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About the course

» Aims of lectures: theory, algorithms, some code
won’t repeat much of MAP557

» Aims of TD: modelling abilities in practice
with AMPL and Python

» Warning:

’ some disconnection between lectures and TD is normal‘

some theoretical topics do not lend themselves to implementation
» Lectures/TD: (generally) on fri afternoon

» Exam: mini-project (individual/pairs) or oral exam

http://www.lix.polytechnique.fr/~“liberti/
teaching/dix/inf580
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What is Mathematical Optimization?

Mathematics of solving optimization problems
Formal language: Mathematical Programming (MP)
Sentences: descriptions of optimization problems
Interpreted by solution algorithms (“solvers”)

As expressive as any imperative language

vvyVvyVvyyvVyy

Shifts focus from algorithmics to modelling
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Why Large-scale?

vvyyvyy

vy

Any process can be optimized
Social, technical and business processes are complex
Computer power limits model precision

Nowadays, need to solve very precise models
= increase in model size

= algorithmic complexity must grow slowly with size
Focus on LP algs and heuristics

Investigate LP relaxations & dimensionality reduction
methods
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The syllabus

>

>

Which optimization problems can be solved?

a tour of 20th century logic

Complexity of optimization problems

basics of theoretical computer science

Distance geometry

modern large-scale optimization and data science techniques
Random projections

new approaches to approximately solving large-scale
problems

Sparsity and ¢; minimization

integrality out of continuity

Further topics

as time allows
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MP Formulations

Given functions f,g1,...,gm : Q" = Qand Z C {1,...,n}

min, f(z)
Vi<m gi(x) <
VJ ez Z; S

0 [P]
Z

» More general than it looks:

» max f(x) = —min — f(x)
> gi(z) =0 & (gi(x) SOA—gi(z) <0)
> L<z<U < (L-z<0Az-UZ<D0)

» f, g; represented by expression DAGSs

7(1*/';17(13 @<’>®§x
J @

Class of all formulations P: MP
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Semantics of MP formulations

» [P] = optimum (or optima) of P

» Given P € MP, there are three possibilities:
[P] exists, P is unbounded, P is infeasible

» P is feasible iff [P] exists or P is unbounded

otherwise it is infeasible

» P has an optimum iff [P] exists
otherwise it is infeasible or unbounded

» Example:
min  zy + 229 — log(x122)
mlxg > 1
xr] € [0, 1]
r9 € N

FEzercise
Code this toy MP in AMPL and solve it with BARON
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Example: solution “by inspection”

P = min{z| 4 2z5 — log(z123) | z125 > 1A0 < 21 < 1 Az € N}

[P] = (opt(P),val(P)) opt(P)=(1,1) val(P) =3
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Feasibility and optimality

» Feasibility problem: [g(z) < 0]
can be written as the MP [min{0 | g(z) < 0]}

» Bounded MP [min{f(x) | g(z) < 0}]:
bisection on fy in feas. prob. [f(z) < fo A g(x) < 0]

» Unbounded MP: not equivalent to feasibility
in general, cannot prove unboundedness
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Bisection algorithm

» P=min{f(x) |Vielg(z)<0Aze€ X}

» Assume global opt z* of P has value f(z*) between
given lower /upper bounds

» Reformulate P to a parametrized feasibility problem
Q(fo) ={z € X | f(x) < foAVi eI gi(x) <0}
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Bisection algorithm for optimal value

1: Input: lower & upper bound for fy

2: while lower and upper bounds differ by > ¢ do
3: let fo be midway between bounds

4. if Q(fo) is feasible then

5 update upper bound to fy

6: else

7: update lower bound to fy

8: end if

9: end while

» solve an optimization problem with calls to feasibility oracle

calls to oracle

> need only [log, (@)]

Ezxercise

Solve the toy MP using this bisection algorithm in AMPL
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Bisection algorithm for optimum

1: Input: lower & upper bounds for fj,
candidate global optimum 2

2: while lower and upper bounds differ by > ¢ do

3:  let fo be midway between bounds

4. if Q(fo) is feasible then

5: find a feasible point z’

6 if f(2') better than f(&) then

7 update & to 2’

8 update upper bound to f(z)

9 end if

10: else

11: update lower bound to f

122 end if

13: end while
FExercise

Solve the toy MP using this bisection algorithm in AMPL
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Bisection algorithm for MP (formal)

Given:

» an optimization problem in minimization form

for maximization have to switch a few things: which ones?
» global optimal value approximation tolerance € > 0
» lower bound f, upper bound f
» a feasibility algorithm F which

finds an element in a set or certifies emptyness up to €
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Bisection algorithm for MP (formal)

1: let (&, f) = (uninitialized, f)
2: while f — f > edo

3 et fo=(f+1)/2

4 (2 f) = F(Q(fo))

5. if (2, f') # (2, 2) then

6: if f/ < f then

7: update (fc,f) — (2, f")
8: update f < f

9: end if

10: else

11: update f < fy

122 endif

13: end while
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Subsection 1

MP language
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Entities of a MP formulation

» Sets of indices
» Parameters
problem input, or instance

» Decision variables
will encode the solution after solver execution

\4

Objective function

» Constraints
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MP Example

Linear Program (LP) in standard form

» m,n: number of rows and columns
corresponding index sets [ = {1,...,m},JJ ={1,...,n}

» cc R beR™ A an m X n matrix
» rcR”
» min, c'x
> A =b A x>0
FEzercise

Code this example in AMPL and solve it with CPLEX
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MP language implementations

» Humans model with quantifiers (V, >_,...)
eg. Viel > aj;x; <b
jeJ
structured formulation
» Solution algorithms accept lists of explicit constraints
e.g. 4ry 4+ 1.5x9 + 16 < 2
flat formulation

» Translation from structured to flat formulation

» MP language implementations

AMPL], GAMS, Matlab+ YALMIP,

Python-+amplpy/cvxpy |, Julia+JuMP; ...

FErercise

Use AMPL to derive the flat formulation from the standard form LP
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AMPL

» AMPL = A Mathematical Programming Language
» Syntax similar to human notation
» Bare-bone programming language
e.g. no function calls
» Commercial & closed-source
» extremely rapid prototyping
> we get free licenses for this course

» free open-source AMPL sub-dialect in GLPK glpsol

» Can also use Python-+amplpy/cvxpy, or Julia+JuMP
Exercise

Formulate and solve the standard form LP using Python+amplpy
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Subsection 2

Solvers
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Solvers

» Solver:
a solution algorithm for a whole subclass of MP
examples: BARON, CPLEX

» Take formulation P as input

» Output [P] and possibly other information

» Trade-off between generality and efficiency
fast solvers for large MP subclasses: unlikely
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Some subclasses of MP

(i) LINEAR PROGRAMMING (LP)

f,g; linear, Z = @

(ii)) MIXED-INTEGER LP (MILP)
f,9i linear, Z # &

(iii) NONLINEAR PROGRAMMING
(NLP) min f()
some nonlinearity in f,g;, Z = @ zfge”Z@ gi(:)_ [P]
f,g: convex: convex NLP (cNLP) ! !

(iv) MIXED-INTEGER NLP
(MINLP)

some nonlinearity in f, g;, Z # @

m IA

0
Z

f,9i convex: convex MINLP
(cMINLP)
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And their solvers

(i)

(i)

(iii)

LINEAR PROGRAMMING (LP)

simplex algorithm, interior point method (IPM)
Implementations: CPLEX, GLPK, CLP
MIXED-INTEGER LP (MILP)

cutting plane alg., Branch-and-Bound (BB)
Implementations: CPLEX, GuRoBi
NONLINEAR PROGRAMMING (NLP)

IPM, gradient descent (cNLP), spatial BB (sBB)
Implementations: IPOPT (cNLP), Baron, Couenne
MIXED-INTEGER NLP (MINLP)

outer approximation (cMINLP), sBB

Implementations: Bonmin (cMINLP), Baron, Couenne

25 /413



Subsection 3

MP systematics
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Types of MP

Continuous variables:

>

vV V. vV VvV VvV VvV VY

LP (linear functions)

QP (quadratic objective over affine sets)

QCP (linear objective over quadratic sets)
QCQP (quadratic objective over quadratic sets)
cNLP (convex sets, convex objective)

SOCP (LP over 2nd order cone)

SDP (LP over PSD cone)

CPP (LP over copositive cone)

NLP (nonlinear functions)
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Types of MP

Mized-integer variables:
» IP (integer programming), MIP (mixed-integer programming)
» cutensions: MILP, MIQP, MIQCP, MIQCQP, cMINLP, MINLP
» BLP (LP over {0,1}")
> BQP (QP over {0,1}"™)

Some more “exotic” classes:
» MOP (multiple objective functions)
» BLevP (optimization constraints)

» SIP (semi-infinite programming)
Ezample: nonlinear constraint y > 22 equivalent to infinite linear constraint
set Vp € R (y > 2pz — p?)
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Subsection 4

Some applications
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Some application fields

| 2

>

>

>

Production industry
planning, scheduling, allocation, . ..

Transportation & logistics
facility location, routing, rostering, ...

Service industry
pricing, strateqy, product placement, . ..

Energy industry

power flow optimization, monitoring smart grids, ...
Machine Learning & Artificial Intelligence

clustering, support vector machines, ANN training, . ..
Biochemistry & medicine

protein structure, blending, tomography, . ..
Mathematics

Kissing number, packing of geometrical objects, . ..
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Easy example

A bank needs to invest C' gazillion dollars, and focuses on two
types of investments: one, imaginatively called (a), guaran-
tees a 15% return, while the other, riskier and called, surprise
surprise, (b), is set to a 25%. At least one fourth of the bud-
get C' must be invested in (a), and the quantity invested in
(b) cannot be more than double the quantity invested in (a).
How do we choose how much to invest in (a) and (b) so that
revenue is maximized?

Modelling school

First question to ask oneself is: What are the decision variables?
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Easy example

» Parameters:

» budget C

» return on investment on (a): 15%, on (b): 25%
» Decision variables:

» x, = budget invested in (a)

» 13, = budget invested in (b)
» Objective function: 1.15x, + 1.25 x,,
» Constraints:

> z,+x,=C

> z, > C/4

> x, < 2z,
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Easy example: remarks

> Missing trivial constraints:
verify that x, = C + 1, x;, = —1 satisfies constraints
forgot x > 0

» No numbers in formulations:
replace numbers by parameter symbols

max Calq + CpITp

Zq,xp>0
Tog+axpy = C
r, > pC
drg —xp, > 0
»  Formulation generality:
extend to n investments:
Z £L‘j = C
j<n
I 2 pC
d.’l?l — X9 Z 0
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Example: monitoring an electrical grid
An electricity distribution company wants to monitor certain quantities
at the lines of its grid by placing measuring devices at the buses. There

are three types of buses: consumer, generator, and repeater. There are
five types of devices:

> A: installed at any bus, and monitors all incident lines (cost:
0.9MEUR)

> B: installed at consumer and repeater buses, and monitors two
incident lines (cost: 0.5bMEUR)

» C: installed at generator buses only, and monitors one incident
line (cost: 0.3MEUR)

» D: installed at repeater buses only, and monitors one incident
line (cost: 0.2MEUR)

» E: installed at consumer buses only, and monitors one incident

line (cost: 0.3MEUR).

Provide a least-cost installation plan for the devices at the buses, so
that all lines are monitored by at least one device.
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Example: the electrical grid




Example: formulation

» Index sets:

> V: set of buses v

E: set of lines {u,v}

A: set of directed lines (u,v)

Vu € V let N, = buses adjacent to u
D: set of device types

» Dy device types covering > 1 line
> D1 =D~ DM

| 4
>
| 4
>
» YveV b, =bustype

» Vde D cq= device cost
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Example: formulation

» Decision variables

> VYdeDveV x4, =1

iff device type d installed at bus v
> Vde D, (u,v) €A Ygup =1

iff device type d installed at bus u measures line {u, v}
» all variables are binary

» Objective function

ming E CaT dw
z,y

)

deD veV
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Example: formulation

» Constraints
» device types:

YveV b,=gen — zg,=
YoeV b, €{conrep} — xc,=
YveV b, € {gen,con} —
YveV b, € {genrep} —

» at most one device of any type at each bus

YveV Zxdvgl
deD

38 /413



Example: formulation

» Constraints
» A: every line incident to installed device is monitored

VueV,v €Ny Yauw = Tau

» B: two monitored lines incident to installed device

VueV Z YBuv = min(2a |Nu|)xBu
VEN,

» C,D,E: one monitored line incident to installed device

Vde DL, u€V Y Yauw = Tau
VENy,

» line is monitored

V{U,’U} ek Z Yduv + Z Yevu = 1

deD ecD
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Example: solution

all lines monitored, no redundancy, cost 9.2MEUR
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Can we solve MPs?

» “Solve MPs™ is there an algorithm D s.t.:

infeasible P is infeasible
VP € MP D(P)=< unbounded P is unbounded
1P] otherwise

» l.e. does there exist a single, all-powerful solver?
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Subsection 1

Formal systems

43 /413



Formal systems (FS)

» A formal system consists of:
» an alphabet
» a formal grammar
allowing the determination of formule and sentences
» a set A of axioms (given sentences)
> a set R of inference rules
allowing the derivation of new sentences from old ones

» A theory T is the smallest set of sentences that is
obtained by recursively applying R to A

[Smullyan, Th. of Formal Systems, 1961]
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Examples

»  Alphabets:
:@: {u,(),l}, JV:%U{Q,?),...,}, 4// = {l‘o,l‘l,lEQ,...}
E=A(.),+,—, x,%,DD,exp,log,sin} uAs uy
Doty ={v,3,V,A\,m,=}U&,
M P = {min,max, >, [[,<,>} U P

» An expression grammar:

expr term + expr term — expr term
term factor X term factor ~ term factor
factor powerPo¥er power
power log(unr) | exp(unr) | sin(unr) | (—unr) | unr

unr (expr) N v
e.g. (1 —sin(z)?)1/2):
expr = term = factor = powerP’"*" = unr' = (expr)(®*P) =
(term — expr)(*e™) = (factor — term)(factor=factor) —
» Axioms: see later
» Inference rules:
modus ponens, symbol replacement, AF AANA A AV A, ...
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Example: PAL

» Theory: 1st order provable sentences about N
» Alphabet: 4+, x,A,V,—,V,3,-,=,0,5(-) and variable names
» Peano’s Axioms:

1. Vx (0 # S(x))

Y,y (S(x) = S(y) =z =y)
Vo (zr+0=ux)
Vo (z x 0=0)

Vo, y (24 S(y) = S(z +y))
Va,y (x x S(y) =z x y+ )

axiom schema over all (k + 1)-ary ¢: Yy = (y1,...,Yk)
(¢(0,y) AVa(d(x,y) = ¢(S(x),y))) = Voe(z,y)

» Inference: see

Ne o e W

https://en.wikipedia.org/wiki/List_of_rules_of_inference
e.g. modus ponens (PN (P — Q)) — Q
| 4
e.g. dr € N" Vi (p;(x) < 0) (polynomial MINLP feasibility)
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Example of PA1 derivation

Thm.

Vo (x = x)

Proof

A3 Va r+0=z [1]
logic Vt,r, s t=r—(t=s—r=s) [2]
1,2 Ve z4+0=z—(z+0=zx—ax=12) [3
1,3, mp Va z+0=z—z==x [4]
1,4, mp YV r==x QED

Notes:

» truth tables of A — B and (—A) V B are the same
» logic indicates a “logical theorem”
lequality] (t =r At =s) — r =s; [truth tables| t =7 — (t =s = r = s)
>
» all derivations are completely syntactical
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Example: Reals

vvyyvyy

Theory: 1st order provable sentences about R
Alphabet: +, x, A, V,V,d, =, <, <, 0, 1,variable names
Axioms: field and order

Inference: see

https://en.wikipedia.org/wiki/List_of_rules_of_inference

e.g. modus ponens (PN (P — Q)) — Q
Generates polynomial rings R[X7, ..., . Xy] (for all k)
e.g. 3z € R" Vi (p;(x) < 0) (polynomial NLP feasibility)
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Relevance of F'Ss to MP
Given a FS F:

>

>

>

A decision problem is a set P of sentences
Decide if a given sentence f belongs to P
Decidability in formal systems:

P = provable sentences
Proof of f: finite sequence of sentences ending with f
sentences: axioms, or derived from predecessors by inference
rules
PA1: decide if sentence f about N has a proof
e.g. dx € Z" Vi p;(x) <0  (polynomial p)
Reals: decide if sentence f about R has a proof
e.g. dJxr € R"Vip;(r) <0 (polynomial p)
Formal study of MINLP/NLP feasibility
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Decidability, computability, solvability

» Decidability: applies to decision problems
» Computability: applies to function evaluation
P Is the function mapping ¢ to the i-th prime integer
computable?
» Is the function mapping Cantor’s CH to 1 if provable in
ZFC axiom system and to 0 otherwise computable?
» Solvability: applies to other problems

E.g. to optimization problems
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Completeness and decidability

» Complete FS F:
for any f € F, either f or —=f is provable
otherwise F is incomplete
» Decidable FS F:
3 algorithm D s.t.

