
POP – Tutorial problems

Instructor: Igor Klep

Problem 1 (SOS Decompositions). Express the following two polynomials as sums of squares
(SOS):

(a) 2x4 + 5y4 − x2y2 + 2x3y + 2x+ 2;

(b) x2 − xy2 + y4 + 1.

Problem 2 (Nonnegative but not SOS — Paper Exercise). Consider the polynomial

M(x, y) = x4y2 + x2y4 − 3x2y2 + 1.

(a) Show that M ≥ 0 on R2.

(b) Determine whether M is SOS.

Problem 3 (Sums of Two Squares — Paper Exercise). Show that for univariate polynomials,

p ≥ 0 on R ⇐⇒ p is a sum of two squares.

Hint: Use the identity

(P 2 +Q2)(R2 + S2) = (PR +QS)2 + (PS −QR)2.

Problem 4 (POP: A Polynomial Optimization Problem). Solve the following polynomial
optimization problem (POP):

min
x1,x2∈R

2x4
1 + 10x3

1 + x2
1x2 + 19x2

1 − x1x
2
2 + 4x1x2

+ 14x1 + 2x4
2 − 10x3

2 + 19x2
2 − 14x2 + 11

subject to
x2
1 + 3x1 − x2

2 + x2 + 3 ≥ 0,

x2
1 + 2x1 − x2

2 + 2x2 + 1 ≥ 0,

x3
1 + 3x2

1 + 2x1 − x3
2 + 3x2

2 − 2x2 ≥ 0.
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Problem 5 (Extracting Global Minimizers from Moment Matrices — Coding). Write code
to extract a global minimizer from the moment matrix when the flat extension condition is
met. Use a simple POP as an example.

using SumOfSquares

using DynamicPolynomials #Enables symbolic variables

using MosekTools #Mosek SDP solver

# Create an SOS optimization model

model = SOSModel(Mosek.Optimizer)

# Define polynomial variables x and y

@polyvar x1 x2

# Define a decision variable t

@variable(model, t)

# Define the constraint set

S = @set x1^2 + x2^2 <= 1

# Add the SOS relaxation constraint:

@constraint(model, x1^4 + x2^4 - 4*x1*x2 + x1^2 + x2^2 >= t,

domain = S, maxdegree = 6) # maxdegree controls relaxation order

# Set the objective to maximize t (tightest lower bound)

@objective(model, Max, t)

# Solve the SDP relaxation and Print the optimal solution

optimize!(model)

println("Solution: $(value(t))")

# Extract the moment matrix and check for flat extension

# (Code to compute and analyze the moment matrix goes here)

Problem 6 (Max-Cut via Lasserre Relaxation — Coding). This problem considers Max-Cut
from the viewpoint of POP.

(a) Given a graph G with uniform edge weights wij = 1 for each edge (i, j), produce code
to generate the k-th Lasserre relaxation of the Max-Cut problem for G.

(b) Find a graph G where the second Lasserre relaxation performs better than the first.

(c) For graphs on up to 10 vertices, analyze the worst performance of the first (second,
third) Lasserre relaxation.

(d) Generate a random graph on n vertices (with edge probability p). For what sizes of n
can you reliably solve the first (second) Lasserre hierarchy for Max-Cut?
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Problem 7 (LP-Based SOS Testing — Coding). Redo Problem (7) but, instead of using
SDP for SOS testing, use the LP method by Ahmadi–Majumdar. Provide code and discuss
the differences in performance and certification.

Problem 8 (PSD vs. sdd Matrices). Find an example of a matrix that is positive semidefinite
(PsD) but not scaled diagonally dominant (sdd). Prove your claim.

Problem 9 (sdd vs. dd Matrices). Find an example of a matrix that is sdd but not diagonally
dominant (dd). Explain your reasoning.

Problem 10 (Sparse SOS versus SOS Sparse). Verify, with examples, that sparse SOS and
SOS sparse can yield different results. Use two examples from the lecture notes and explain
why the equivalence fails.

Problem 11 (Chordal Extension and Sparse SDP Relaxation — Coding). Code a function
that, given a sparse POP (with a specified correlative sparsity graph), automatically computes
a chordal extension and sets up the corresponding sparse SDP relaxation.

Hint: Use available graph libraries and SDP solvers in your favorite language.

# Example pseudocode in Julia

using LightGraphs, JuMP, MosekTools

function chordal_extension_SDP(G::Graph, pop_data)

# Compute chordal extension (using a heuristic)

# Set up sparse SDP relaxation for the given POP with sparsity pattern G

# Return the SDP model

end

# Example usage:

G = erdos_renyi(10, 0.3)

sdp_model = chordal_extension_SDP(G, pop_data)

optimize!(sdp_model)

Note: Some of these problems (especially the coding ones) may require the use of external
packages such as SumOfSquares.jl, MosekTools.jl, or graph libraries (e.g., LightGraphs.jl
in Julia) and a working SDP solver.
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