}), \operatorname{conj}(\vec{I}_{ba}))^{\top}$

► Ohm's law

$$\forall \{b, a\} \in L \quad \mathbf{I}_{ba} = \mathbf{Y}_{ba} \mathbf{V}_{ba}$$

where
$$\mathbf{V}_{ba} = (V_b, V_a)^{\top}$$
 for $\{b, a\} \in L$

Constraints

▶ Power flow equations

$$\forall b \in B \quad \sum_{\{b,a\} \in L} \vec{S}_{ba} + \tilde{S}_b = -\text{conj}(A_b)|V_b|^2 + \sum_{g \in \mathcal{G}_b} \mathcal{S}_g$$

Power in terms of voltage and current

$$\begin{split} &\forall \{b,a\} \in L \quad \vec{S}_{ba} &= V_b \operatorname{conj}(\vec{I}_{ba}) \\ &\forall \{b,a\} \in L \quad \overleftarrow{S}_{ba} &= V_a \operatorname{conj}(\overleftarrow{I}_{ba}) \end{split}$$

► Ohm's law

$$\forall \{b, a\} \in L \quad \vec{I}_{ba} = Y_{bb}V_b + Y_{ba}V_a$$

$$\forall \{b, a\} \in L \quad \overleftarrow{I}_{ba} = Y_{ab}V_b + Y_{aa}V_a$$

Objective function

- Depends on application setting
- ► Often: cost of generated power

$$\min \mathscr{S}^{\mathsf{H}} Q \mathscr{S} + \left(c^{\mathsf{H}} \mathscr{S} \right)^{\mathsf{r}} + c_0^{\mathsf{r}}$$

 $\blacktriangleright \ \ Q \ \text{hermitian} \Rightarrow \mathscr{S}^{\mathsf{H}} Q \mathscr{S} \in \mathbb{R}$

Subsection 2

Edge formulation

Differences

- ► A line is an edge $\ell = \{b, a\}$
- ▶ Entities with a direction are indexed with *b* or *a*

$$\vec{E}_{ba} \equiv E_{\ell}^{b}$$
 $\vec{E}_{ba} \equiv E_{\ell}^{a}$

► This formulation is used by MATPOWER

Sets, parameters, variables

- ▶ $\forall b \in B \text{ let } \delta(b) = \{\ell \in L \mid \ell = \{b, a\}\}$ set of lines adjacent to b
- ▶ Upper bound \bar{S}_{ℓ} to power magnitude
- ▶ Bounds $[\underline{\omega}_{\ell}, \overline{\omega}_{\ell}]$ to phase difference
- Current $\mathbf{I}_{\ell} = (I_{\ell}^b, I_{\ell}^a) \in \mathbb{C}^2$ on line $\ell = \{b, a\} \in L$
- ▶ Power $\mathbf{S}_{\ell} = (S_{\ell}^b, S_{\ell}^a) \in \mathbb{C}^2$ on line $\ell = \{b, a\} \in L$

Constraints

► Power flow equations

$$\forall b \in B \quad \sum_{\ell \in \delta(b)} S_{\ell}^b + \tilde{S}_b = -\mathrm{conj}(A_b)|V_b|^2 + \sum_{g \in \mathcal{G}_b} \mathscr{S}_g$$

► Power in terms of voltage and current

$$\forall \ell \in L \quad S_{\ell}^b = V_b \operatorname{conj}(I_{\ell}^b)$$

$$\forall \ell \in L \quad S_{\ell}^a = V_a \operatorname{conj}(I_{\ell}^a)$$

► Ohm's law

$$\forall \ell \in L \quad I_{\ell}^{b} = Y_{bb}V_{b} + Y_{ba}V_{a}$$

$$\forall \ell \in L \quad I_{\ell}^{a} = Y_{ab}V_{b} + Y_{aa}V_{a}$$

Subsection 3

Arc formulation

Differences

- \blacktriangleright A line is a pair of anti-parallel arcs $\{(b, a), (a, b)\}$
- ▶ Entities with a direction are indexed by (b, a) or (a, b)