D(f)=1 iff f is provable
vie ]:{ D(f) =0 iff f is not provable

otherwise F is undecidable
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Example: PA1

» Godel’s 1st incompleteness theorem:
PAL1 is incomplete

» Turing’s theorem:
PA1 is undecidable

» = PAl is incomplete and undecidable
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Subsection 2

Godel
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Godel’s 1st incompleteness theorem

» F: any FS extending PAl
» Thm. ‘]—" complete iff inconsistent‘

» ¢: sentence “¢ not provable in F”
denoted F tf ¢; it can be constructed in F (hard part of thm.)

| 4
>
>
>

>

F: “is provable” in PA1; I-: in meta-language
Assume F is complete: either FF¢ or FF—¢

If Ft=¢ then F-(F ¥/ ¢) i.e. FI/ ¢, contradiction

If F-=¢ then F-—=(F If ¢) i.e. FH(F F ¢)

this implies Fr¢, i.e. F&(¢ A —¢), F inconsistent
Assume F is inconsistent: any sentence is provable,

i.e. F complete

proof: P A =P, hence P and —P, in particular for any @ we have
PVQ,

whence @ (since =P and PV Q), implying P A =P — Q

» If we want PA1 to be consistent, it must be incomplete
» Warning: Fli/¢ = —(Ft¢) £ Ft—¢
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Godel’s encoding

» For ¢ € PAL, "y '€ N
an integer which encodes the sentence

called “Gédel number” of the sentence
» T.7is an injective map
many ways to define ™"
» Inverse: ("¢7) = ¢
¢ is the sentence corresponding to Gédel number "¢

» Encode/decode in N any sentence of a formal system
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Godel’s self-referential sentence ¢

>

For integers z,y proof (z,y) :

(x) is a proof in PA1 for the sentence (y)

For integers m,n,p SOSt(m, n, p) =

Godel number of the sentence obtained by replacing in (m) the
free variable symbol with Gédel number n with the Godel

number p (’rwtc that this operation replaces a symbol with a number)

let v be the Gédel number of the variable symbol “y”
ie.y="y'eN

2(y) = =3z € N proof(z, sost(y, v y)):

~(y): there is no proof in PA1 for the sentence obtained by
replacing, in the sentence (y), every free variable symbol “y”

with the integer assigned to the free variable y

let ¢ = "(y)", consider ¢ = v(q)
note ¢ = =3z € N proof(z, sost(q, v, q))

56 /413



Godel’s self-referential sentence ¢

¢ = —3x € N proof (x,sost(q,y, q))

» Let "7 = sost(q, v, q)
"1/1 derived by replacing the free variable symbol “y” in (q) with q ‘

» ¢ = “there is no proof in PA1 for the sentence )

» How did we obtain ¢? Since ¢ = v(q),
‘ ¢ derived by replacing the free variable symbol “y” in v(y) with q‘

Only difference between ¢ and 1): ’ ~(y) instead of (q) ‘

But recall that ¢ ="y(y) ", i.e. | (¢) =7(v)
So, in fact, ¥ = ¢
Hence ¢ states “¢ is not provable in PA1”

>
>
>
>

Note: the replacement of y with g in meta-language is encoded by sost() in PAl
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Subsection 3

Turing
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Turing machines

» Turing Machine (TM): computation model

» infinite tape with cells storing finite alphabet letters

P head reads/writes/skips i-th cell, moves left /right

P states=program (e.g. if s write 0, move left, change to state )
P initial tape content: input, final tape content: output
>

final state L: termination (nontermination denoted &)
» can model PAl

» J universal TM (UTM) U s.t.

» given the “program” of a TM T and an input x
» U “simulates” T running on x

» = The basis of the modern computer
» HALTING PROBLEM (HP) given TM M & input z, is M (z) = L7
Does a given TM terminate on its input?

» Turing’s theorem: HP is undecidable
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Computable functions

v

TM T on input z yielding output y: write T'(z) =y
» If a TM T terminates on all input, 7'(-) is computable
a.k.a. “total computable”

\4

If a function is not computable, then it’s uncomputable

» If T only terminates on some input, 7°(-) is
partial computable

denote T'(xz) = @ (undefined) if 7" does not terminate on input x
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Turing’s proof

» Enumerate all TMs: (M; | i € N)
1 if M;(0) =L
0 if M;() =02
» Show halt # F' for any total computable F'(i,():
» define G(i) = 0 if F(i,7) = 0 or undefined (&) othw

G is partial computable because F' is computable
» let M; be the TM computing G
for any ¢, M; (7) = 1 iff G(I) = 0 (since G(i) undefined othw)
» consider halt(j, 7):
> halt(j,j) =1 —= M;(j) = L = G(j) =0 = F(5,5) =0
> halt(j,j) =0 = M;(j) =2 = G(j) =@ = F(j,j) #0
» so halt(j,7) # F(j,7) for all j

» halt is uncomputable

» Halting function halt(i, () = {
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Turing and Godel

vy

Consider TM called “provable” with input o € PA1:
while(1) {i=0; if proof(i,"a™) return YES; else i=i+1}

provable(a) = YES iff PA1 F «
termination of provable = decidability in PA1

Godel’s ¢ is not provable
= provable(¢) = &
= PA1 is undecidable

PA1 incomplete and undecidable

62 /413



Subsection 4

Tarski
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Example: Reals

» Tarski’s theorem: Reals is complete

» Algorithm:
constructs solution sets (YES) or derives
contradictions(NO)
= provides proofs or contradictions for all sentences

» = Reals is complete and also decidable
since every complete theory is decidable
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Completeness = decidability

» Given ¢ € F
i=0
while 1 do
if proof(i,"¢™") then
return YES
else if proof(i,"—¢7) then
return NO
end if
i=1i+41
end while

» Since F complete, alg. terminates on all ¢
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Tarski’s theorem

v

Algorithm based on quantifier elimination

Feasible sets of polynomial systems p(z) <0
have finitely many connected components

Each connected component recursively built of
cylinders over points or intervals
extremities: pts., 0o, algebraic curves at previous recursion

levels

In some sense, generalization of Reals in R!
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Dense linear orders
Given a sentence Qb n DLO (similar to Reals in one dimension)
» Reduce to DNF w/clauses 3z; ¢;(z) where ¢; = A ¢;;
» Each ¢;; has form s =¢ or s <t (s,¢ vars or consts)
» s, t both constants:
s < t, s =t verified and replaced by 1 or 0
» s, t the same variable z;:
s < t replaced by 0, s =t replaced by 1
» if sis x; and t is not:
s =t means “replace x; by t” (eliminate x;)
» remaining case:
¢; conjunction of s < x; and x; < t:
replace by s < ¢ (eliminate z;)
» ¢; no longer depends on x;, rewrite 3z; ¢; as ¢

» Repeat over vars. x;, obtain real intervals or contradictions

Quantifier elimination!
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Subsection 5

Completeness and incompleteness
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Decidability and completeness

» PAL is incomplete and undecidable

» Reals is complete and decidable

» Are there FS F that are:

» incomplete and decidable?
» complete and undecidable?
this case already discussed, answer is NO
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Incomplete and decidable (trivial)

v

vvyyvyy

Nolnference:
Any FS with <oo axiom schemata and no inference rules

Only possible proofs: sequences of axioms
Only provable sentences: axioms
For any other sentence f: no proof of f or —=f

Trivial decision algorithm:
given f, output YES if f is a finite axiom sequence,
NO otherwise

Nolnference is incomplete and decidable
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Incomplete and decidable (nontrivial)
» ACF: Algebraically Closed Fields (e.g. C)

field axioms + “every polynomial splits” schema
» Theorem: ACF is incomplete
» ACF,: ACF A C, =) 1 =0] (with p prime)
J<p
» Claim: Vp (prime) C, independent of ACF
» suppose proof of C, or =C,, possible for p
» then either ACF A =C, or ACF A C,, inconsistent
» but 3 field of any prime characteristic p
» ACF A C, and ACF A =C,, consistent for all p
» Theorem: ACF is decidable
Decision algorithm D(v)) for ACF:
» if ¢ = C, or ~C), for some prime p, return NO
» eclse run quantifier elimination on 1)’

W' obtained by replacing > 1 by 0 whenever possible in )
J<p

» = ACF is incomplete and decidable
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The two meanings of completeness

» WARNING!!
“complete” is used in two different ways in logic

1. Goédel’s 1st incompleteness theorem

FS F complete; if ¢ or =¢ provable Vo
2. Godel’s completenessy theorem

>

vvyy

vy

A: set of sentences in F

M a model of F (domain of values for var symbols)
AM: each var in A replaced by corresp. value

IM s.t. AM is true = A consistent

partial converse: corollary of Gddel’s completeness thm
Complete, FS: VM (AM) = F+ A

Gddel’s completeness theorem:

15¢ order logic is completes

Note the strong assumption “VM”

incompleteness theorem only considers M = N

» Pay attention when reading literature /websites
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Subsection 6

MP solvability

73 /413



The issue

vy

Proved PA1 incomplete and undecidable
Proved Reals complete and decidable

But MP feasibility problems are existential statements
dr s.t. g(z) <07

PA1 and Reals also involve universal quantifiers

= MP feasibility provides smaller theories

For Reals, if larger theory complete and decidable,
smaller theory also complete and decidable

For PAL, larger theory incomplete and undecidable,
but smaller theory might be complete or decidable!
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Polynomial equations in integers

» Consider the feasibility-only MP
min{0 | Vi <m g;(x) =0ANz € Z"}

with g;(z) multivariate polynomials in z

» Rewrite as a Diophantine equation (DE):

JreZ" ) (gi(x)* =0

i<m

» Can restrict to N wlog, i.e. Eq. (1) € PAl
write x; = ,’Ifj — x; where ;,1',‘,.+, x; € N*

» Formulae of PA1 are generally undecidable
but is the subclass (1) of PAI decidable or not?
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Hilbert’s 10th problem
» Hilbert:

Given a Diophantine equation with any number of unknowns and
with integer coefficients: devise a process which could determine
by a finite number of operations whether the equation is solvable
in integers

» Davis & Putnam: conjecture DEs are undecidable

» consider set RE of recursively enumerable (r.e.) sets

» R C Nisin RE if 3 TM listing all and only elements in R
let TM = {7 :N — N | T is a TM}; then
VR € RE 3T € TM (ranT = R)

P> some RE sets are undecidable, e.g. R = {"¢" | PA1F ¢}
r.e.: list all proofs; undecidable: by Gédel’s thm
“listing elements of set” and “proving if element in set” are very different

problems!
» for each R € RE show 3 polynomial p(r, x) s.t.
reR+< dxeN"p(r,z) =0

» if we can prove this, 3 undecidable DEs
othw for any r € N can decide if r € R by finding x € N™
s.t. p(r,x) =0
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Proof strategy

» Strategy: “model” r.e. sets with polynomial equations
in integers

> universal quantifiers removed, but
eqn system involves exponentials

» Matiyasevich: exploits exponential growth of Pell’s
equation solutions to remove exponentials

» = DPRM theorem, implying DE undecidable

Negative answer to Hilbert’s 10th problem
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Structure of the DPRM theorem

» Godel’s proof of his 1st incompleteness thm.
r.e. sets = DFs with < oo 3 and bounded ¥ quantifiers
» Davis’ normal form
one bounded quantifier suffices: JxoVa < xo3z pla,x) =0
> (2 bnd gnt = 1 bnd qnt on pairs) and induction
» Robinson’s idea

get rid of bounded universal quant. by using exponent vars

a<zg

P idea: [FzoVa < xo3z pla, ) = 0] “ =7 [Elac IT pla,z) = O:|
P precise encoding needs variables in exponents
» Matyiasevic’s contribution
express ¢ = b* using polynomials
P use Pell’s equation z2 — dy? = 1
» solutions (n, yn) satisfy &n + ynVd = (1 + y1Vd)™

> Tn,Yn grow exponentially with n
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MP is unsolvable

>
>
>

We know that if R € RE then 3T € TM s.t. ranT = R, we need the converse!
Lemma: VI' € TM ran7 € RE

Consider list of all TMs (M; | i € N)

if M;(z) = L at t-th execution step, write M} (z) = L

Yields all sets in RE = (R; | i € N) by dovetailing
at k-th round, perform k-th step of M;(1), (k — 1)-st of M;(2), ..., 1-st of
M; (k)

= VkeN, <k if M/(k—¢+1) = L then let R; «

RiU{k —£+1}

S Ri={k—(+1]|3keNL<k(ME—-L+1)=1)} O
DPRM theorem: VR € RE, R represented by poly eqn

By lemma, can choose UTM M; with ran M; = R; € RE

= 3 Universal DE (UDE), say U(r,z) =0

min{0 | U(r,z) =0Ax € N'}:

undecidable (feasibility) MP

mli\IIl(U (r,z))?: unsolvable (optimization) MP
xeN™
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Common misconception

“Since N is contained in R, how is it possible that Reals is
decidable but DE (= Reals N N, right?) is not?”
After all, if a problem contains a hard subproblem, it’s hard
by inclusion, right?

» Can you express DE p(z) = 0 Az € N in Reals?
» p(x) = 0 belongs to both DE and Reals, OK
» “r € N” in Reals?
<« find poly ¢(x) s.t. Iz g(z) =0 iff z € N*
» g(z) =xz(x—1) - (z — a) only good for {0,1,...,a}

q(z) = ] (z — 1) is ooly long, invalid
1EW

» IMPOSSIBLE!
if it were possible, DE would be decidable, contradiction

» — Reals 2 DE
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MIQCP is undecidable

» [Jeroslow 1973]: MIQCP:

T

min c'z
Vi<m z'Qx+a;'x+b > 0 (1)
r € 7"

is undecidable
Proof:
» Let U(r,z) = 0 be an UDE
» P(r) =min{u | (1—uw)U(r,z) = 0Au € {0,1}Ax € Z"}
P(r) describes an unsolvable problem
» Linearize every product z;z; by y;; and add y;; = x;x;
until only degree 1 and 2 left
» Obtain instances of MIQCP (t) for every r
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Some MIQCQPs are decidable

» If each Q; is diagonal PSD, decidable [Witzgall 1963|

» If 2 are bounded in [z*, 2] N Z", decidable
can express x € {[z%], [z5] +1,..., 2V |} by polynomial

Vi <m (x—14)=0

el <i<alV

i ="="

turn into poly system in R (in Reals, decidable)

> = (vars) easier than unbounded (for Z)

» [MIQP decision vers.| is decidable
z'Qr+c's < v

Az >
€

(in NP [Del Pia et al. 2014])
Vi€EZ

b
Z

82 /413



NLP is undecidable

We can’t represent unbounded subsets of N by polynomials
But we can if we allow some transcendental functions
x€Z <— sin(mr)=0
» Constrained NLP is undecidable:
min{0 | U(a,z) =0AVj < n sin(rz;) = 0}
» Even with just one nonlinear constraint:
min{0 | (U 2+ Z sin(rz;))” = 0}

i<n

» Unconstrained NLP is undecidable:

min(U(a, z))? + 2:(8111(7T~TJ'))2

j<n
» Box-constrained NLP is undecidable

min{(U(a,tanzy,...,tan xn))Q—l—Z(sin(ﬂ tanxz;))? | —
i<n

IN
8

|

IN
R
——
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Some NLPs are decidable

» All polynomial NLPs are decidable
by decidability of Reals

» QUADRATIC PROGRAMMING (QP) is decidable over Q

min z'Qr + c'x (P)
Az > b
» DBricks of the proof
> if Q is PSD, [P] € Q
1. remove inactive constr., active are eqn, use to replace vars

2. work out KKT conditions, they are linear in rational
coefficients

3. = solution is rational

» 3 polytime IPM for solving P [Renegar&Shub 1992]

» unbounded case treated in [Vavasis 1990]
» = [QP decision version| is in NP
= QP is decidable over Q
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Rationals

» |Robinson 1949|:
RT (1st ord. theory over Q) is undecidable

» |Pheidas 2000]: cuistential theory of O (ERT) is open
can we decide whether p(z) = 0 has solutions in Q¢ Boh!

» |Matyiasevich 1993|:
» equivalence between DEH and ERT

» DEH = [DE restricted to homogeneous polynomials|

» but we don’t know whether DEH is decidable

Note that Diophantus solved DE in positive rationals
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Worst-case algorithmic complexity

» Computational complexity theory:
worst-case time/space taken by an algorithm to complete

» Given an algorithm A4

» c.g. to determine whether a graph G = (V| E) is
connected or not

» input: Gj size of input: v = |V| + |E]
» How does cpu(A) vary with v7?

>
>
4
4
4

>

cpu(A) = ()( og 1/) logarithmic (sublinear)

cpu(A) =

O(log" v) for fixed k: polylogarithmic
O(V) linear
= O(v?): quadratic
= O(v*) for fixed k: polytime

O(2"): exponential

» polytime <> efficient

» exponential < inefficient
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The “O(-)” calculus

Vi,g: N=>N f<og <+ dIneNWw>n(f(v)<g))

V¢g:N—-N O(g) = {f:N=>N|3ICeN(f<oCq}

Vf9:N=N O(f) <O(g) < [feO(g) N ggO(f)
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Are polytime algorithms “efficient”?

» Why are polynomials special?
» Many different variants of Turing Machines (TM)
more tapes, more heads, . ..

