## TD #2 (easy version) Large-scale Mathematical Programming

#### Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

INF580



Monitoring an electrical grid (for those who have not had time to do it in TDI)

Other easy problems

## Section 1

# Monitoring an electrical grid

(for those who have not had time to do it in TD1)

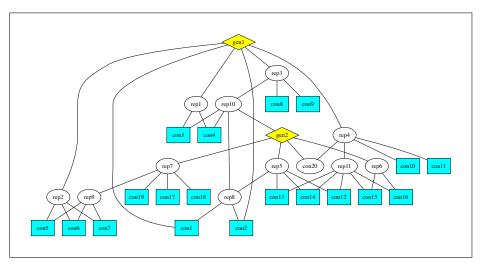
## The problem

An electricity distribution company wants to monitor certain quantities at the lines of its grid by placing measuring devices at the buses. There are three types of buses: consumer, generator, and repeater. There are five types of devices:

- A: installed at any bus, and monitors all incident lines (cost: 0.9MEUR)
- B: installed at consumer and repeater buses, and monitors two incident lines (cost: 0.5MEUR)
- C: installed at generator buses only, and monitors one incident line (cost: 0.3MEUR)
- D: installed at repeater buses only, and monitors one incident line (cost: 0.2MEUR)
- E: installed at consumer buses only, and monitors one incident line (cost: 0.3MEUR).

Provide a least-cost installation plan for the devices at the buses, so that all lines are monitored by at least one device.

# The electrical grid



#### Index sets:

- $\blacktriangleright$  V: set of buses v
- E: set of lines  $\{u, v\}$
- A: set of *directed* lines (u, v)
- ▶  $\forall u \in V \text{ let } N_u = \text{buses adjacent to } u$
- ► *D*: set of device types
- $D_M$ : device types covering > 1 line

$$\blacktriangleright D_1 = D \smallsetminus D_M$$

#### Parameters:

- $\blacktriangleright \quad \forall v \in V \quad b_v = \text{bus type}$
- $\blacktriangleright \quad \forall d \in D \quad c_d = \text{device cost}$

#### Decision variables

∀d ∈ D, v ∈ V x<sub>dv</sub> = 1 iff device type d installed at bus v
∀d ∈ D, (u, v) ∈ A y<sub>duv</sub> = 1 iff device type d installed at bus u measures line {u, v}
all variables are binary

Objective function

$$\min_{x,y} \sum_{d \in D} c_d \sum_{v \in V} x_{dv}$$

#### Constraints

device types:

$$\begin{array}{rcl} \forall v \in V & b_v = \operatorname{gen} & \rightarrow & x_{\mathsf{B}v} = 0 \\ \forall v \in V & b_v \in \{\operatorname{con}, \operatorname{rep}\} & \rightarrow & x_{\mathsf{C}v} = 0 \\ \forall v \in V & b_v \in \{\operatorname{gen}, \operatorname{con}\} & \rightarrow & x_{\mathsf{D}v} = 0 \\ \forall v \in V & b_v \in \{\operatorname{gen}, \operatorname{rep}\} & \rightarrow & x_{\mathsf{E}v} = 0 \end{array}$$

at most one device of any type at each bus

$$\forall v \in V \quad \sum_{d \in D} x_{dv} \le 1$$

#### Constraints

• A: every line incident to installed device is monitored

$$\forall u \in V, v \in N_u \quad y_{\mathsf{A}uv} = x_{\mathsf{A}u}$$

B: two monitored lines incident to installed device

$$\forall u \in V \quad \sum_{v \in N_u} y_{\mathsf{B}uv} = \min(2, |N_u|) x_{\mathsf{B}u}$$

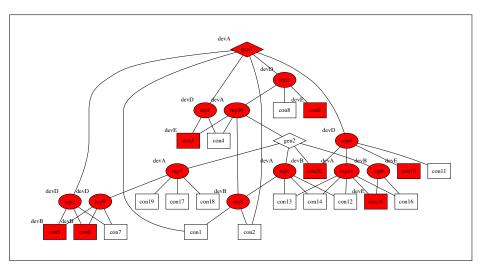
• C,D,E: one monitored line incident to installed device

$$\forall d \in D_1, u \in V \quad \sum_{v \in N_u} y_{duv} = x_{du}$$

line is monitored

$$\forall \{u, v\} \in E \quad \sum_{d \in D} y_{duv} + \sum_{e \in D} y_{evu} \ge 1$$

### Solution



all lines monitored, no redundancy, cost 9.2MEUR

### Section 2

# Other easy problems

# Blending

A refinery produces two types of fuel by blending three types of crude. The first type of fuel requires at most 30% of crude 1 and at least 40% of crude 2, and retails at 5.5EUR per unit. The second type requires at most 50% of crude 1 and at least 10% of crude 2, and retails at 4.5EUR. The availability of crude 1 is 3000 units, at a unit cost of 3EUR; for crude 2 we have 2000 units and a unit cost of 6EUR; for crude 3, 4000 and 4EUR. How do we choose the amounts of crude to blend in the two fuels so as to maximize net profit?

## Assignment

There are n jobs to be dispatched to m identical machines. The j-th job takes time  $p_j$  to complete. Jobs cannot be interrupted and resumed. Each machine can only process one job at a time. Assign jobs to machines so the whole set of jobs is completed in the shortest possible time. Also write a random instance generator so you can actually solve this problem using AMPL.

### Demands

A small firm needs to obtain a certain number of computational servers on loan. Their needs change every month: 9 in January, 5 in February, 7 in March, 9 in April. The loan cost depends on the length: 200EUR for one month, 350 for two, and 450 for three. Plan the needed loans in the cheapest possible way.

# Demands, again

A computer service firm estimates the need for service hours over the next five months as follows: 6000, 7000, 8000, 9500, 11000. Currently, the firm employs 50 consultants: each works at most 160 hours/month, and is paid 2000EUR/month. To satisfy demand peaks, the firm must recruit and train new consultants: training takes one month, and 50 hours of supervision work of an existing consultant. Trainees are paid 1000EUR/month. It was observed that 5% of the trainees leave the firm for the competition at the end of training. Plan the activites at minimum cost.

# Multi-period production

A manufacturing firm needs to plan its activities on a 3-month horizon. It can produce 110 units at a cost of 300\$ each; moreover, if it produces at all in a given month, it must produce at least 15 units per month. It can also subcontract production of 60 supplementary units at a cost of 330% each. Storage costs amount to 10\$ per unit per month. Sales forecasts for the next three months are 100, 130, and 150 units. Satisfy the demand at minimum cost.

## Capacities

A total of n data flows must be routed on one of two possible links between a source and a target node. The *j*-th data flow requires  $c_j$  Mbps to be routed. The capacity of the first link is 1Mbps; the capacity of the second is 2Mbps. Routing through the second link, however, is 30% more expensive than routing through the first. Minimize the routing cost while respecting link capacities. Write a random instance generator and solve instances with AMPL.

## Covering, set-up costs and transportation

A distribution firm has identified n candidate sites to build depots. The *i*-th candidate depot, having given capacity  $b_i$ , costs  $f_i$  to build (for  $i \leq n$ ). There are m stores to be supplied, each having a minimum demand  $d_j$  (for  $j \leq n$ ). The cost of transporting one unit of goods between depot i and store j is  $c_{ij}$ . Plan openings and transportation so as to minimize costs. Write a random instance generator and solve instances with AMPL.

# Circle packing

Maximize the number of cylindrical crates of beer (each having 20cm radius) which can be packed in the carrying area (6m long and 2.5m wide) of a pick-up truck.