$$\vec{E}_{ba} \equiv E^b_{\{b,a\}} \equiv E_{ba}$$

 $\overleftarrow{E}_{ba} \equiv E^a_{\{b,a\}} \equiv E_{ab}$

► This formulation is easier to code in AMPL

Sets, parameters, variables

- set $L' = \{(b, a), (a, b) \mid \{b, a\} \in L\}$ of all arcs
- set $L_0 \subset L'$ of arcs given in data s.t. $\forall \{b,a\} \in L \quad (b,a) \in L_0 \text{ xor } (a,b) \in L_0$
- Upper bounds $\bar{S}_{ba} = \bar{S}_{ab}$ to power magnitude
- ▶ Bounds $[\underline{\omega}_{ba} = \underline{\omega}_{ab}, \overline{\omega}_{ba} = \overline{\omega}_{ab}]$ to phase difference
- ▶ If $(b, a) \in L_0$ has a transformer, it is on the side of $b \in B$
- ▶ Current $I_{ba} \in \mathbb{C}$ for each $(b, a) \in L'$ injected at $b \in B$
- ▶ Power $S_{ba} \in \mathbb{C}$ on each $(b, a) \in L'$ injected at $b \in B$

Constraints

► Power flow equations

$$\forall b \in B \quad \sum_{(b,a) \in L'} S_{ba} + \tilde{S}_b = -\mathrm{conj}(A_b)|V_b|^2 + \sum_{g \in \mathcal{G}_b} \mathscr{S}_g$$

▶ Power in terms of current

$$\forall (b, a) \in L' \quad S_{ba} = V_b \operatorname{conj}(I_{ba})$$

► Ohm's law

$$\forall (b, a) \in L_0 \quad I_{ba} = Y_{bb}V_b + Y_{ba}V_a$$

$$\forall (b, a) \in L_0 \quad I_{ab} = Y_{ab}V_b + Y_{aa}V_a$$

► Upper bounds on power magnitude

$$\forall (b, a) \in L' \quad |S_{ba}| \leq \bar{S}_{ba}$$

Outline

Introduction

Complex Formulations

Natural formulation Edge formulation Arc formulation

Real formulations

Arc formulation Parallel lines

Software

MATPOWER

Ohm's law matrix

Diagonal components of $\mathbf{Y}_{ba} \in \mathbb{C}^{2 \times 2}$

$$\begin{array}{lcl} Y_{bb} & = & \left(\frac{1}{r+ix}+i\frac{\mathfrak{b}}{2}\right)/\tau^2 = \frac{2(r-ix)+i\mathfrak{b}(r^2+x^2)}{2(r+ix)(r-ix)\tau^2} \\ & = & \frac{r}{(r^2+x^2)\tau^2}+i\frac{\mathfrak{b}(r^2+x^2)-2x}{2(r^2+x^2)\tau^2} \\ \\ Y_{aa} & = & \frac{1}{r+ix}+i\frac{\mathfrak{b}}{2} = \frac{2(r-ix)+i\mathfrak{b}(r^2+x^2)}{2(r+ix)(r-ix)} \\ & = & \frac{r}{r^2+x^2}+i\frac{\mathfrak{b}(r^2+x^2)-2x}{2(r^2+x^2)} \end{array}$$