» Polytime is tnvariant to all definitions of TM
e.g. TM with coly many tapes: simulate with a single tape
running along diagonals, similarly to dovetailing

» In practice, O(v)-O(1?) is an acceptable range covering
most practically useful efficient algorithms

» Many exponential algorithms are also usable in
practice for limited sizes

» Sublinear algorithms aren’t allowed to read their whole
input!
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Instances and problems

v

An input to an algorithm A: instance

Collection of all inputs for A: problem

in general, a problem P is an infinite set of instances

A solves P if A solves every instance of P
» There are problems which no algorithm can solve
» A problem can be solved by different algorithms

Given P find complexity of best alg. A solving P

rr<11n{cpu(.A) | A solves P}

We (generally) don’t know how to search over all algs for P

sometimes we can find complezity bounds
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Complexity classes: P, NP

» Focus on decision problems
» If 3 polytime algorithm for P, then P € [P

» If there is a polytime checkable certificate for all YES
instances of P, then P €

e.g. problem: shortest s—t path with fewer than K edges in a
graph; path itself is a certificate: it can be checked whether it has
fewer than K edges in time proportional to K, which is smaller
than the size of the graph

» No-one knows whether P = NP: we think not
NO instances of some probs in NP don’t seem to have polytime
certificates

» NP includes problems for which we don’t think a
polytime algorithm exists
e.g. k-CLIQUE, SUBSET-SUM, KNAPSACK, HAMILTONIAN
CYCLE, SAT, ...
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Equivalent definition of NP

> ‘NP:

problems solved by nondeterministic polytime TM‘

O

N /.
”

Ca

wmasnmxf',/'%&,l- —FO—>0. ... (loaP)
)O—‘QO"_?N /yk
\‘>®——~> @/?/0—?% /’70—'7;(

~ - S~
YES S 0—>0—>@

NO

nondeterministic: follow all paths concurrently, stop at first YES

» Equivalence with previous definition

| 2

(=) Assume 3 polysized certificate for every YES instance.
Nondeterministic polytime algorithm: concurrently explore all
possible polysized certificates, call verification oracle for each,
determine YES/NO.

(«<=) Run nondeterministic polytime algorithm: trace will look like a
tree (branchings at tests, loops unrolled) with polytime depth. If YES
there will be a terminating polysized sequence of steps from start to
termination, serving as a polysized certificate
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Subsection 1

Some combinatorial problems in NP
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k-STABLE

» Instance: (G = (V,E), k)
» Problem: determine if G has a stable set of size k

P A subset U C V is stable if G[U] is empty
P For G = (V,E) and U C V, the subgraph of G induced by U is

GU] = (U, {{u,v} € E|u,v € U})

» G=(V,E)is empty if E=0

6] ®

P 1-sTABLE? YES (every graph with > 1 vertices is YES)
» 2-sTABLE? YES (every non-complete graph is YES)

» 3-sTaBLE? NO
polytime certificate for the absence of a k-stable?

94 /413



MP formulations for STABLE

Variables? Objective? Constraints?
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MP formulations for STABLE

Variables? Objective? Constraints?

1 7 € k-stable

» Decision variables: Vj € V' z; = { 0 otherwise
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MP formulations for STABLE

Variables? Objective? Constraints?

1 7 € k-stable

» Decision variables: Vj € V' z; = { 0 otherwise

» 1o objective (pure feasibility MP)
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MP formulations for STABLE

Variables? Objective? Constraints?

1 7 € k-stable

» Decision variables: Vj € V' z; = { 0 otherwise

» 1o objective (pure feasibility MP)
P> “if {i,j} € E, then z; =1 or x; = 1 or neither but not both”
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MP formulations for STABLE

Variables? Objective? Constraints?

1 7 € k-stable

» Decision variables: Vj € V' z; = { 0 otherwise

» 1o objective (pure feasibility MP)
P> “if {i,j} € E, then z; =1 or x; = 1 or neither but not both”

V{i,j} € E i t+x; <1
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MP formulations for STABLE

Variables? Objective? Constraints?

1 7 € k-stable

» Decision variables: Vj € V' z; = { 0 otherwise

» 1o objective (pure feasibility MP)
P> “if {i,j} € E, then z; =1 or x; = 1 or neither but not both”

V{i,j} € E i t+x; <1

» “da k-stable”
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MP formulations for STABLE

Variables? Objective? Constraints?

1 7 € k-stable

» Decision variables: Vj € V' z; = { 0 otherwise

» 1o objective (pure feasibility MP)
P> “if {i,j} € E, then z; =1 or x; = 1 or neither but not both”

V{i,j} € E i t+x; <1

» “da k-stable”

in:k

1%
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MP formulations for STABLE

» Pure feasibility problem:

eV
r € {0,1}"
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MP formulations for STABLE

» Pure feasibility problem:

eV
r € {0,1}"

» MAX STABLE:
max ~ y. ¥
iev
Vi, j} € £ x+ux;
T

m IA

1
{0, 13"
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k-CLIQUE
» Instance: (G = (V, E), k)
» Problem: determine whether G has a clique of size k

6] ®

» 1-CLIQUE? YES (every graph with > 1 vertices is YES)

» 2-CLIQUE? YES (every non-empty graph is YES)

» 3-CLIQUE? YES (triangle {1,2,4} is a certificate)
certificate can be checked in O(k*) < O(n?) (k fized)

» > 4-CcLIQUE? NO

polytime certificate for the absence of a k-clique?
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MP formulations for CLIQUE

Variables? Objective? Constraints?
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MP formulations for CLIQUE
Variables? Objective? Constraints?
1 j € k-clique

» Decision variables: Vj € V. x; = { 0 otherwise
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MP formulations for CLIQUE
Variables? Objective? Constraints?
1 j € k-clique

» Decision variables: Vj € V. x; = { 0 otherwise

» 1o objective (pure feasibility MP)
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MP formulations for CLIQUE
Variables? Objective? Constraints?
.. . ) 1 7 € k-clique
» Decision variables: Vj € V' z; = { 0 f)therwis((:el
» 1o objective (pure feasibility MP)
» Constraints:
» “da k-clique”

inZk

%
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MP formulations for CLIQUE
Variables? Objective? Constraints?
1 j € k-clique

» Decision variables: Vj € V. x; = { 0 otherwise

» 1o objective (pure feasibility MP)
» Constraints:
» “Ja k-clique”

inZk

eV
» for G = (V,E), the complement graph G = (V, E) has
B = {{u,0} | {uv} ¢ F}

> ’Prop.: C clique in G < C' stable in G"
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MP formulations for CLIQUE
Variables? Objective? Constraints?
1 j € k-clique

» Decision variables: Vj € V. x; = { 0 otherwise

» 1o objective (pure feasibility MP)
» Constraints:
» “Ja k-clique”

inZk

eV
» for G = (V,E), the complement graph G = (V, E) has
B = {{u,0} | {uv} ¢ F}

> ’Prop.: C clique in G < C' stable in G"

» = use constraints for k-stable in G:
“if {i,j} € E then =(z; = z; = 1)”

V{Z,j}gE :Ci—i-m'jSl
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MP formulations for CLIQUE

» Pure feasibility problem:

eV
z € {0,1}"
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MP formulations for CLIQUE

» Pure feasibility problem:

eV
z € {0,1}"

» MAX CLIQUE:

max ~ y. ¥
iev

T

m INA

1
{0, 13"
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AMPL code for MAX CLIQUE

File clique.mod

# clique.mod

param n integer, > 0;

set V := 1..n;

set E within {V,V};

var x{V} binary;

maximize clique_card: sum{j in V} x[j];

subject to notstable{i in V, j in V : i<j and (i,j) not in E}:
x[1] + x[j] <= 1;

File clique.dat
# clique.dat

param n := 5;
set E := (1,2) (1,4) (2,4) (2,5) (3,5);
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AMPL code for MAX CLIQUE

File clique.run:

# clique.run

model clique.mod;

data clique.dat;

option solver cplex;

solve;

printf "C =";

for {j in V : x[j] > 0} {
printf " %d", j;

}

printf "\n";

Run with “ampl clique.run” on command line

CPLEX 12.8.0.0: optimal integer solution; objective 3
0 MIP simplex iterations

0 branch-and-bound nodes

C=1214

Code and test the formulation for MAX STABLE
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SUBSET-SUM

» Instance: list a = (ay,...,a,) € N and b € N

» Problem: is there J C {1,...,n} such that ) a; = b?
jes

> a=(1,1,1,4,5), b=3: YES with J = {1,2,3}
all b € {0,...,12} yield YES instances

> a=(3,6,9,12), b= 20: NO
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MP formulations for SUBSET-SUM

Variables? Objective? Constraints?
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MP formulations for SUBSET-SUM

Variables? Objective? Constraints?

» Pure feasibility problem:

Zaj:r;j = b }

i<n
zr € {0,1}"
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AMPL code for SUBSET-SUM

File subsetsum.mod

# subsetsum.mod

param n integer, > O;

set N := 1..n;

param a{N} integer, >= 0;

param b integer, >= 0;

var x{N} binary;

subject to subsetsum: sum{j in N} a[jl*x[j] = b;
File subsetsum.dat

# subsetsum.dat

param n := 5;

param a :=
1

g wN
(o I S e

>

param b := 3;

Code your own subsetsum.run!
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KNAPSACK

» Instance: c,w € N*, K € N
» Problem:

find J C{1,...,n} s.t. ¢(J) < K and w(J) is maximum
> notation: (J) = EJ ¢j (similarly for w(J))

» natively expressed as an optimization problem

> n=3c=(56,7),w=(34,5), K=11

» ¢(J) <11 feasible for J in &, {j},{1,2}
> w(@) = 0,w({1,2}) = 3 +4 = T,uw({j}) <5 for j < 3
= Jmax = {1,2}

» K = 4: trivial solution (J = @)
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MP formulation for KNAPSACK

Variables? Objective? Constraints?
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MP formulation for KNAPSACK

Variables? Objective? Constraints?

max Z’Ujj$]’
Jj<n
ey <K
Ji<n

z € {0,1}"
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AMPL code for KNAPSACK
File knapsack.mod

# knapsack.mod

param n integer, > O;

set N := 1..n;

param c{N} integer;

param w{N} integer;

param K integer, >= 0;

var x{N} binary;

maximize value: sum{j in N} w[jl*x[j];

subject to knapsack: sum{j in N} c[jl*x[j] <= K;

File knapsack.dat

# knapsack.dat
param n := 3;
param : c W :=
1 53

2 64

3 75
param K := 11;

Code your own knapsack.run!
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HAMILTONIAN CYCLE

» Instance: G = (V, E)
» Problem: does G have a Hamiltonian cycle?

cycle covering every v € V exactly once

NO YES (cert. 1 -2 —>5—>3—>4—1)

G) : G) :
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MP formulation for HAMILTONIAN CYCLE

Variables? Objective? Constraints?
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MP formulation for HAMILTONIAN CYCLE

Variables? Objective? Constraints?

jev
{i,j}EE

Viev > ay; =1 (3)
IS
{i,j}€E

Vo SCV inj > 1 (4)

i€S,jZS
{i.j}eE

WARNING: Eq. (4) is a second order statement!
quantified over sets

yields exponentially large set of constraints
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AMPL code for HAMILTONIAN CYCLE

File hamiltonian.mod

# hamiltonian.mod

param n integer, > 0;

set V default 1..n, ordered;

set E within {V,V};

set A := E union {i in V, j in V : (j,i) in E};

# index set for nontrivial subsets of V

set PV := 1..2%%n-2;

# nontrivial subsets of V

set S{k in PV} := {i in V: (k div 2**(ord(i)-1)) mod 2 = 1};

var x{A} binary;

subject to successor{i in V} :
sum{j in V : (i,j) in A} x[i,j] =

subject to predecessor{j in V} :
sum{i in V : (i,j) in A} x[i,j] = 1;

I
e

# breaking non-hamiltonian cycles
subject to breakcycles{k in PV}:

sum{i in S[k], j in V diff S[k]: (i,j) in A} x[i,j] >= 1;
Code your own .dat and .run files!

110 /413



SATISFIABILITY (SAT)

» Instance: boolean logic sentence f in CNF
A VG
i<m jeC;

where ¢; € {z;,z;} for j <n
» Problem: is there ¢ : © — {0,1}" s.t. ¢(f) =17

> f=(x1 VI V) A (T Vag)
r1 =x2 =1, x3 = 0 is a YES certificate
> f=(x1 V) A(T1VIg) A(Z1 V) Az VIo)

\ o [z=01) [2=(0,0[ = (1,0) [ =(0,1) |
‘ false Co 1 Cs Cy ‘
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MP formulation for SAT

Variables? Objective? Constraints?
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MP formulation for SAT

Variables? Objective? Constraints?

Algorithm p to generate MP from given SAT sentence A \/ ¢;:
i<mjeC,;
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MP formulation for SAT

Variables? Objective? Constraints?

Algorithm p to generate MP from given SAT sentence A \/ ¢;:
i<mjeC,;

» Literals ¢; € {x;,z;}: decision variables in {0, 1}
X if gj €

J

» Clauses I'; = /.. {;: constraints

JeC; *I

pr) D ) =1

JeC;

» Conjunction: feasibility-only ILP
p(AT) — Vi<m pIy)
i
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MP formulation for SAT

>

‘ Prop.: sAT instance ¢ is YES iff ILP instance p(q) is YES ‘

» Proof: Let L = (¢},...,¢) be a solution of SAT. Then
v* = (z7,..., 1) where x5 = 1iff /), = x; = true and

x; =0 iff £, = 7; = true is a feasible solution of ILP
(satisfies each clause constraint by definition of p).

Conversely: if x solves ILP, then form solution L of
SAT by mapping z7 = 1 to true and 27 = 0 to false,
result follows again by defn of p.
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AMPL code for SAT?

Using p we can only obtain flat formulations

Example: file sat.run (flat formulation) for instance
(1 V 2y Vxg) A (T1V x2)

# sat.run

var x{1..3} binary;

subject to conl: x[1] + (1-x[2]) + x[3] >= 1;
subject to con2: (1-x[1])+ x[2] >= 1;

option solver cplex;

solve;

display x, solve_result;
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Subsection 2

NP-hardness
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NP-Hardness

Do hard problems exist? Depends on P # NP
Next best thing: define hardest problem in NP

» Defn.: Problem P is NP-hard if VQ € NP 3 polytime alg. pg:
q€Q — polq) € Pwith ¢ YES iff po(q) YES

pq : Q — P is called a polynomial reduction from @Q to P

» Prop.: P is hardest for NP
1. run best alg. for P on pg(q), get answer
a € {YES,NO}
2. return « as answer for ¢
3. so () cannot be harder than P
4. V@ € NP = no problem in NP is harder than P

If P is in NP and is NP-hard, it is called NP-complete

vy

vy

Reduction: “model” Q using “language” of P
» Every problem in NP reduces to SAT [Cook 1971]
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Cook’s theorem

Theorem 1: If a set S of strings is
accepted by some nondeterministic Turing
machine within polynomial time, then S
is P-reducible to {DNF tautologies}.

Boolean decision variables store TM dy- Definition of TM dynamics in CNF

By asserts that at time t one and
namsics

Proposition symbols:

only one square is scanned:

Bt = (sl,t v Sz,t VoLio. v ST,t) &
Pl for 1sisp, 1ss,teT.
st > ’ [ & (8; ,v1s, )]
i i i 1<i< j<T it .t
PS ¢ 1s true iff tape square number s J
s
at step t contains the symbol oy . GE ; asserts
; 5 )
Q; for 1s<isr, 1<tsT. Qt is that if at time t the machine is in
: N fe s tat : i s then at
true iff at step t the machine is in state q; scanning SYmbo¥ 7 N e
time t + 1 the machine is in state Qs
state q;. where qy is the state given by the
Ss t for 1s<s,t<sT is true iff at transition function for M.
-S,
time t square number s is scanned t

T N N
k
G, .= & (1Q; v1s vard vl
by the tape head. 1,] s=1 t s,t s,t t+1

Description of a dynamical system using a declarative program-
ming language (SAT) — what MP is all about!
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The MP version of Cook’s theorem

Thm.
’ Any problem P in NP can be polynomially reduced to a MILP ‘
Proof

Since P € NP, every YES instance m € P must have a polynomial-time

(say p"(
with length bounded by a polynomial (say ¢f(|r|)). This means that

|7|)) verifiable certificate ¢, (wlog assume it is a {0,1} string),

a deterministic TM Mp verifying ¢, will reach termination in polytime
pf (). Let k be such that p”, ¢F € O(n”). We define a MILP on binary
variables holding the content of the tape of Mp as it changes according
to the transition function of Mp, such that the tape contains: (i) “NO”
in the first cell, and 7 in the subsequent || cells, at the initial step k& = 0;
(i1) “YES” in the first cell at the final step ¥ = n”. Then the MILP is
feasible iff 7 is a YES instance of P. This provides a polytime reduction
from P to MILP.
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Cook’s theorem: sets and params

v

Model a deterministic TM dynamics using MILP

> Mp is a 5-tuple (Q, %, s, F,0):
states, alphabet, initial, final, transition

» Transition function § : Q N F x ¥ — Q x ¥ x {—1,1}
d: state £, symbol j — state £/, symbol j', direction d

» Mp polytime: terminates in n” , where n = |r|

» [ndex sets:

states @), characters ¥, tape cells I, steps K

» Parameters:
initial tape string (NO, )
YES written in cell 1 when Mp in final state
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Cook’s theorem: decision vars

> Viel,jeX ke K

tije = 1 iff tape cell i contains symbol j at step k
> Viel, ke K

hir = 1 iff head is at tape cell © at step k

> VieQ ke K
qor = 1 off Mp is in state ¢ at step k
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Cook’s theorem: constraints (informal)

1. Initialization:

1.1 initial string (NO, ) on tape at step k =0
1.2 Mp in initial state s at step k =0
1.3 initial head position on cell i =0 at k =0

2. FExecution:

2.1 Vi, k: cell ¢ has exactly one symbol j at step &

2.2 Vk: Mp is in exactly one state ¢

2.3 Vk: tape head Mp is at exactly one cell ¢

2.4 Vi, k: if cell i changes symbol between steps k and
k + 1, head must be on cell i at step k

2.5 Vk,i,j: cell ¢ and symbol j in state k lead to cells,
symbol and states given by transition function ¢

3.1 Mp terminates at step k < n*¥ w/YES written in cell 1
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Cook’s theorem: constraints

1. Initialization:
1.1 (hvoo=D)ANM>1 ., 0=1)
1.2 gs0=1
1.3 hoo=1
2. FExecution:
2.1 Vi, k Zj L =1
2.2 Vk ZZ qr. =1
2.3 Vk Z@ hir. =1
24 Yi,j# 7 k<n® tnt o < hig

2.5 Vi, 0,0, 4,7 k,dst. (¢,5,d) = 8L, 7)
Pik ek Lije = Pigd k41 Qe g1 ti o ks

3. Termination:

3.1 (tivess =1)A ( > e = 1)
fEFk
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Cook’s theorem: linearization

» MP in previous slide: MINLP not MILP

» Fortet’s inequalities for products of binary vars:
For z,y € {0,1} and z € [0, 1]
z=ayez<rNz<yANz>x+y—1

1

0.8;

0.6

» MILP is feasibility only
» MILP has polynomial size
» = MILP is NP-hard
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Reduction graph

After Cook’s theorem

To prove NP-hardness of a new problem P, pick a known NP-hard
problem ) that “looks similar enough” to P and find a polynomial
reduction pg from @) to P [Karp 1972]

Why it works: suppose P easier than @, solve Q by calling

Algp o pg, conclude @ as easy as P, contradiction since () hardest in

NP
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Example of polynomial reduction
» STABLE: given G = (V, E) and k € N, does it contain a stable
set of size k7
» Assuming k-CLIQUE is NP-complete, reduce from it

» Given instance (G, k) of CLIQUE consider the complement
graph (computable in polytime)

G=WV,E={{i,j}|i,j e VA{ij}&E})

>

’Prop.: G has a clique of size k iff G has a stable set of size k ‘

» p(G) = G a polynomial reduction CLIQUE — STABLE
» = STABLE is NP-hard
» STABLE is also in NP
U C V is a stable set iff E(G[U]) = @ (polytime verification)
» = STABLE is NP-complete
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Subsection 3

Complexity of solving MP formulations
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LP is

\{

in P

Khachian’s algorithm (Ellipsoid method)
Karmarkar’s algorithm

IPM with crossover
IPM: penalize x > 0 by —flog(x), polysized sequence of subproblems
crossover: polytime number of simplex pivots get to opt

No known pivot rule makes simplex alg. polytime!

greedy pivot has exponential complexity on Klee-Minty cube
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(Recall) MILP is NP-hard

» saT NP-hard by Cook’s theorem, reduce from SAT

AV 6
i<m jeC;
where ¢; is either z; or z; = —x;
» Polynomial reduction p
SAT | x; & VoA
MILP | z; 1-z; + >1

» E.g. pmaps (x; V x2) A (T2 V x3) to

min{0 | z1 + 25 > 1 Axg — 20 > 0Ax € {0,1}%}

» SAT is YES iff MILP is feasible
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Complexity of Quadratic Programming (QP)

min ' Qr + c'x
Axr > b

» Quadratic obj, linear constrs, continuous vars

» Many applications (e.g. portfolio selection)

» [f () has at least one negative eigenvalue, NP-hard
» Decision problem: “is the min. obj. fun. value < 07”

» If ) PSD then objective is convex, problem is in P

KKT conditions become linear system, data in Q = soln in Q
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QP is NP-hard

» By reduction from SAT, let o be an instance of SAT
» (o, x) > 1: linear constraints of (SAT — MILP) reduction
» Consider QP subclass

min f(z) = > z;(1 —x;)
ji<n
plo,x) > 1 (f)
0<zr<1
» Claim: o is YES iff val({)= opt. obj. fun. val. of () =0
» Proof:
» assume o YES with soln. z*, then z* € {0,1}", hence
f(z*) =0, since f(x) > 0 for all z, val(f) =0
» assume o NO, suppose val(}) = 0, then (}) feasible
with soln. 2/, since f(a’) =0 then 2’ € {0, 1}, feasible

in SAT hence o is YES, contradiction
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Box-constrained QP is NP-hard

min  2'Qr + c'x
zE€[zl,2V]

» Add surplus vars v to SAT—MILP constraints:
ployz)—1—v=0
(denote by Vi < m (a; z — b; —v; = 0))
» Consider special QP subclass
min Y x;(1—x;) + X (a] . — by — v;)? }

i<n i<m
0<z<1,v>0

» Issue: v not bounded above

» Reduce from 3SAT, get < 3 literals per clause
= can consider 0 < v <2
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cQKP is NP-hard

» conTINUOUS QUADRATIC KNAPSACK ProBLEM (cQKP)

min f(z)=2'Qx + c'x
2 4Ty =
j<n
z € [0,1]7,

» Reduction from SUBSET-SUM

given list @ € Q™ and ~, is there J C {1

soeon}ste Y a; =47
jeJ
reduce to cQKP subclass with f(z) = > x;(1 — x;)

J
» o is a YES instance of SUBSET-SUM
> et m; =1liff jeJ, :r;‘ = 0 otherwise
P feasible by construction
»  f is non-negative on [0,1]” and f(z*) = 0: optimum
» o is a NO instance of SUBSET-SUM
» suppose opt(cQKP) = z* with f(z*) =0
P then z* € {0,1}" because f(z*) =0

P feasibility of z* = J = supp(z*) solves o, contradiction = f(z*) > 0
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QP on a simplex is NP-hard

min  f(z)=2"Qx + c'x

oy o= 1
Vi<n z; > 0

» Reduce MAX CLIQUE to subclass with f(z)

— Z LLL]
{i,j}€E

Motzkin-Straus formulation (MSF):
max{ Z ;% | ij =1Az >0}
{ij}eE jEV
» Theorem [Motzkin& Straus 1964]
Let C be the maximum clique of the instance G = (V, E) of max

CLIQUE

Jz* € opt (MSF) with f* = f(z*) =1 —

= ifjeC
j ) w@ U
eV { 0 otherwise

_1
2w(G)

» w(G): size of max clique in G
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Proof of the Motzkin-Straus theorem

e arg(zmax1 Y. wiwy) st |C={j €V |z} >0} smallest (1)
J;;joz ijEE

1. ‘C S a clique‘
P Suppose 1,2 € C but {1,2} € E, then z3, 25 > 0, can perturb z*
by € € [—x}, 23], get a° = (x7 + €, 25 — €, x5, 25, ...), feasible
w.r.t. simplex and bound constraints

» {1,2} ¢ F = x129 does not appear in f(z) = f(z¢) depends at
worst linearly on €; by local optimality of x*, f achieves max for
e = 0, in interior of its range = f(z€) constant w.r.t. e.
Hence f(z€) is globally optimal for all e

P setting e = —x} or = z} yields global optima with more zero
components than a*, against assumption (1), hence
{1,2} € E[C]; by relabeling C is a clique
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Proof of the Motzkin-Straus theorem

x* € arg( max Y. wiwg) st |C={j €V |zj >0} smallest (i)
1;”;]'; ijEE

2. [[C] = (@)
> square the simplex constraint Zj zj =1, get
P(z) = Zw?+2 Z rir; =1

Jjev i<jEV
P by construction x;‘ =0forjgC =

Ya) = (@) +2 Y afef =) (¢)° +2f(z") =1

jec i<jeC jec

P (z) =1 for all feasible z, so f(z) achieves maximum when ngc.(w;)Q is

— 1
[e]

> again by simplex constraint

minimum, i.e. :L‘;f forall j € C

1 1 1
2f(x*)=1-> ()2 =1-|C| =5 =1- —<1— ——
j; ’ |C? 1€l w(@)

so f(z*) attains max (% — ﬁ) when |C] =w(G) = VjeCuxj = ﬁ
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Copositive programming

>

>

\4

STQP: minz"Qu: >, 2 = 1Az >0
NP-hard by Motzkin-Straus
Linearize: X = zx'
replace x;x; by X;; and add constraints X;; = x;x;

_ T _
Define Ae B = tr(A B) = Zi,j AijBij
write StQP (linearized) objective as min () e X
Let C ={X | X =z2" Az >0}, C = conv(O)
=16 (ijj)zz P& leX =1
STQP =minQ e X :1e X =1AX e’
linear obj. = optima attained at extrema of feas. set
= can replace C' by its convexr hull C'

C is a completely positive cone
Dual = maxy: Q —yl € C* = {A|Vx >0 (2" Az > 0)}
C* is a copositive cone

= Pair of NP-hard ¢NLPs!
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An exercise and a project idea

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,0008 I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5%
return per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[What are the decision varis, objective, constraints? What data are missing?|

Project idea 1: Consider the MILP formulation for MAX CLIQUE
and the Motzkin-Straus formulation. Can the latter have multiple
global optima? If so, do they all characterize a maximum clique?
What do local optima characterize? Pursue a computational study to
answer these questions, then check [Gibbons et al., Mathematics of
Operations Research, 22:754-768, 1997| and [Pelillo & Jagota,

J. Artif. Neural Networks, 2:411-420, 1995|
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A gem in Distance Geometry

» Heron’s theorem

» Heron lived around
year 0

» Hung out at

Alexandria’s library

A= /s(s—a)(s—b)(s—c)

» A = area of triangle
> s=1(a+b+c)

Useful to measure areas of agricultural land
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Heronjs theorem: PrOOf [M. Edwards, high school student, 2007]
A.2a+28+2yv=2n=a+PB+y=m

2o}

r4+ix = wue
r+iy = wve
r+iz = we”

= (r+iz)(r+iy)(r+iz) = (uvw)e @b+ =
ww e = —uvw € R

= Im((r 4+ iz)(r + iy)(r +1i2)) =0

S A g ==
B.s=1(a+b+c)=12z+2y+22)=a+y+=
s—a = Tz+yYy+z—-y—z=2
s—b = z+yt+tz—z—2=y
s—¢c = xHYtz—r-Yy==z
1 b
= Azi(ra—i-rb—l—rc):r%:rs:\/s(s—a)(s—b)(s—c)
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Subsection 1

The universal isometric embedding
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Representing metric spaces in R"

» Given metric space (X, d) with dist. matrix (DM)
D = (d;;), embed X in some R so it has the same DM

» Consider i-th row z; = (di1, ..., d,) of D

» Embed i € X by vector UP (i) = x; € R"
define UP : {1,...,n} = R"s.t. UP(i) = x;

» Thm.: (UP, () is a metric space with DM D

Pe. Vi, j <nllz; — xjllco = dij
» UP is called Universal Isometric Embedding (UIE)
» Practical issue: embedding is high-dimensional (R™)
[Kuratowski 1935|
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Proof

» Consider 7, j € X with distance d(7, ) = d;;
» Then

zi — 2jllc = f}clgf\dik —dj| < max |dij| = dij

ineq. < above from triangular inequalities in metric space:

Vk di < (l,;j + djk. A djk < d,;j + d;p
= dip —djp <diy N djp —dip < dyj
= |dix — djx| < dij

If valid Vk then valid for max;

» max |d;; — dji| over k < n achieved when k € {i,j}
= |l — il = dy
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Subsection 2

Dimension reduction
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Schoenberg’s theorem

>

[I. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la
définition aziomatique d’une classe d’espaces distanciés
vectoriellement applicable sur l’espace de Hilbert”, Ann. Math.,
1935]

Question: Given n X n symmetric matrix D, what are necessary
and sufficient conditions s.t. D is a Euclidean DM (EDM)
corresponding to n points z1,...,x, € R¥ with K minimum?

Necessary and sufficient conditions for an EDM
Thm.

D = (dij) is an EDM iff §(d3; +d3; —d3; |2 < i,j <n)is
PSD (of rank K)

Yields important result in data science:
Classic Multidimensional Scaling
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Gram matrices and EDMs

v

Realization: n x K matrix oz = (21,...,2,) C RE
» Gram matrix of z: G = xx' = (z; - x;)
Lemma: (i) G = 0; (i) each M = 0 is a Gram matriz of some x

» Theorem: given rlz x, Gram matriz G and EDM D satisfy
1 2
G=—3JD (5

» In the theorem, D? = (d?) and

1]
1 1 _1
n n n
144T _% 1_% _%
1 1 1
“w Th L=

P This is a variant of Schoenberg’s theorem
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Multidimensional scaling (MDS)

» Often get approximate EDMs D from raw data
(i.e. matrices that are not EDMs, but they are “not too far”)

(they measure dissimilarities, discrepancies, differences)
> G = —3JD?J is an approximate Gram matrix
» Approximate Gram = spectral decomposition PAPT has A Z0

» Let A be a PSD diagonal matrix closest to A:
A obtained from A by zeroing negative components

» 1 = Pv/A is an “approximate realization” of D

» Denote x = MDS(D)
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Classic MDS: Main result

1. Prove lemma: matrix is Gram iff it is PSD

2. Prove theorem: G = —%JDQJ
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Proof of lemma

» Gram C PSD

» zis an n x K real matrix
» G =z its Gram matrix
» For each y € R™ we have

yGy' =y(za" )y = (ya)(z'y") = (yx)(yz)" = [lyz]3 >0

>» =G~ 0
» PSD C Gram

> Let G=0benxn
» Spectral decomposition: G = PAPT
(P orthogonal, A > 0 diagonal)

> A>0=VAecR>"
> G =PAPT = (PVA)(VA PT) = (PVA)(PVA)

» Let z = P\F, then G is the Gram matrix of x
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Proof of theorem (1/2)

> Let G =zz', translate x so that centroid 3. z; =0

n &~j
> Expand: d?j = ||z — 213 = (@i — xj)(zi — x5) = zim; + Tjz; — 27505 (%)
> Aim at “inverting” (x) to express x;x; in function of dfj

> Sum () over i: y_, d?j =3, Tt +nxjry — 2055 15
» Similarly for j and divide by n, get:

1 1
;Zd?j = ;Zﬂcm-&-m_jfcj 6

0 by zero centroid

T i<n " i<n
1 1
2
= dy = it -y wr (3)
" j<n " j<n

» Sum (}) over j, get:

%dej :n%Zmixi +ijxj = 22%‘%‘
ij i j i

v

Divide by n, get:

1 2
EONEED ST
7

2%
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Proof of theorem (2/2)

» Rearrange (x), (1), (f) as follows:

2&?2‘1?]‘ = ziT; +T;T; — d?j (5)
1

Tors = 6

XT;x; " Z ZTjT g ( )

Tz = Zd me ™
i
»> Replace LHS of Eq. (6)-(7) in RHS of Eq. (5), get
1 2 1 2 2 _ 2
2wiwj = — D di+ = > diy —dly = =
™% "% "%

> By (xx) replace 2 Zm z; with =% Zd”, get

1 2 2 2 1 2
2xiwy = o Z(dik +di;) —di; — 2 Zdhk
% ik

which expresses x;z; in function of D
» Finally, show RHS of (§) is (i,5)-th entry of —JD?J
See lecture notes, Thm. 10.3.5
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Principal Component Analysis (PCA)

» Given an approximate EDM D
» find 2 = MDS(D)

» However, you want xr = P\/K in K dimensions
but rank(A) > K

» Only keep K largest components of A
zero the rest

» Get realization in desired space
» Denote x = PCA(D, K)
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Example 1/3
Mathematical genealogy skeleton

Kastrer
Euler
i Plaff
Thikaut / mge  Laplace
Gudertmar  Dirlisen Gauﬂﬂ;‘_ 2 . Fowurier Poissor
Yrm '
WeierstraB Jacobi . Dirichlet
G IL 3 p
Kovalevsleaya g Lipschitz
Kleir
Nocther

- T
Livbermars  Furtwiansgler

Hilbert Taussly -Tovt
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Example 2/3

A partial view

‘ Euler Thibaut Pfaff Lagrange Laplace Moébius Gudermann Dirksen
Kastner 10 1 1 9 8 2 2 2
Euler 11 9 1 3 10 12 12
Thibaut 2 10 10 3 1 1
Pfaff 8 8 1 3 3
Lagrange 2 9 11 11
Laplace 9 11 11
Mobius 4 4
Gudermann 2
Dirksen

o 10 1 1 9 8 2 2 2 2

100 0 11 9 1 3 10 12 12 8

1 11 0 2 10 10 3 1 1 3

1 9 2 0 8 8 1 3 3 1

D= 9 1 10 8 O 2 9 11 11 7

o 8 3 10 8 2 0 9 11 11 7

2 10 3 1 9 9 0 4 4 2

2 12 1 3 11 11 4 0 2 4

2 12 1 3 11 11 4 2 0 4

2 8 3 1 7 7 2 4 4 0

154 /413



Example 3/3

In 2D

aaaaa

nnnnnnnnnnnn
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Subsection 3

Dealing with incomplete metrics
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Partial metrics

» If your metric space is missing some distances
» Get incomplete EDM D

» Cannot define vectors UP (i) in UIE

» Note: D defines a graph

—_
H»—no»—n
—_

o =

» Complete graph with shortest path (SP) distances:
d24 =2
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Floyd-Warshall algorithm 1/2

» Given n x n partial matrix D computes
all shortest path lengths

» For each triplet z,u,v of vertices in the graph, test:
when going u — v, is it convenient to pass through z ¢

% P.o

Puv

» If so, then change the path length

» Complete missing entries d,, in D shortest path
lengths u — v

» Denote D = FloydWarshall(D)
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Floyd-Warshall algorithm 2/2
# initialization
for u <n,v<ndo
if d,, =7 then
Ay — 00
end if
end for
# main loop
for z <n do
for u < n do
for v < n do
if d,, > d,. + d,, then
duv — duz + dzv
end if
end for
end for
end for
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Subsection 4

The Isomap heuristic
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[somap embedding in R¥

» Given a partial EDM D
1. D = FloydWarshall(D)
2. x = PCA(D,K)

» Intuition of why it works well:

» Denote x = Isomap(D, K)

[Tenenbaum et al., Science, 2000]
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Subsection 5

Distance geometry problem
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The Distance Geometry Problem (DGP)

Giwen K € N and G = (V,E,d) withd : E — Ry,
find x .V — RE s.t.