Ohm's law matrix

Off-diagonal components of $\mathbf{Y}_{ba} \in \mathbb{C}^{2 imes 2}$

$$Y_{ba} = -\frac{1}{(r+ix)\tau e^{-i\theta}} = -\frac{1/\tau}{(r\cos\theta + x\sin\theta) + i(x\cos\theta - r\sin\theta)}$$

$$= -\frac{1}{\tau} \frac{r\cos\theta + x\sin\theta - i(x\cos\theta - r\sin\theta)}{(r\cos\theta + x\sin\theta)^2 + (x\cos\theta - r\sin\theta)^2}$$

$$= -\frac{r\cos\theta + x\sin\theta}{\tau (r^2 + x^2)} - i\frac{r\sin\theta - x\cos\theta}{\tau (r^2 + x^2)}$$

$$Y_{ab} = -\frac{1}{(r+ix)\tau e^{i\theta}} = -\frac{1/\tau}{(r\cos\theta - x\sin\theta) + i(x\cos\theta + r\sin\theta)}$$

$$= -\frac{1}{\tau} \frac{r\cos\theta - x\sin\theta - i(x\cos\theta + r\sin\theta)}{(r\cos\theta + x\sin\theta)^2 + (x\cos\theta - r\sin\theta)^2}$$

$$= \frac{x\sin\theta - r\cos\theta}{\tau (r^2 + x^2)} + i\frac{r\sin\theta + x\cos\theta}{\tau (r^2 + x^2)}$$

Subsection 1

Arc formulation

Constraints

- Linear constraint: separate real and imaginary parts
- ► Power in terms of voltage and current

$$\begin{array}{lcl} \forall (b,a) \in L' & S_{ba}^{\mathsf{r}} &=& V_b^{\mathsf{r}} I_{ba}^{\mathsf{r}} + V_b^{\mathsf{c}} I_{ba}^{\mathsf{c}} \\ \forall (b,a) \in L' & S_{ba}^{\mathsf{c}} &=& -V_b^{\mathsf{r}} I_{ba}^{\mathsf{c}} + V_b^{\mathsf{c}} I_{ba}^{\mathsf{r}} \end{array}$$

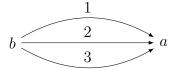
► Ohm's law

$$\begin{array}{lll} \forall (b,a) \in L_0 & I_{ba}^{\rm r} &=& Y_{bb}^{\rm r} V_b^{\rm r} - Y_{bb}^{\rm c} V_b^{\rm c} + Y_{ba}^{\rm r} V_a^{\rm r} - Y_{ba}^{\rm c} V_a^{\rm c} \\ \forall (b,a) \in L_0 & I_{ba}^{\rm c} &=& Y_{bb}^{\rm r} V_b^{\rm c} + Y_{bb}^{\rm c} V_b^{\rm r} + Y_{ba}^{\rm r} V_a^{\rm c} + Y_{ba}^{\rm c} V_a^{\rm r} \\ \forall (b,a) \in L_0 & I_{ab}^{\rm c} &=& Y_{ab}^{\rm r} V_b^{\rm r} - Y_{ab}^{\rm c} V_b^{\rm c} + Y_{aa}^{\rm r} V_a^{\rm r} - Y_{aa}^{\rm c} V_a^{\rm c} \\ \forall (b,a) \in L_0 & I_{ab}^{\rm c} &=& Y_{ab}^{\rm r} V_b^{\rm c} + Y_{ab}^{\rm c} V_b^{\rm r} + Y_{aa}^{\rm r} V_a^{\rm c} + Y_{aa}^{\rm c} V_a^{\rm r} \end{array}$$

Subsection 2

Parallel lines

The situation



quantify over (bus, bus, counter)

Can't easily merge properties of separate cables on a single line

Modelling

- Natural formulation: $\bar{L} \subset L \times \mathbb{N}$ quantification: $\forall (\{b,a\},i) \in \bar{L}$
- Edge formulation: $\bar{L} \subset L \times \mathbb{N}$ $\overline{quantification: \forall (\ell, i) \in \bar{L}}$
- Arc formulation: $\bar{L}' \subset L' \times \mathbb{N}$ quantification: $\forall (b, a, i) \in \bar{L}'$