Wi jt €E |l — 3 = dj

4 1

Given a weighted graph @ , draw it so edges are drawn as

{ Ne=74E '
segments with lengths = weights \‘x N | '\?
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Some applications

clock synchronization (K = 1)

sensor network localization (K = 2)

molecular structure from distance data (K = 3)
autonomous underwater vehicles (K = 3)

EDM completion (whatever K)

vvyVvyvVvyyvYyy

finding graph embeddings (whatever K)
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Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial
measurements of their time differences

> K=1
» V: timestamps
» {u,v} € F if known time difference between u, v

» d: values of the time differences

‘Usod in time synchronization of distributed networks
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Clock synchronization

5 Atomic clock (S)
16:27

A C S B

16:21 16:23 16:25 16:27 16:29 16:31

| | | | | | | | | | | |
[ I [ [ [ I I [ I [ I |

16:20 16:22 16:24 16:26 16:28 16:30
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Sensor network localization

From |Yemini, Proc. CDSN, 197§]

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using
measurements of the distances between some object pairs

> K =2
» V: (mobile) sensors
» {u,v} € F iff distance between u, v is measured

» d: distance values

Used whenever GPS not viable (e.g. underwater)

dyy X battery consumption in P2P communication betw. u, v
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Sensor network localization
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Molecular structure from distance data

From |Liberti et al., STAM Rev., 2014|

> K=3
> V: atoms
» {u,v} € FE iff distance between u, v is known

» d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely

Distances < 5.5 measured approximately by NMR
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Graph embeddings

Relational knowledge best represented by graphs
We have fast algorithms for clustering vectors

Task: represent a graph in R”

vvyyy

“Graph embeddings” and “distance geometry”:

almost synonyms

v

Used in Natural Language Processing (NLP)
obtain “word vectors” & “sentence vectors”

Project idea 2: create a graph-of-words from a sentence, enrich it
with semantic distances, then use the DG methods in these lectures to
embed the graph in a low-dimensional space; then evaluate sentence
similarity using vector angles
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Complexity

» DGP; withd: F — Q, is in NP

>

>
>
>

vy

if instance YES 3 realization 2 € R"*!

if some component z; € Q translate x so x; € Q
consider some other z;

let £ =|sh. path p:i —j|= Y (=1)*wdy, €Q

{u,v}€ep
for some sy € {0,1}

then z; =x; £ — x; € Q (V5)
= polytime verification of

Vi gy € B |oi—a| = di

» DGPg may not be in NP for K > 1

don’t know how to polytime check |z; — z;||2 = d;; for z ¢ QK
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Hardness

PARTITION s NP-hard
Given a = (a1,...,a,) EN", ITC{1,...,n}st. > a;=> a;?
iel igl

» Reduce PARTITION to DGP; on single-cycle graphs

» a — cycle C
V(C)=A{1,...,n}, E(C)={{1,2},...,{n,1}}

» For i < nlet di,i-i-l = a;
For i =n, let dypt1 = dp1 = ayp,

»
2 4 3
1 ® ® .
e et
3 e 3
5
[Saxe, 1979]
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PARTITION is YES = DGP; i1s YES

» Given: I C {l,...,n}s.t. > a;, =) a
iel il
» Construct: realization z of C in R

1. 21 =0 // start
2. induction step: suppose z; known
ifeel
let x;41 = x; + di,i+1 // go right
else
let x;41 = x; — di,i+1 // go left

» Correctness proof: by the same induction
but careful when v = n: have to show x,1 = 1
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PARTITION is YES = DGP; i1s YES

Proof that xy,41 = 1

()= (@ —2) = > digp1=

icl il
S W
il igl
= diiy1 = Y (zi—mi1) =(2)
igl igl

H=02)= Z(xiﬂ — ;) = Z(fﬂz - Tip1) = Z(%‘H —x;) = 0

iel il i<n
= (Tpt1 —@n) + (@n — 1)+ -+ (23 —22) + (2 —21) = 0
= Tn+1

I
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PARTITION is NO = DGP; 1s NO

» By contradiction: suppose DGP; is YES, z realization of C

» F={{u,v} € E(C) |z, <z},
E(C)NF = {{u,v} € E(C) | xy > x4}

» Trace z1,...,%,: follow edges in F' (—) and in E(C) N\ F (+)

DGP; instance is YES =
T4 1 Ts T3 T2 ST (we —wu) = ST (wu — w0
[ I r' * - ° ® {u,v}eF {u,v}gF
-3 -2 -1 0 1 2 3 Z [Ty — @] = Z |Tyw — zv
- . {u,v}eF {u,v}¢F
duv = dyv
{u,v}eF {u,v}gF

> Let J={i<n|{i,i+1} € F}U{n|{n,1} € F}
- Yu-Ya
icd igJ
» So J solves Partition instance, contradiction
» = DGP is NP-hard, DGP; is NP-complete
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Number of solutions

» (G, K): DGP instance
> X C RE™: set of solutions

» Congruence: composition of translations, rotations,
reflections

» (' = set of congruences in R¥
» x ~ymeans 3p € C (y = px):

distances in = are preserved in y through p
> = if [X| >0, |X]| = 2%
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Number of solutions modulo congruences

» Congruence is an equivalence relation ~ on X
(reflexive, symmetric, transitive)

» Partitions X into equivalence classes
> X=X/~

sets of representatives of equivalence classes
» Focus on |X| rather than |X|
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Rigidity, flexibility and | X|

infeasible < | X| =0

rigid graph < | X| < ¥,

globally rigid graph < | X| =1

flexible graph < | X| = 2%

| X | = Wg: impossible by Milnor’s theorem

vvyyVvyVvyy
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Milnor’s theorem implies | X| # N,

> System .S of polynomial equations of degree 2
Vi <m p’i(xlw "7an) =0

» Let X be the set of z € R™¥ satisfying S

» Number of connected components of X is O(3"¥)
[Milnor 1964]

» Assume | X| is countable; then G cannot be flexible

= each incongruent rlz is in a separate component
= by Milnor’s theorem, there’s finitely many of them
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Examples

vl=1{1,23}

E' = {{u,v} | u < v}

dt=1

V2 =vlu{4a}

E? = E'U{{1,4},{2,4}}

2= 1/\d14=\/§

V3=V2

E? = {{u,u+1}{u < 3}U{1,4}
dt=1

Ty

T4

3

x1

x2

p congruence in R?
= pz valid realization
|X| =1

p reflects x4 wrt 71,72
= pzx valid realization
X =2 (4,9

p rotates z>z3, Tiza by 6
= pz valid realization
|X| is uncountable
O,2,7,=,..)
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Subsection 6

Distance geometry in MP
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DGP formulations and methods

vVvyVvyvVvyvyyvYyy

System of equations

Unconstrained global optimization (GO)
Constrained global optimization

SDP relaxations and their properties
Diagonal dominance

Concentration of measure in SDP
Isomap for DGP
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System of quadratic equations

Hu,v} € B oy —a|* = dy, (8)

Computationally: useless
reformulate using slacks:

min{ Z s | V{u,v} € E |, —z,|* = div—i‘suv} 9)

{uv}erE
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Unconstrained Global Optimization

min Y (o, =@l - d5,)? (10)

{uv}eE

Globally optimal obj. fun. value of (10) is 0 iff x solves (8)

» GO solvers from >15 years ago
» randomly generated protein data: < 50 atoms

» cubic crystallographic grids: < 64 atoms
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Constrained global optimization

> ming, Y. |||z, — 20]|? — d2,| exactly reformulates (8)
{uv}elr
» Relax objective f to concave part, remove constant term,
rewrite min — f as — max f

ming Y. (A2, — [|[zw — 20|13) = 2., 2% — maxy > (|2 — 203

» Reformulate convex part of obj. fun. to convex constraints
V{u,v} € E ||z — 203 < d2,
» Exact reformulation (“push-and-pull”)
max; S e — x|
{uv}eE (11)
Wu,v} € B lzw — vaQ < d%w

Theorem (Activity)
At a glob. opt. x* of a YES instance, all constraints of (11) are active
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Push-and-pull linearization

Linearization of nonlinear terms ||x; — ;3
for all {i,j} € E:

= V{i,j} € E |zl + o5 — 22 - a5 = d;

X = zxal
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Relaxation

X = za'
= X—zz" = 0
(relax) = X—zz" = 0

-
Schur(X,x):(]f 9;() = 0

If 2 does not appear elsewhere = get rid of it (e.g. choose z = 0):

replace Schur(X,z) = 0 by X = 0
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SDP relaxation

» Relaxation:

min F' e X
V{Z,j} =D Xii‘|‘ij—2Xi' = dzzj
X =0

» Note SDP = linear obj. s.t. linear constrs A PSD cone
» DGP linearization/relaxation only defines feasible set
> Note Fle X = tr(FTX) = Z” E]XZ]

» Can we choose a “good” objective function F'7
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Some possible objective functions

>

For protein conformation:
min Z (X + Xjj — 2X;,)
{iitek

With = Chal’lged tO 2 iIl COIlStI‘aiIltS (or max and <)
“push-and-pull” relazation

[Ye, 2003], application to wireless sensors localization
min tr(X)

tr(X) = tr(P7'AP) = tr(P7'PA) = tr(A) = ),

i Ai
= hope to minimize rank

How about “just random”?
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How do you choose?

for want of some better criterion. ..

TEST!

» Download protein files from Protein Data Bank (PDB)

they contain atom realizations

» Mimick a Nuclear Magnetic Resonance experiment

Keep only pairwise distances < 5.5

» Try and reconstruct the protein shape from those weighted
graphs

» Quality evaluation of results:

> LDE(z) = {im,?gEl [l — ;| — dij |

> MDE(z) = 7 3 | llws — @l — dij |
{i,j}€FE
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Empirical choice

Ye faster but often imprecise

» Random good but nondeterministic

> Push-and-Pull: can relax Xy 4+ X;; — 2X;; = d3; to
Xii + Xj; — 2X; > d3;
easier to satisfy feasibility, useful later on

» Heuristic: add +ntr(X) to objective, with n <1

might help minimize solution rank

> min Z (X” + ij — 2X@J) + ntr(X)
{ijteE
appears to be a good objective function

When solving real problems maths may not be enough

use common sense 0o
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Retrieving realizations in R*

» SDP relaxation yields n x n PSD matrix X*
We need n x K realization matrix z*

Recall PSD & Gram

>
>
» Apply PCA to X*, keep K largest comps, get z’
» This yields solutions with errors

>

Use 2/ as starting pt for local NLP solver

Later on: Barvinok’s Naive Algorithm, an SDP-specific alternative to PCA
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When SDP solvers hit their size limit

SDP solver: technological bottleneck

Can we use an LP solver instead?

>

>

» Diagonally Dominant (DD) matrices are PSD

» Not wvice versa: inner approximate PSD cone Y > 0
>

Idea by A.A. Ahmadi [Ahmadi & Hall 2015/
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Diagonally dominant matrices

n X n symmetric matrix X is DD if

J#

1 0.1 —-0.2 0 0.04 0

0.1 1 —0.05 0.1 0 0

E.g. —0.2 —0.05 1 0.1 0.01 0
0 0.1 0.1 1 0.2 0.3
0.04 0 0.01 0.2 1 —0.3

0 0 0 0.3 —0.3 1
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Gershgorin’s circle theorem

» Let A be symmetric n X n
» Vi<nlet R, =) |A;| and I; = [A; — R;, Aii + Ri]
JFi
» Then VA eigenvalue of A i <nst. A€,
Proof

» Let A be an eigenvalue of A with eigenvector y

» Normalize y s.t. i <ny; =1and Vj#ily;| <1
let i = arg max; |y;|, divide y by sgn(y;)|yil
> Ay=Xy= > Ajyit+Auyi= Y Ay + Ai= Ay = A
J<n:j#i J<n:j#i
> Hence Y. Ay, =XA—A4;
j<nijti

» Triangle+Cauchy-Schwarz inequalities & Vj # i |y;| < 1=
A=Aul =] > Ayyl < Z [Aijl ly;l < >0 Al = Ri

J<nij#i J<nij#i j<n:j#i
hence \ € I;
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DD = PSD

Assume A is DD, A an eigenvalue of A
By Gershgorin’s circle theorem \ > 0
= A is PSD

vvyyVvyvy
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DD Linearization

Vi<n Xi> > |Xyl (+)
i
» linearize | - | by additional matrix var T’

= write | X| as T
» = (%) becomes
Xii > ZTij
JFi
» add “sandwich” constraints — 1T < X <T
» Can easily prove (x) in case X > 0 or X <0:

Xii > ZTijZZXij

J#i J#i
Xii 2> ZTz‘jZZ—Xij
J#i J#i

» General case requires polyhedral analysis
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DD Programming (DDP)

V{i,jle B Xu+X;;,—2X;; = d%j
X is DD
V{Z,]} el X+ ij — 2X’LJ = d12]
Vi<n T; < Xy
= N 2o <
J#i
-T<X < T
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The issue with inner approximations

DDP could be infeasible!
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Exploit push-and-pull

» Enlarge the feasible region
» From

» Use “push” objective min Y X;; + X;; — 2X};
ijEE

» Relax to

V{i,jte B Xu+ X;; —2X;; > dfj
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Hope to achieve LP feasibility
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DDP formulation for the DGP

{i,j}eE
V{Z,]} ek X+ ij — 2X7;j > dfj
i
<X < T
T > 0

Solve, then retrieve solution in R with PCA
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Subsection 7

DGP cones
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Cones
» Set C'is a cone if:

VA BeC, a,6>0 aA+pBeC

> If C C S, (set n X n symmetric matrices)

C*={Y |VX €C (Y o X >0)}

» A n X n matrix cone C is finitely generated by X C R™ if

X={r1,...,0} A VX E€CIER, X =) bpmpm,’

L<p
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Representations of DD

» Consider E”,EZJ,E in S,
Define & = {Ey; | i <n}, & ={Ej |i<j}, E=E&UE&
E;; = diag(0,...,0,1;,0,...,0)
> Ej; has minor ( i"] i’i )7 0 elsewhere
-1

» [ has minor ( Lii 1

” ), 0 elsewhere
J3
» Thm. DD = cone generated by £ [parker & cartson 1975]
Pf. Rays in £ are extreme, all DD matrices generated by &
» Cor. DD finitely gen. by
XDD:{ei|i<n}U{(eliej)|z'<j<n}
Pf. Verify E;; = eje, EjE (e; £ej)(e; £ e])T, where e;
is the i-th std basis element of R™
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Finitely generated dual cone representation

Thm. If C finitely gen. by X, then
C*={YeS"|VeeX (Yezz' >0)}

recall C* 2 {Y € S" |VX € C Y e X >0}

> D) Let Y st. Ve e X (Yeuxx' >0)
> YX cC, X =) 6az' (by fin. gen.)
reX
» hence Y e X = 62:1, 6.Y exz' >0 (by defn. of V)
» whence Y € C* (by defn. of C*)
» (C) Suppose Z € C*~\{Y |V € X (Y exx' >0)}
» then 3X' C X s.t. Vo € X' (Zezx! <0)
» consider any Y = 3 dyzx! € C with § >0
rekX’

> then ZoY = > §,Zexx' <0soZ¢C*
reX’
» contradiction = C* = {Y |Vz € X (Y ezz' >0)}
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Dual cone constraints

» Remark: forv e R?, X evv' =0 Xv
» Use finitely generated dual cone theorem
» Decision variable matrix X

» Constraints:
YVoeX v Xv>0

» Cor. DD* D PSD
Pf. X € PSD iff Vo € R" vXv > 0, so certainly valid Vv € X

» If |X| polysized, get compact formulation

otherwise use column gemeration

> |App| = [E] = O(n?)
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Dual cone DDP formulation for DGP

{i,j}€FE
V{Z,]} cF X+ X]’j —2X;,;, = dzzj
Yv € Xpp v Xy > 0
» v’ Xv >0 for v € Xpp equivalent to:
Vi, j} ¢ B Xi+ Xj; —2X;; > 0

Note we went back to equality “pull” constraints (why?)

Quantifier V{i,j} & E should be Vi < j but we already have those constraints

v{i,j} € E
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Properties

» SDP relaxes original problem
» DualDDP relaxes SDP

hence also relaxes original problem
» Yields tight obj fun bounds w.r.t. SDP

» Solutions may have large negative rank

in some applications, retrieving feasible solutions may be difficult

Project idea 3: Apply the DG methods seen in these lectures in
order to control a fleet of submarine robots (for each time instant
t € T they define a different distance graph)
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Subsection &

Barvinok’s Naive Algorithm
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Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a random
point of a “big” probability space X is “very close”
to the mean value of the function.

and

In a sense, measure concentration can be consitdered
as an extension of the law of large numbers.
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Concentration of measure

Given Lipschitz function f: X — R s.t.

Ve,ye X |f(z) — f(y)] < Lz — yll2

for some L > 0, there is concentration of measure if 3
constants ¢, C s.t.

Ve >0 Pu(|f(z)—E(f)| >¢) <ce @/

where E(-) is w.r.t. given Borel measure p over X

= “discrepancy from mean is unlikely”
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Barvinok’s theorem

» for each k < m, manifolds X}, = {z € R" | 27 Q*z = a;.}
where m < poly(n) )
» feasibility problem F = [ﬂkgm Xy ;é @]
(

» SDP relaxation Vk < m (QF ¢ X = a;) A X = 0 with soln. X
» Algorithm: T < factor(X); y~ N"(0,1); 2’ Ty
Then:

» Jc > 0, ng € N such that Vn > ng

Prob (Vk <m dist(z’, X;) < cy/ ||X|21nn> >0.9.

213 /413



Algorithmic application

» 2/ is “close” to each Xy: try local descent from x’

» = Feasible QP solution from an SDP relaxation
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Elements of Barvinok’s formula

Prob (Vk <m dist(z, X) < ¢/ H)_(Hglnn) >0.9.

» /|| X]|2 arises from T (a factor of X)
» Inn arises from concentration of measure

P 0.9 follows by adjusting parameter values in “union bound”
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Application to the DGP

> Vi gt e B Xy =A{x|llv — ;)3 = dij}
» DGP can be written as [\ Xj; £ &
{i.j}eE

» SDP r§laxation )(ZZ + ij — 2XU = d?J ANX t 0 with
soln. X

» Difference with Barvinok: z € RE" rk(X) < K
» IDEA: sample y ~ N"¥(0, \/L?)

» Thm. Barvinok’s theorem works in rank K
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Proof structure

» Show that, on average, Vk < m tr((Ty)TQk’(Ty)) =QFe X =qy

» compute multivariate integrals
» bilinear terms disappear because y normally distributed
» decompose multivariate int. to a sum of univariate int.

» Exploit concentration of measure to show errors happen rarely
» a couple of technical lemmata yielding bounds
» = bound Gaussian measure p of e-neighbourhoods of
B K . o
A7 =y e R7K | Qi(Ty) < Qe X)
K . o
A = {y e RV [ Q'(Ty) > Q" ¢ X}
Ai={y e RN | Q'(Ty) = Q" X}.
use “union bound” for measure of A; (¢) N A; ()
show A; () N A (e) = Ai(e)
use “union bound” to measure intersections of A;(¢)
appropriate values for some parameters = result

vvyyvyy
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The heuristic

1. Solve SDP relaxation of DGP, get soln. X
use DDP+LP if SDP+IPM too slow

2. a. T = factor(X)
b,y ~ N"5(0, =)

VK
c. o' =Ty
3. Use 2’ as starting point for a local NLP solver on
formulation
. 2
win 3 (o - ) - )

{i,j}€E

and return improved solution x
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Subsection 9

[somap revisited
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[somap for the DGP
» Given DGP instance (K,G = (V, E,d)):

1. D = square weighted adjacency matrix of G
2. D = completion of D

3. 2’ = PCA(D, K)

4. x = locally optimal solution closest to x

» Step 4 is the “refinement step”

calls a local solver for the DGP with starting point 2’

» Vary Step 2 to generate Isomap-based heuristics
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm on G
(classic Isomap)
B. Find a spanning tree (SPT) of G and compute a random

realization in z € R¥ use its sqEDM

C. Solve a push-and-pull SDP/DDP /DualDDP to find a realization
7' € R™, use its sqgEDM

Project idea 4: implement and test at least 6 different variants of
Isomap for DGP: the three above, and at least three new ones of your
own conception
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Subsection 10

Summary
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Matrix reformulations

Quadratic nonconvex too difficult?
Solve SDP relaxation
SDP relaxation too large?

Solve DDP approximation

vvyyVvyvyy

Get n x n matrix solution, need K x n!
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Solution rank reduction methods

» Multidimensional Scaling (MDS)

» Principal Component Analysis (PCA)
» Barvinok’s naive algorithm (BNA)

» I[somap

All provide good starting points for local solvers

Can also use them for general dimensionality reduction:
they map n vectors in R” — n vectors in R¥
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The gist of random projections (RP)

» Let A be am x n data matrix (columns in R™, m > 1)

» T short & fat, normally sampled componentwise

—_—— TA
r A

» Then V¢ <] ||Az — Aj”g ~ ||TAZ — TAJHQ “Wahp”
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wahp

“wahp” = “with arbitrarily high probability”
the probability of Ej. (depending on some parameter k)
approaches 1 “exponentially fast” as k increases

P(E,) >1—0(e™)
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Johnson-Lindenstrauss Lemma (JLL)

Thm.
Given A C R™ with |[A| = n and € > 0 there is k = O(% Inn)
and a k x m matrix 7" s.t.

Ve,ye A (I-e)fle—yl < [Tz =Tyl < (A+e)llz—yl

If k£ x m matrix T is sampled componentwise from N(0, 7) then

P(A and T'A approximately congruent) > %

(nontrivial) — result follows by probabilistic method

Note that 1/\k is the standard deviation, not the variance
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In practice

» P(A and T'A approximately congruent) > %
» re-sampling sufficiently many times gives wahp

» Empirically, sample T few times (once will do)
Br(|Tz = Tyl)) = |z -yl
probability of error decreases wahp

Surprising fact:
k is independent of the original number of dimensions m
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Clustering Google images

Example LabVIEW Bad

Meme

seasHETTIC00E

Ravioucope.

|L. & Lavor, 2017|
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Clustering without RPs

VHimg = Map[Flatten[ImageData[#]] &, Himg];

owan- { FONT, STu, S, ST, Sz,

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
out[29]1= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!
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Clustering with RPs

Get["Projection.m"];

VKimg = JohnsonLindenstrauss[VHimg, 0.1];

VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
out[34]1= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405s CPU time to 0.00232s
Same clustering
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Projecting formulations

» Given:
» F(p,z): MP formulation with params p & vars x
» sol(F): solution of F

» % formulation class (e.g. LP, NLP, MILP, MINLP)
» Given RP T, define T F(p, x) as

F(Tp,z) or F(Tp,Tx)
» Want to show: VE € € sol(F') =~ sol(T'F') wahp
» Issues:
» RPs project points not vars/constrs

» approximate congruence # feasibility /optimality
» JLL applies to finite pt sets, vars encode oo pts

» Today we see this for € = LP
» Can also be applied to QP, SDP, QCQP, and more
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Subsection 1

Random projection theory
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The shape of a set of points

» Lose dimensions but not too much accuracy

Given Ay,...,A, € R™ find k < m and A],..., A" € R¥ s.t.

A and A’ “have almost the same shape”

» What is the shape of a set of points?

-0

congruence < same shape: ||A; — Aj|| = [|A; — ALl

—

> Approrimate congruence = small distortion:
A, A" have almost the same shape if

Vi<j<n (1-¢)l4 —Ajl < [[4; - A5l < (1 +e)]4 — 4]

for some small € > 0

Assume norms are all Euclidean
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Losing dimensions = “projection”

In the plane, hopeless

In 3D: no better
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Recall the JLL

Thm.
Given A C R™ with |[A| = n and € > 0 there is k = O(% Inn)
and a k£ x m matrix 7' s.t.

Ve,ye A (1—¢)llz—yll < [Tz -Ty| < (1+e)llz—yl
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Approximate congruence: proof sketch

= [ ©

[ | e — Let T be a k x m RP sampled from

‘ / 4 \ / L m s.t. = 1.

\\‘ y \ﬁ @ N(O, 7%); andzu €M ) st full =1
- it e Then E(||Tu||?) = [Jul|
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RPs preserve norms on average
Thm.

Let T be a k x m rectangular matrix with each component sampled from

N(0, 7-), and u € R™ s.t. [|ul| = 1. Then E(||Tu|*) =
Proof
» Let v =Tu,ie Vi<kletv, = ) Tju;

jsn
> E(v;) =E (; Tij“j) = ; E(Tij)u; =0
Jj=m Jj=m

> Var(v;) = 3 Var(Tiju) = Y Var(Ty)uf = 3 7 = gllull®

j<m js<m js<m

> 1 =Var(n;) = E(? — (E(x))?) = E(v? — 0) = E(:?)

]E(IITUIIQ):E(IIUIQ):E(Z ) ZE( =2 5=l

i<k

Can we argue that the variance decreases wahp?
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Surface area of a slice of hypersphere

Sm(r): surface of m-dimensional sphere of radius r

Sn(r) =

27Tm/2Tm—1
[(m/2)

Lateral surface of infinitesimally high hypercylinder

Sy 2 5,,(1)

A8, (t) = Sm_r (1 — £2)" dt
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Area of polar caps

1 1
AP = 2/ dS,(s) = QSml/ (1- SQ)WT%ds
¢ ¢

l+z<e“forallz and [ f(s)ds <

ﬂ%g

f(s)ds for f >0

oo 28, Vm =2t
= APC < 2Sm_1/ e~ s = 29m [T erfc (m_) “m”O(e‘tQ)
¢ m — 2 2 \/i

» Polar caps area
decreases as m — oo
with ¢ fixed

» Concentration of
measure of the
equatorial band
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An intuitive explanation
» Polar caps area u(A") = p({u € S™ 1| |u,| > t}) decreases

with ¢ fixed as m — oo = area of equatorial band A" increases
with same conditions
> TA" = {ue S| ||Tul? - 1| < t} has concentration of

measure (if 7" is stereographic)
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Intermezzo: The union bound

» Events Ei, ..., Ey such that P(E;) > 1 — p for each i < k
» What is P(all £;)7

> P(all E;) =1 — P(at least one —E;) =

P(AE) = 1-P(V(E) =

21—§ij<ﬁEi> > 13- (1—p) =1—kp

=1

> So P(all ;) > 1—kp
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A syntactical explanation for k = O(e?1nn)

» B = set of unit vectors; by “intuitive explanation” ,
=VueBIC>0st. PA—t<|Tul| <1+t)>1—e

» By union bound: ,
=PNVueB1—t<|Tul| <1+t)>1—|Ble ¢

» Prob. € [0,1] = require 1 — |B\e_Ct2 > 0:
= |Ble ¢ <1

» (arbitrarily) Let t = eV/k:
= |Ble=¢’F <1

> = [k >Ce?In(B))|
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Apply to vector differences
> Let ACR™, |A|=n
» Vr,y € A we have

| Tz~Ty|]* = |T(z—y)|? = |z—y|? HT H lz =yl Tul®

where ||u|l2 =1

> E(|Tul?) = [lu] =1 = [E(|Tz — Ty|?) = | — y|?]

» Let B = {H = | Ty € A}
|B| = O(n?) = k = Ce~?In(n) for some constant C

» By concentration of measure on T.A™, 3¢ € (0,1) s.t.
A=)z —yl? < Tz~ Tyl < 1 +e)llz —ylI* ()

holds with positive probability

» Probabilistic method: 3T such that () holds
= JLL follows
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Randomized algorithm

» Distortion has low probability |Gupta 02]:

Ve,ye A P([Te—Ty| < (1 —¢)llx—yl)
Ve,ye A P([[Te =Tyl = (14 ¢)llx —yl])

1/n?
1/n?

» Probability 3 pair x,y € A distorting Euclidean distance:

union bound over (g) pairs

<
<

P(—(A and T'A have almost the same shape))

AN
~
o3
~—
S

| v

Il

—

\
S|+

P(A and T'A have almost the same shape) > 1/n

» Algorithm:
» P(3Jz,y € A with large JLL discrepancy) <1—1/n
» Counsider ¢t > 1 independent samplings of random RP T
» Probability that all have large discrepancy: < (1 —1/n)*
» Choose t so at least one T will be good with prob. > 0.99:
(1-1/n)t <1-0.99 = 0.01 yields ¢ > In(0.01)/In(1 —1/n)
if n =100, get t > 459
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Subsection 2

Projecting LP feasibility
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Pure feasibility LP: easy cases
Thm.

r € X, we have:

=l =
by linearity of T’

(i) If b # Z x;A; then P<Tb # Z z;TA; ) >1—2e ¢k

by JLL npphul to [[b— 3, ziAql|
n
(i) If b # > y; A4, for all y € X C R™, where |X]| is finite, then
p=ll

P(Vy EXTb#YT, yZTAi> >1—2|X|eC*

for some constant C > 0 (independent of n, k)

by union bound

T :R™ — R* a RP, and b, A,,..., A4, € R™. For any given vector

[Vu et al., Math of OR, 2018]
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Separating hyperplanes

When |X| is large, project separating hyperplanes instead

» Convex C CR™, x ¢ C:
then 3 hyperplane ¢ separating = from C

» In particular, true if C' = cone(44,...,4,) for A CR™
» Can show = € C < Tx € TC with high probability

» As above, if x € C then Tz € TC by linearity of T’
Difficult part is proving the converse

» Can also project point-to-cone distances
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Projection of separating hyperplanes
Thm.
Given ¢,b, A1,...,An € R™ of unit norm s.t. b ¢ cone{A1,...,An} pointed, € > 0,
cCER™st.c'b< —¢, ¢ A; > ¢ (i <n),and T a RP:
P[Tb ¢ cone{TA1,...,TAn}] > 1—4(n+ 1)e=Ce=e"k
for some constant C.
Proof

Let o/ be the event that T approximately preserves |lc — x||2 and ||c + x||? for all
x € {b,A1,...,An}. Since &/ consists of 2(n + 1) events, by the JLL (“squared
variant”) and the union bound, we get

P(o/) >1—4(n + 1)e=CE =Dk

Now consider x = b

(Te,Th) = ~(IT(c + b)|I* = IT(c = b)II*)

= e

by JLL < 2 (lle+bl1? = fle = bl1?) + Z(lle + bl|” + [le = 5]

=c'b+e<0

and similarly (T¢, TA;) > 0
[Vu et al., Math. OR, 2018]
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The feasibility projection theorem

Thm.
Given § > 0, 3 sufficiently large m < n such that:

for any LFP input A,b where A is m x n
we can sample a random k X m matrix T with £k < m
and

P(orig. LFP feasible <= proj. LFP feasible) > 1 —§

251 /413



Subsection 3

Projecting LP optimality
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Notation

» P =min{cx | Ax =bAx >0} (original problem)
» TP =min{cx | TAxr =TbAx > 0} (projected problem)
» o(P) = optimal objective function value of P

» o(TP) = optimal objective function value of TP
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The optimality projection theorem

» Assume feas(P) is bounded

» Assume all optima of P satisfy ) ;T < @ for some
given 6 > 0
(prevents unboundedness)

Thm.
Given v > 0,

v(P) =y <o(TP)<o(P) ()

holds with arbitrarily high probability (w.a.h.p.)

more precisely, () holds with prob. 1 — Ane=CE* =Mk where
e =7/(2(6 +1)n) and n = O(||y||2) where y is a dual optimal

solution of P having minimum norm
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The easy part

Show v(T'P) < v(P):
» Constraints of P: Az =b A 2 >0

» Constraints of TP: TAx =Tb N x>0
» = constraints of 7P are lin. comb. of constraints of P

» = any solution of P is feasible in 7P
(btw, the converse holds almost never)

» P and TP have the same objective function

» = TP is a relaxation of P = v(T'P) < v(P)
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The hard part (sketch)

» Eq. (12) equivalent to P for v =0

cx < w(P)—v
Az = b (12)
x > 0

Note: for v > 0, Eq. (12) is infeasible

v

By feasibility projection theorem,

v(P) =~
Tb
0

cx
TAx
T

IN

AV

is infeasible w.a.h.p. for v > 0

Re-state: cx < v(P) —yANTAx =Tb Az > 0 infeasible w.a.h.p.
= cx > v(P) — 7 holds w.a.h.p. for z € feas(T'P)

= v(P) — v <v(TP)

v vy
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Subsection 4

Solution retrieval
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Projected solutions are infeasible in P

» Ar =b = TAx = Tb by linearity

» However,

Thm.
|F0r x> 0s.t. TAz = Tb, Az = b with probability zero

if not, an x belonging to (n — k)-dim. subspace would belong to

an (n —m)-dim. subspace (with k < m) with positive probability

» Can’t get solution for original LFP using projected
LFP!
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Solution retrieval by duality

» Primal Inin{cT:l; \ Az =bAx > ()} =
dual max{b'y | ATy < c}

Let o’ = sol(T'P) and y' = sol(dual(T'P))

= (TA) 'y =(ATTT)y = AT(TTy) < c

= Ty is a solution of dual(P)

= we can compute an optimal basis J for P

Solve Ajx; = b, get xy, obtain a solution x* of P

vV v v v v Y

Won’t work in practice: errors in computing J
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Solution retrieval by projected basis

» H: optimal basis of T'P
we can trust that — given by solver

> |H| =k = Ay is m x k (tall and slim)
» Pscudoinverse: solve k x k system A}, Agxy = ALb
» let z = (xq,0)
» Can prove small feasibility error wahp
» ISSUE: may be slightly infeasible
empirically: x # 0 but = = min(0,z) — 0 as k — o0

Project idea 5: Test the output of duality and projected basis
retrieval methods on a set of 50 random large feasible standard-form
LPs: you should find that the duality method is worse than the
projected basis method. Formulate a reasoned hypothesis about the
reason why this happens
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Projected LP duals

» The dual of P = min{cx | Ax =bAx >0} is
D = max{yb | yA < ¢}

» A projected dual on y € R™ can be derived as follows:
max{(yT ")Tb | (yT")TA < c}

» Replacing u = yT" € R*, we obtain
TD = max{ub | uA < ¢} where b=Tb, A=TA

» Theory [D’Ambrosio et al. MPB 2020]:

> ir original dual is feasible, projected dual is feasible
> approximation guarantees on projected dual objective function
P retrieval: if @ € arg opt(TD), let §y = uT, 7 is feasible in D

Project idea 6: Develop an algorithm for finding a candidate
solution z’ of P from 7. Sample 50 random large standard form LP
instances, solve P, T'P, T'D for each instance. Collect soln. x* from P,
Z from TP, x’ from 7T'D, then compute objective function value and
feasibility error w.r.t. P of z*, &, z’. Plot all this data in function of
the number of rows of A and e
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Subsection 5

Application to quantile regression
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Conditional random variables

>

>

>

A

random variable B conditional on Ay, ..., A,

Y

assume B depends linearly on {4; | j < p}

want to find z1,...,z, € R s.t.