Indexing entities

- Natural formulation: S_{bai} , I_{bai} , $\underline{\omega}_{bai}$, $\overline{\omega}_{bai}$, \overline{S}_{bai} , Y_{bai} , . . .
- ► Edge formulation: $\mathbf{S}_{\ell i}, \mathbf{I}_{\ell i}, \underline{\omega}_{\ell i}, \overline{\omega}_{\ell i}, \bar{S}_{\ell i}, \mathbf{Y}_{\ell i}, \dots$
- ightharpoonup Arc formulation: $S_{bai}, I_{bai}, \underline{\omega}_{bai}, \overline{\omega}_{bai}, \bar{S}_{bai}, \mathbf{Y}_{bai}, \dots$

Outline

Introduction

Complex Formulations

Natural formulation Edge formulation Arc formulation

Real formulations

Arc formulation
Parallel lines

Software

MATPOWER AMPL

Subsection 1

MATPOWER

Generalities

- ► Matlab package
- Designed by electrical engineers not optimizers/computer scientists
- ► Very popular/mature code, works well
- ► Provides an instance library
- Data coded in a counterintuitive way

Table B-1: Bus Data (mpc.bus)

name	column	description
BUS_I	1	bus number (positive integer)
BUS_TYPE	2	bus type $(1 = PQ, 2 = PV, 3 = ref, 4 = isolated)$
PD	3	real power demand (MW)
QD	4	reactive power demand (MVAr)
GS	5	shunt conductance (MW demanded at $V = 1.0$ p.u.)
BS	6	shunt susceptance (MVAr injected at $V = 1.0$ p.u.)
BUS_AREA	7	area number (positive integer)
VM	8	voltage magnitude (p.u.)
VA	9	voltage angle (degrees)
BASE_KV	10	base voltage (kV)
ZONE	11	loss zone (positive integer)
VMAX	12	maximum voltage magnitude (p.u.)
VMIN	13	minimum voltage magnitude (p.u.)
$\mathtt{LAM_P}^\dagger$	14	Lagrange multiplier on real power mismatch (u/MW)
$\mathtt{LAM}_{Q}^{\dagger}$	15	Lagrange multiplier on reactive power mismatch $(u/MVAr)$
MU_VMAX^\dagger	16	Kuhn-Tucker multiplier on upper voltage limit $(u/p.u.)$
MU_VMIN†	17	Kuhn-Tucker multiplier on lower voltage limit $(u/p.u.)$

 $^{^\}dagger$ Included in OPF output, typically not included (or ignored) in input matrix. Here we assume the objective function has units u.

Table B-3: Branch Data (mpc.branch)

name	column	description
F_BUS	1	"from" bus number
T_BUS	2	"to" bus number
BR_R	3	resistance (p.u.)
BR_X	4	reactance (p.u.)
BR_B	5	total line charging susceptance (p.u.)
$RATE_A$	6	MVA rating A (long term rating), set to 0 for unlimited
RATE_B	7	MVA rating B (short term rating), set to 0 for unlimited
RATE_C	8	MVA rating C (emergency rating), set to 0 for unlimited
TAP	9	transformer off nominal turns ratio, if non-zero (taps at "from"
		bus, impedance at "to" bus, i.e. if $r = x = b = 0$, $tap = \frac{ V_f }{ V_f }$;
		tap = 0 used to indicate transmission line rather than transformer,
		i.e. mathematically equivalent to transformer with $tap = 1$
SHIFT	10	transformer phase shift angle (degrees), positive \Rightarrow delay
BR_STATUS	11	initial branch status, $1 = \text{in-service}$, $0 = \text{out-of-service}$
ANGMIN*	12	minimum angle difference, $\theta_f - \theta_t$ (degrees)
ANGMAX*	13	maximum angle difference, $\theta_f - \theta_t$ (degrees)
PF^{\dagger}	14	real power injected at "from" bus end (MW)
QF^\dagger	15	reactive power injected at "from" bus end (MVAr)
PT^{\dagger}	16	real power injected at "to" bus end (MW)
QT [†]	17	reactive power injected at "to" bus end (MVAr)
MU_SF [‡]	18	Kuhn-Tucker multiplier on MVA limit at "from" bus (u/MVA)
MU_ST^{\ddagger}	19	Kuhn-Tucker multiplier on MVA limit at "to" bus (u/MVA)
MU_ANGMIN [‡]	20	Kuhn-Tucker multiplier lower angle difference limit (u/degree)
MU_ANGMAX [‡]	21	Kuhn-Tucker multiplier upper angle difference limit (u/degree)