B = ZIE]‘A]‘

J<p
use samples b, ay, ..., a, € R™ to find estimates

a' = row, a; = column
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Sample statistics

» expectation:

[ = arg min Z(b,,j — )2

HER i<m

» conditional expectation (linear regression):

rgmlnz (b; —

i<m

» sample median:

£ = argman\b—f\

i<m

arg min Z (; max(b; — &,0) — %mm(b —&, 0)>

£ER i<m

» conditional sample median: similarly
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Quantile regression

» sample T-quantile:

A~

¢ = argmin Z (tmax(b; — &,0) — (1 —7) min(b; — &£,0))

£eR

i<m

» conditional sample 7-quantile (quantile regression):

B = arg min Z (Tmax(bi — ﬂai,()) — (1 — 7) min(b; — Ba’, 0))

perr [0
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Linear Programming formulation

Let A= (a; | j <n); then

~

B3 = arg min Tut 4+ (1 —7)u”
AT —p)+ut—u = b
B,u > 0

» parameters: Aismxp, beR"”, 7 €R

» decision variables: 7,57 € R?, u*,u~ € R™

» LP constraint matrix is m x (2p + 2m)

density: p/(p +m) — can be high

Project idea 7: Test the application of RPs on at 50 large random
MurriCommoDnITy FLow (MCF) problems. Plot the ratio of
projected to original objective, retrieved to original objective, and
infeasibility errors in function of the number of rows of the equality

system Az = b and . Is MCF a good application testbed for RP?
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Large datasets

» Russia Longitudinal Monitoring Survey hh1995f

4
| 4
>
>

>

m = 3783, p = 855

A = hf1995f, b = log avg(A)

18.5% dense

poorly scaled data, CPLEX yields infeasible (!!!) after around 70s
CPU

quantreg in R fails

> 14596 RGB photos on my HD, scaled to 90 x 90 pixels

vvyy

v

m = 14596, p = 24300
each row of A is an image vector, b= > A
62.4% dense

CPLEX killed by OS after ~30min (presumably for lack of RAM) o

16GB

could not load dataset in R

1
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Electricity prices

» Every hour over 365 days in 2015 (8760 rows)

» From 22 countries (columns) from the European zone

orig proj
1 5.82e-01 5.69e-01
2 9.46e-02 0
3 0 0
4 1.06-01 1.18e-01
5 2.73e-04 6.92e-05
6 -4.81e-06  -2.07e-05
7 1.32e-01 1.36e-01
8 0 0
9 0 0
10 0 0
11 | -3.46e-08 -2.45e-05
12 0 0
13 | 5.66e-02 5.49¢-02
14 | -2.50e-04  2.91e-03
15 | 2.86e-02 2.81e-02
16 0 0
17 0 0
18 0 9.35e-02
19 0 0
20 | 2.23e-09 0
21 0 -7.99e-06

Permutation (18,2) (21,20) applied to
proj gives same nonzero pattern and
reduces ¢2 error from 0.13 to 0.01

For every proj solution I found I could
always find a permutation with this
property!!

... On closer inspection, many columns
reported equal data

Small numerical error

Approximate solutions respect Nonzero
pattern

LP too small for approximation to have
an impact on CPU time
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Subsection 1

Motivation
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Coding problem for costly channels

> Task:
send long sparse vector y € R™ on costly channel
1. construct m x n encoding matrix A with m <n
both parties know A
2. encode b = Ay € R™
3. send b

» Decode by finding sparsest = s.t. Az =0
can we expect x =y, i.e. small ||x — y||?
» Summary:
1. given long sparse vector y

2. shorten it to b, send b
3. upon receiveing b, recover long sparse vector y
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Coding problem for noisy channels

» Task: send vector w € R% on a noisy channel

» Encoding: n x d matrix @) with n > d, send z = Qw € R"
both parties know @)

» Error prob. e: en components of z sent wrong

» Receive (wrong) vector Z = z + x where x is sparse

» Can we recover 27
nd 4 » Choose m x n matrix A s.t. m =n —d and AQ =0
» Letb=Az = A(z +2) = A(Qw + z) = AQuw + Az = Az

P> Suppose we can find sparsest x' s.t. Ax' =b
!

A Q

AQe O P> = we can recover 2’ =z —x

» Recover w' = (Q'Q)~'Q" 2" (pseudoinverse)
What is the likelihood of getting small ||w — w'|| ¢

Summary: 1. given short dense vector w, 2. lengthen it to z for
redundancy; 3. send z and receive Z = z+x; 4. find long sparse error

vector x using short vector b = Az; 5. recover 2z’ then w’
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What these tasks have in common

» Given matrix A with fewer rows than columns
» Given vector b

» Find sparsest solution z* of Ax = b

» Note: Ax = b feasible iff rank(A) = rank(A|b)
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Subsection 2

Basis pursuit
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Sparsest solution of a linear system
» Problem P°(A,b) = min{||z||o | Az = b} is NP-hard

Reduction from ExacT COVER BY 3-SETS [Garey&Johnson 1979, A6[MP5]]
MILP: min{>"; y; | Vj — My; <z; < My; A Az=b A y€{0,1}"}

liwlly

> PY(Ab) = min{||z|, | Az = b}
is a relaxation
» Reformulate to LP:

liwll,

min > sy
j<n
Vi<n —s5;< x; <55 (1)
Ax = b

» Empirical observation: P! often finds optimum of P°

Too often for this to be a coincidence

» Theoretical justification by Candeés, Tao, Donoho

Mathematics of sparsity, Compressed sensing, Compressive sampling
P Note: we always assume b # 0 in PY(A,b) and P'(A4,b)
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Graphical intuition 1

Sparsest solution

Feasible set Ax = b

Norm-1 ball

High probability
of having this
property

» Wouldn’t work with /5, £, norms
Ax = b flat at poles

“zero probability of sparse solution”

Warning: this is not a proof, and 3 cases not explained by this drawing [Candés 2014]
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Graphical intuition 2

\ R 7
X
TN A
:1"
— — — _1
p=1 p=2 p=o00 p=73

» 2 such that Az = b approximates x in ¢, norms

» p =1 only convex case zeroing some components

From [Davenport et al., 2012]; again, this is not a proof!
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Phase transition in sparse recovery
For z € R", A € R™*": consider P'(A, Az) and its opt. z*

Ambient dimension » = 100 Ambient dimension n = 600
600

o
=]

~
o

450

300

150

n
o

m: Number of random measurements
[
o

: Number of random measurements

0
1 25 50 75 99 1 150 300 450 595

s: Number of nonzeros in x s: Number of nonzeros in x

m

0

Pixel grayscale: avg density of 2* over many samplings of A; white = sparse, black = dense

Prob(z* has sparsity s) undergoes a phase transition
For a given n, if m is too small P! fails to find the optimum of P°

[Tropp et al., Information and Inference, 2014|
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Subsection 3

Theoretical results
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Main theorem and proof structure

Defn. (i) Given a small € > 0, a scalar « is near-zero if |a| < €;
(ii) a vector is s-sparse if it has < s nonzero components

» Thm. Let:

1. A~ N(0,1)™ with m < n but m “not too small”
2. & € R™ have s nonzeros and n — s zeros or near-zeros
3. Z be the best approx of & with exactly s nonzeros
4. b= Ai and 2* be the unique s-sparse min of P'(4,b)

then x* is a “good approximation” of x (%)
» Proof sketch:

» Prop. A has the null space property (NSP) = (%)

» Prop. A has restricted isometry prop. (RIP) = A has NSP
> Prop. A~ N(0,1)™" = A has RIP

» adapt to near-zeros by modifying NSP
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Some notation

Defn. (i) For any n € N define [n] = {1, n};
(ii) for z € R™ and S C [n] let z[S ]:((z] Iff]ES)XOI’O|j<n)b
the restriction of z to S

» Consider Az = b where A is m x n with m <n

> Let z € R" s.t. Az =b, Ny = null(A), N = N4 ~ {0}
= Vy € Ny we have A(x +y) = Az + Ay = Az +0=1b

» For S C[n]let S=[n]\S

» Note that ¥z € R" we have z = z[S] + z[9]
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Null space property

Defn. For x € R™ let supp(z) = {j <n|z; #0}

» Defn. NSP,(A) =
VS Cn] (ISI=s — Yy e Ny |ylSlli < [ly[S]Ih)

A has the null space property of order s

» A has the NSP of order s iff each s-sparse solution of
Ax = b is the unique optimun of P!(A,b)

» Prop. Vaz* € R" with |supp(z*)| < s and b = Az*
[#* unique min of P*(A4,b0)] <  NSP (A)

the “NSP proposition”
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Strength of NSP; as ¢t grows
NSP Prop. states [supp(x*)| < s but NSPs(A) assumes |S| = s: why?

Lemma
VAe R™™t<s<n NSP4A)= NSP,(A)

Proof _
NSP,(A) = VS C [n] (|S| = s — Vy € N9 [ly[S]]l» < [ly[S]ll1), hence:

given T, U C [n] with T, U nontrivial disjoint, |T'| =t and [T UU| = s,
o Vye Ny y[TUl]ll: <lyT U]l = llylln] ~ (TUU)]h =

(1) Yy € N y[T1 + y[Ulx < llyll = ly[T = [yl =

1) Yy € NG (w1l < ly[T]l — 2lly[U]]h

e whence VI' C [n] (IT| =t — Vy € NY [ly[T][lx < y[T]]l1)

since ||y[U]||1 > 0, and so NSP;(A)
(M) T VUl =2 erov 95l = 2Zjer lvil + 22 e0 vil = [T + [[y[Ull1
lyllnd ~ VIl = 25 e v 1951 = e 193l = 2jev 151 = [yl = ly[V]Ia
@ Myl =NyTH =2 < 151 =27 Wil = 207 151 = X e i1 = ly5 (T
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Proof of the NSP proposition (=)
Va (x uniq min of PY(A, Az) A |supp(z)| = s) = NSP,(A)
» Claim Yy € N% 3S C [n] with |S| = s such that Ay[S] #0
Pf. |supp(y[S])| = |S| = s by definition
= by hypothesis y[S] unique min of P*(4, Ay[S])
= by assumption (rhs vector # 0) Ay[S] # 0

» Vy € R" and S C [n] we have y = y[S] + y[5]

» = for any y € N we have Ay = Ay[S] + Ay[S] =0
= A(—y[S]) = Ay[S] # 0 by claim

» Moreover, —y[S] is feasible in P'(A, Ay[S])

» | y[S] # —y[S] | othw by y = y[S] + y[S] both would be scalings

of y and hence both in N%, which cannot happen as Ay[S] # 0

» |ly[S]|l1 uniq min value and —y[S] feas in P*(A, Ay[S]) =
=951l = [ly[STllx > [ly[S]ll = NSPs(A)
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Proof of the NSP proposition (<)
NSP,(A) = Vz* (z* uniq min P*(A, Az*) A |supp(z*)| = s)

» Let * € R", b= Az*, S = supp(x

*)and |S| = s

» Let T soln. of Ax = b, then 7 = z* — y with y € N9

[Eli

[by triangle inequality|

[add and subtract same qty]|

1S = supp(a*) = z* = 2*[S]]

[since z* — T = y]
[since y € N% and NSP(A) holds|
jsince y = 2* — 7 and &*[3] = 0]

[since || —z||1 = ||z]|1 A 2[S] + 2[S] = 2]
= =7l

IN

A

I(z" = z[S]) + (S]]l
[l = Z[STl[x + [|Z[S]]lx
[ [ST = 2[STll + 12[STl
1YLl + [1Z[S]1x

1y (STl + 12 (S]]

I = 2[S]ll + Iz [S]llx
1712

1Z1]

so z* is a min of P!(A, Az*); £ norm strictly convex = z* uniq min
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A variant of the null space property
» Motivation: “almost sparse solutions”
given & with |supp(Z)| > s and b = Az

let S = argmax ||Z[T]||: and Z = Z[S] (= lsupp(z)| = 5)
TC[n):|T|=s

> Assume [[2[S][ly < [|Z[S]]lx and € = max;e 5 |&;] is small
i.e. & “almost” has support size s (up to )
» Show min z* of P'(A, AZ) is s-sparse and close to &
» Generalize NSP with p € (0,1): NSP2(A)
VS C [n] (IS| = s — ¥y € N [lySlllx < plly[S]Ih)

» Prop. NSP?(A) = if * min of P!(A, AZ) then
ot — 2l < 2225 — 3]l < (1 — s)e
i.e. x* is a good approximation of T
» Moreover, if [supp(Z)| = s then 2* =2 =&
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Proof of the NSP% proposition

>
>
>

x* feasible in Az = A% so Ay € Ny (z* =3 + y)
= [|z*[l1 = [|Z + y[[1 < ||Z]]1 since z* min of P(A, AZ)

17yl = 2jes |85 +yil + 25es |25 + il .
2 jes(5] = 1yil) + 22;5es(lysl — [25]) by triangle ineq

= [[&[SHlx = g[Sl + [[y[STll = [1Z[STllx wad and subtrace 21511 =)
=12l + ISl = 202[8T = [1ylSTlh since = = 2151 =)

= llzlly = 2012 = 2l + ly[ST = lwlST - ()

Therefore (+) < || + y|l; <|[Z[]1, whence

1211 Zfllxlll = 2[1& =l + N[Nl = [y[STll cconcer iz =)
2[|2 = Zlly = [ly[STllx = ly[STlly

By NSP?, —[[y[S][ls = —plly[S]l1, so ,

2|2 =2l = (1 = p)lly[Sllx whence [ly[S]]lx < =;[1& — 2L (1)

vt =a+y = |o* =l = |yl = ly[STlh + [ly[S]

by NSPE [|y[S]]1x <p|1|y[ Sl hence [|2* — &l < (1+ p)ly[S]lx
by (1) e — 2]l <277z -z

Further, [|2 — z[ly = |2 — 2[S][l, = [|2[S]]| < [Sle = (n — s)e
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Restricted isometry property

» Ais an m X n matrix, € (0,1), s € N
> RIP)(A) & VacR"s.t. |supp(z)| = s we have

A=) llzllz < [lAzllz < (L+0)l=]3

> Prop. RIP),(A) A p=¥2 <1 = NSP’(A)

See Thm. 5.12 in [Damelin & Miller 2012] for a proof

» Tt suffices that § < v/2 — 1 ~ 0.4142
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RIP and P°(A, b)

» Recall P°(A4,b) = min{||z||o | Az = b} is NP-hard

find solution to Ax = b with smallest support size

» Thm. Let & € R" with |supp(Z)| = s, § < 1, A a matrix
s.t. RIPS,(A), z* = argP%(A, A%); then z* = &

Pf£. Suppose false, let y = 2 — & # 0; by defn of 2* we have
lz*]lo < ||Z]l0 < s, hence |ly]lo < 2s; since A has RIP get

lAy||3 € (14 0)|ly||3, but Ay = Ax* — Az = 0 while y # 0, and
6€(0,1) - 1+8 >0, hence 0 € (a, 3) where «, 3 > 0,
contradiction

Thm. 23.6 [Shwartz & Ben-David, 2014|

» Result of limited scope, since we don’t know if P°(A,b)
can be solved efficiently if A has the RIP
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Sufficient eigenvalue conditions for RIP

» Recall RIP’(A): Vo with S = supp(z) and |S| = s
(1= d)llzl3 < |Az]3 < (1+0)]|=[3

> Let A/ = (A7 |j € J), where A7 is the j-th col. of A

> || Az|3 = (Az, Az) = (A%2[S], A%2[S]) = (Bsx[S], «[S])

where Bg = (A°)T A% is s x s and PSD, and consider z[S] as a vector in R?