^{*} Not included in version 1 case format. The voltage angle difference is taken to be unbounded below if $\texttt{ANOMLN} \leq -360$ and unbounded above if $\texttt{ANOMLN} \geq 360$. If both parameters are zero, the voltage angle difference is unconstrained.

 $^{^\}dagger$ Included in power flow and OPF output, ignored on input.

 $^{^\}ddagger$ Included in OPF output, typically not included (or ignored) in input matrix. Here we assume the objective function has units u.

Table B-2: Generator Data (mpc.gen)

name	column	description
GEN_BUS	1	bus number
PG	2	real power output (MW)
QG	3	reactive power output (MVAr)
QMAX	4	maximum reactive power output (MVAr)
QMIN	5	minimum reactive power output (MVAr)
VG^{\ddagger}	6	voltage magnitude setpoint (p.u.)
MBASE	7	total MVA base of machine, defaults to baseMVA
GEN_STATUS	8	machine status, > 0 = machine in-service
		$\leq 0 = \text{machine out-of-service}$
PMAX	9	maximum real power output (MW)
PMIN	10	minimum real power output (MW)
PC1*	11	lower real power output of PQ capability curve (MW)
PC2*	12	upper real power output of PQ capability curve (MW)
QC1MIN*	13	minimum reactive power output at PC1 (MVAr)
QC1MAX*	14	maximum reactive power output at PC1 (MVAr)
QC2MIN*	15	minimum reactive power output at PC2 (MVAr)
QC2MAX*	16	maximum reactive power output at PC2 (MVAr)
RAMP_AGC*	17	ramp rate for load following/AGC (MW/min)
RAMP_10*	18	ramp rate for 10 minute reserves (MW)
RAMP_30*	19	ramp rate for 30 minute reserves (MW)
$RAMP_Q^*$	20	ramp rate for reactive power (2 sec timescale) (MVAr/min)
APF*	21	area participation factor
MU_PMAX^{\dagger}	22	Kuhn-Tucker multiplier on upper P_g limit (u/MW)
MU_PMIN^{\dagger}	23	Kuhn-Tucker multiplier on lower P_g limit (u/MW)
MU_QMAX^{\dagger}	24	Kuhn-Tucker multiplier on upper Q_g limit $(u/MVAr)$
$\mathtt{MU}_{-}\mathtt{QMIN}^{\dagger}$	25	Kuhn-Tucker multiplier on lower Q_g limit $(u/MVAr)$

^{*} Not included in version 1 case format.

 $^{^\}dagger$ Included in OPF output, typically not included (or ignored) in input matrix. Here we assume the objective function has units u.

[‡] Used to determine voltage setpoint for optimal power flow only if opf.use.vg option is non-zero (0 by default). Otherwise generator voltage range is determined by limits set for corresponding bus in bus matrix.

Table B-4: Generator Cost Data[†] (mpc.gencost)

name	column	description
MODEL	1	cost model, 1 = piecewise linear, 2 = polynomial
STARTUP	2	startup cost in US dollars*
SHUTDOWN	3	shutdown cost in US dollars*
NCOST	4	number of cost coefficients for polynomial cost function,
		or number of data points for piecewise linear
COST	5	parameters defining total cost function $f(p)$ begin in this column,
		units of f and p are h are h and h (or h WAr), respectively
		$(\texttt{MODEL} = 1) \Rightarrow p_0, f_0, p_1, f_1, \dots, p_n, f_n$
		where $p_0 < p_1 < \cdots < p_n$ and the cost $f(p)$ is defined by
		the coordinates $(p_0, f_0), (p_1, f_1), \ldots, (p_n, f_n)$
		of the end/break-points of the piecewise linear cost
		$(\texttt{MODEL} = 2) \Rightarrow c_n, \dots, c_1, c_0$
		n+1 coefficients of n -th order polynomial cost, starting with
		highest order, where cost is $f(p) = c_n p^n + \cdots + c_1 p + c_0$

[†] If gen has n_g rows, then the first n_g rows of gencost contain the costs for active power produced by the corresponding generators. If gencost has $2n_g$ rows, then rows n_g+1 through $2n_g$ contain the reactive power costs in the same format.

^{*} Not currently used by any Matpower functions.

Rosetta stone: buses

 $\forall b \in B$:

- $oldsymbol{ ilde{S}}_b = (exttt{PD} + i exttt{QD}) / exttt{baseMVA} \in \mathbb{C}$
- lacksquare $-\mathsf{conj}(A_b) = (-\mathtt{GS} + i\mathtt{BS})/\mathtt{baseMVA} \in \mathbb{C}$
- $\blacktriangleright \ \ [\underline{V}_b, \overline{V}_b] = [\mathtt{VMIN}, \mathtt{VMAX}] \in \mathbb{IR}$

I've never seen baseMVA being anything other than 100

Rosetta stone: branches

$$\forall \{b,a\} \in L$$
:

- $ar{S}_{ba} = exttt{RATE_A/baseMVA} \in \mathbb{R}$
- $ightharpoonup r_{ba} = BR_R \in \mathbb{R}$
- $ightharpoonup x_{ba} = BR_X \in \mathbb{R}$
- $lackbox{lack}{}$ ${\mathfrak b}_{ba} = {\mathtt{BR}}{}_{\mathtt{B}}{\mathtt{B}} \in {\mathbb R}$
- $ightharpoonup au_{ba} = \mathtt{TAP} \in \mathbb{R}$
- $lackbox{0.5}{eta} heta_{ba} = rac{\pi}{180} ext{SHIFT} \in \mathbb{R}$
- $lackbox{} \underline{\omega}_{ba} = rac{\pi}{180} \mathtt{ANGMIN} \in \mathbb{R}$
- $lackbox{}\overline{\omega}_{ba}=rac{\pi}{180} \mathtt{ANGMAX} \in \mathbb{R}$

Rosetta stone: generators

$$\forall b \in B, g \in \mathscr{G}_b$$
:

 $\blacktriangleright \ \ [\underline{\mathscr{S}}_{bg},\overline{\mathscr{S}}_{bg}] = \mathtt{GEN_STATUS}\left([\mathtt{PMIN},\mathtt{PMAX}] + i[\mathtt{QMIN},\mathtt{QMAX}]\right)$

Subsection 2

AMPL

The ACOPF in AMPL

- ► Natural, edge, arc: which formulation?
- Translating data from MatPower .m to AMPL .dat files many defaults are wrong: e.g. RATE_A = 0 means $\bar{S}_{ba} = +\infty$, TAP = 0 means $\tau = 1$, ANGMIN < -90 means ANGMIN = 90, ANGMAX > 90 means ANGMAX = 90
- ► Comparing results: polar vs. cartesian formulation

Implementation pitfalls

- ▶ Implementing the Y matrix is error-prone
- Power is $S = V \operatorname{conj}(I)$: don't forget the conjugate
- Many papers enforce upper bounds on power magnitude, some have current
- The shunt admittance A_b is never used *per se*; instead, we use $-\text{conj}(A_b) = -A_b^{\text{r}} + iA_b^{\text{c}}$, i.e. we flip the sign of the real part
- ► The bus indexing is not a progressive counter
- ► Some text file lines are commented in some instances