> = 0 < Amin(Bs)||z]13 < (Bsz,z) < Amax(Bs)||z|)3

replace Bg by its spectral decomp PAP T, note A = diag(Amin, - - - s Amax)

» Let A = |Iél|1—n )\min<BS>7 A\ = %ﬁax Amax(BS)

> =30>0st. 1 - <N <AV <1446
i.e. all eigenvalues of B(S) close to 1 for all S C [n] with |S| = s
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Construction of A s.t. RIP2(A)
» Need A =~ 1 for each eigenvalue A of Bg
> = Need VSCN |[S|=s5 — (A9)TAS ~ I,
» = Need
Vi<j<n (A)TAI
Vi<n (A)TA = A3 ~

Q
o

> Sufficient condition: A sampled from N (0, \/—lﬁ)mn
» Difference with JLL

RIP holds for uncountably many vectors x with |supp(z)| = s

JLL holds for given sets of finitely many vectors with any support
Project idea 8: What other types of rectangular matrices M have
the property M "M = I or ~ I? Can they be used to prove the main
theorem? How do they work, computationally, compared with
matrices sampled from normal distributions? Compare on at least 50
random instances of P(A,b)

291 /413



I[sotropic vectors

1. Defn. Rnd vect a € R™ is isotropic iff cov(a) = I,
remark: (a) cov(a) = E(aa'); (b) if @ ~ N(0,1)™ then a isotropic

2. If rnd vect a isotropic, then Vo € R™ E({a,x)?) = ||z|3
For two sq. symm. matrices B,C we have B = C iff Vo (' Bz =2 ' Cz);
hence E({a,)?) =z "E(aa )z =z Inz = ||z||2

3. If rnd vect a € R™ isotropic, then E(||a||3) = m
E(|lal|2) = E(aTa) = E(tr(a’a)) = E(tr(aa")) = tr(E(aa ")) = tr(I;n) = m
4. If rnd vect a,c € R™ indep. isotropic, then E({(a,c)?) =m
By conditional expectation E({a,c)?) = E.(E4({a,c)? | ¢)); by Item 2 inner
expectation is ||c[|2, by Item 3 outer is m
5. If a ~ N(0,1)™, |lall2 = O(y/m) wahp
by Thm. 3.1.1 in [Vershynin, 2018|
6. Independent rnd vectors are almost orthogonal

Results above = ||a||2, |c[|2, (a,c¢) = O(y/m), normalize a, c to a, ¢ to get
(a@,¢) = O(1/y/m) = for m large (a,c) =0
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Construction of A s.t. RIP2(A)

» Thm. For A ~ N(0,1)"*" and § € (0,1) 3C1,Cy >0
depending on ¢ s.t.

Vs<m<m2

sln(n/s)

1

— Prob(RIP2(A)) > 1—6027”)

Pf. see Thm. 5.17 in [Damelin & Miller, 2012]

Remark: extra /m factor in A comes from || - [|2 < || |1 < v/m| - |2

» In practice:

>
>
>
4
4

| 2

Prob(RIP2(A)) = 0 for m too small w.r.t. s fixed

as m increases Prob(RIP%(4)) > 0

as m increases even more Prob(RIPS(A)) — 1 wahp
achieve logarithmic compression for large n and fixed s

{ ~N(0,1)™" Am > 10sIn 2 = RIPY/®(A) wahp, Lem. 5.5.2 [Moitra
2018]

works better than worst case bounds ensured by theory
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Some literature

- W o=

ot

Damelin & Miller, The mathematics of signal processing, CUP, 2012
Vershynin, High-dimensional probability, CUP, 2018

Moitra, Algorithmic aspects of machine learning, CUP, 2018
Shwartz & Ben-David, Understanding machine learning, CUP, 2014
Hand & Voroninski, arxiv.org/pdf/1611.03935v1.pdf

Candés & Tao
statweb.stanford.edu/"candes/papers/DecodingLP.pdf

Candés
statweb.stanford.edu/ candes/papers/ICM2014.pdf

Davenport et (ll.7 statweb.stanford.edu/ markad/publications/ddek-chapter1i-2011.pdf

Lustig et al., people.eecs.berkeley.edu/ mlustig/CS/CSMRI.pdf

and many more (look for “compressed sensing”)
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Subsection 4

Application to noisy channel encoding
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Noisy channel encoding procedure
Algorithm:
1. message: character string
2. w = string2bitlist(x) € {0,1}¢
3. send z = Qw, receive Z =z + 2, let b= Az
A = s/n = density of &, Q isn X d full rank with n > d
4. z* = optimum of P'(A,b)
5. ¥ =ZzZ—2z"
6. w* = cap(round((QTQ)~1Q"2*),[0,1])
cap(t, [, B]) = (a if t < a) xor (B if £ > B) xor (t othw)
7. p* = bitlist2string(w*)
8. evaluate fier = ||pt — p*||
Parameter choice [Matousek]:
» noise A = 0.08
» redundancy n = Rd, where R =4
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Finding orthogonal A, ()

» |Matousek, Gértner 2007]:
> sample A componentwise from N(0, 1)
» then “find Q s.t. QA =0
» Gaussian elim. on underdet. system AQ =0

> Faster:

» sample n X n matrix M from uniform distr
full rank with probability 1
» find eigenvector matrix of M " M (orthonormal basis)
random rotation of standard basis (used in original JLL proof)
» Concatenate d eigenvectors to make )
Concatenate m = n — d eigenvectors to make A
AQ = 0 by construction!
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Subsection 5

Improvements
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LP size reduction

» Motivation

» Reduce CPU time spent on LP
» R = 4 redundancy for A = 0.08 noise seems excessive

» Size of basis pursuit LP

» Ax =bis an m X n system where m =n —d
> If n = Rd > d, m “relatively close” to n
» Recall random projections for LP: use them!
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Comp}iltational results

prj

n A ¢ o | p® pRd cpuos CpUPY

80 320 0.03 020 0.02 0 0 1.05 0.56
128 512 0 0 2.72 1.10
216 864 0 0 8.83 2.12
248 992 0 0 12.53 2.53
320 1280 0 0 2370 3.35
408 1632 0 0  43.80 4.75

» d=|pul,n=4d, A =0.08, e =0.2

» o = Achlioptas density
P(T,; = —1) = P(T; = 1)
P(T,J — 0) =1—«

@
2

» perr = number of different characters
» CPU: seconds of elapsed time
» 1 sampling of A,Q,T

Sentence: Conticuere omnes intentique ora tenebant, inde toro |...]
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Reducing redundancy in n

vvyyvyy

v

How about taking n = (14 A)d?
m=n —d ~ Ad is very small
Makes Az = b very short and fat

Prevents compressed sensing from working correctly
not enough constraints

Would need both m and d to be =~ n and AQ = 0:
impossible
R"™ too small to host m + d =~ 2n orthogonal vectors

Relax to AQ ~ 07
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Almost orthogonality by the JLL

Aim at AT, Q with m 4+ d ~ 2n and AQ ~ 0

» JLL Corollary: 30(e*) approz orthog vectors in R¥

Pf. Let T be a k x p RP, use concentration of measure on ||z||3
Prob( (1 —&)[l2[13 < [ T2II3 < (1 +&)l|z[3) > 1 — 26~ (" =<k
given z,y € RP apply to  + y, * — y and union bound:

Tz, Ty) — (x,v)|

T @+ 9I? = 1T = I = llz +yllI* + llo — yl?|
T @+ I = Nz +ylI?[ + 21T @ =9I ~llz — y)1?|
Sz +yl? +llz = ylI*) = 5(l2l* + llyll*)

INIA

with prob > 1 — 4e*C<52’53)k; apply to std basis matrix I, get
—E& S <Tei,Tej> — <ei,ej> S g
= Jp almost orthogonal vectors in R”, and k = O(EL2 Inp) = p = O(e*)

» Algorithm: k =n,p = [e"], get 2k columns from T'I,

Also see |https://terrytao.wordpress.com/2013/07/18/
a-cheap-version-of-the-kabatjanskii-levenstein-bound-for-almost-orthogonal-vectors/|
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Almost orthogonality by the JLL

v

Aimat mxn Aandn xm Q s.t. AQ =0
with n = (1 + A’)m and A’ “small” (say A’ < 1)
Need 2m approx orthog vectors in R™ with n < 2m

Computationally: get large errors on [|AQ||»
JLL theory requires exceedingly large sizes

In fact, we only need AQ = 0!
can accept non-orthogonality in rows of A & cols of Q)
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Almost orthogonality by LP

\4

v

Sample ) and compute A using an LP
max y_ Uniform(—1,1)A;;

i<m
jsn

subject to AQ =0 and A € [—1,1]

for m = 328 and n =590 (i.e. A’ =0.8):
> crror: Y A;Q7 = O(10710)
» rank: full up to error precision (not really though)
» CPU: 688s (meh)

for m = 328 and n = 492 (i.e. A’ = 0.5): the same
for m = 328 and n = 426 (i.e. A’ =0.3): CPU 470s
Reduce CPU time by solving m LPs deciding A;

for all 7 < m
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Computational results

m n A ude pPi CPU CPUPY
328 426 0.3 | 182 15 2.45 1.87
154 0 2.20 1.49
459 04 0 1 4.47 2.45

5 17 2.86 1.46

492 05| 60 0 4.53 1.18
34 0 5.38 1.18

590 0.8 | 14 0 8.30 1.41
107 4 6.76 1.43

» CPU for computing A, Q) not counted:
precomputation is possible

>
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In summary
» If u is short, set A’ = A and use compressed sensing (CS)
» If 4 is longer, try increasing A’ and use CS
» If 44 is very long, use JLL-projected CS
» Can use approximately orthogonal A, Q) too

m = 1896, n = 2465
A’ = 0.3: min s.t. CS is accu-

Conticuere omnes, intentique ora tenebant. rate

Inde toro pater Aeneas sic orsus ab alto:

Infandum, regina, iubes renovare dolorem. method ‘ error CPU

Troianas ut opes et lamentabile regnum eruerint Danai CS 0 29.67s

Quaequae ipse miserrima vidi et quorum pars magna fui.

[Virgil, Aeneid, Cantus II] JLL-CS 2 17.13s
These results are consistent over

3 samplings

Project idea 9: Implement and test RPs applied to CS, as described
in the last slides. Aim at setting the redundancy n equal to the noise
(14 A)d, and use CPLEX to compute A such that AQ ~ 0. Test your
code on at least 10 different texts of various lengths, up to around 500

characters. How does decoding quality depend on [|AQ||2?
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Outline
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D’[P language Random projections in LP
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Isomap revisited Random projections again
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Definition

» Optimization version. Given K € N, determine the
maximum number kn(K) of unit spheres that can be
placed adjacent to a central unit sphere so their
interiors do not overlap

» Decision version. Given n, K € N, is kn(K) < n?
in other words, determine whether n unit spheres can be placed
adjacent to a central unit sphere so that their interiors do not,

overlap

Funny story: Newton and Gregory went down the pub. ..
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Some examples

n==6 K=2 n=12, K =3 more dimensions

n  t (lattice) v (nonlattice)
0 0
1 2
2 6
3 12
4 24
5 40
6 72
7 126
8 240
9 272 (306)°
10 336 (500)°
1 438 (582)°
12 756 (840)"
13 918 (1130)
14 1422 (1582)
15 2340
16 4320
17 5346
18 7398
19 10668
20 17400
21 27720

22 49896
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Radius formulation

Given n, K € N, determine whether there exist n vectors
x1,...,T, € RX such that:

vi<n o al; = 4
Vi<j<n |z: — 245 > 4
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Contact point formulation

Given n, K € N, determine whether there exist n vectors
x1,...,T, € RX such that:

Vi<n [l
Vi<j<n ol

AV
—_ =
!F

311 /413



Spherical codes

» SE-1 c RE unit sphere centered at origin

» K-dimensional spherical z-code:

» (finite) subset C C SK—1
> Ver£yel z-y<z

» non-overlapping interiors:

Vi<j o |lwi—aly > 1
o el + ol - 22wy > 1
& 1+1-2z,-2; > 1
&S xpex; < 1:(:os(z):z
L =9 3

> we aim at maximizing kn,(K) £ |C]|
let kn(K) = kn1 (K)
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Subsection 1

Lower bounds
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Lower bounds

> Construct spherical i-code C with |C| large
» Nonconvex NLP formulations
» SDP relaxations

» Combination of the two techniques
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MINLP formulation

Maculan, Michelon, Smith 1995
Parameters:

» K: space dimension
» n: upper bound to kn(K)

Variables:

» 2; € REX: contact pt. of i-th surrounding sphere
» «; =1 iff sphere ¢ in configuration

n A
max >y
i=1
Vi <n |zl = o
Vi<j<n |]a:,~—xj||2 > oo
Vi<n v, € [-11)F
Vi<n a; € {0,1 )
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Reformulating the binary products

» Additional variables: 3;; = 1 iff vectors 7, j in
configuration

» Linearize o;a; by 53y
» Add constraints:

Vi<j<mn Bii <
\V/Z<j§n /Bij < Q;
Vz<j§n ﬁij > Oéi—l-Oéj—l
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Computational experiments

AMPL and Baron

» Certifying YES
> n=06,K=2: OK, 0.60s
> n =12, K = 3: OK, 0.07s
> n =24, K = 4: FAIL, CPU time limit (100s)

» Certifying NO
» n =7 K =2: FAIL, CPU time limit (100s)
» n =13, K = 3: FAIL, CPU time limit (100s)
» n =25 K =4: FAIL, CPU time limit (100s)

Almost useless
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Modelling the decision problem

max o
x,o
Vi<n |z =
vi<j<n |m-zlP 2
VZSH xT; €
a =

» Feasible solution (z*, a*)
» KNP instance is YES iff a* > 1

[Kucherenko, Belotti, Liberti, Maculan, Discr. Appl. Math

—
=
=

. 2007]

318 /413



Computational experiments
AMPL and Baron

» Certifying YES
» 1 =6,K =2: FAIL, CPU time limit (100s)
» n =12 K = 3: FAIL, CPU time limit (100s)
» =24 K = 4: FAIL, CPU time limit (100s)
» Certifying NO
» =7 K =2: FAIL, CPU time limit (100s)
P =13 K = 3: FAIL, CPU time limit (100s)
» =25 K =4: FAIL, CPU time limit (100s)
Apparently even more useless

But more informative (arccos @ = min. angular sep)
Certifying YES by a > 1

> n=6,K =2: OK, 0.06s

> n=12,K = 3: OK, 0.05s

> n=24 K =4: OK, 1.48s

» n =40, K = 5: FAIL, CPU time limit (100s)
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What about polar coordinates?

> VZSTL xi:(:Eﬂ,...,xm)r—>(192-1,...,19i’K_1)
» Formulation

K-1

(t) VE<K psind; ;1 H cosVy, = X
h=F
(1) Vi<j<n |z—zl3 > p°
Vi<n k<K (sin(Wy))*+ (cos(¥))? = 1
(optional) P = 1

» Only need to decide s;; = sin?;;, and c¢;, = cos
» Replace x in (I) using (}): get polyprog in s, ¢

»  Numerically more challenging to solve (polydeg 2K )

» OPEN QUESTION: useful for bounds?
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Subsection 2

Upper bounds from SDP?
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SDP relaxation of Euclidean distances

» Linearization of scalar products
VZ,jS’fL xi'xj—>Xij

where X is an n X n symmetric matrix
> i3 = 2 - 2 = X
> |z — 2ll5 = llall3 + o ll5 — 22 - 25 = Xi + X5 — 2X55
> X =z2" = X — 22" = 0 makes linearization exact

» Relaxation:

X — a2 = 0= Schur(X,2) = e a! =0
— ) T X
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SDP relaxation of binary constraints

> Vi<n o €{0,1}ea?=q

» Let A be an n x n symmetric matrix
» Linearize a;a; by A;; (hence o? by Aj;)
» A = aa' makes linearization exact

» Relaxation: Schur(A, «) =0
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SDP relaxation of [MMS95]

max >y \
i=1
Vi<j<n X;+ ij — 2ng > Az’j
Vi <] <n Aij < Q;
VZ<j§n Aij > ozl-—i-ozj—l
Schur(X,z) > 0
Schur(A,a) = 0
Vi<n v, € [—1,1)%
a € [0,1)"
X e [-1,17
A e [0,1)” )
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Computational experiments

» Python, PICOS and Mosek
or Octave and SDPT3

» bound always equal to n

» prominent failure :-(
» Why?
» can combine inequalities to remove A from SDP
Vi<ijiXu+Xj;—2Xy > Ay>oi+o;—1
= X+ X —2X; > a+oa—1

(then eliminate all constraints in A)

» integrality of o completely lost
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SDP relaxation of [KBLMOT]|

max «
Vi<n X =1
X e [-1,1]”
X =0
a > 0
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Computational experiments

With K =2
n a*
2 | 4.00
3 | 3.00
4 | 2.66
5 | 2.50
6 | 2.40
7| 2.33
8 | 2.28
9 | 2.25
10 | 2.22
11 2.20
12 2.18
13 | 2.16
14 | 2.15
15 2.14

“knpsdpfeas2 out"

Using 132 ——
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Computational experiments

With K =3

2,24

Always — 27
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An SDP-based heuristic?

1. X* € R": SDP relaxation solution of [KBLMOT|
2. Perform PCA, get 7 € R"¥
3. Local NLP solver on [KBLMO7| with starting point &

However. . .
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The Uselessness Theorem

Thm.
1. The SDP relaxation of [KBLMO07] is useless

2. In fact, it is extremely useless

1. Part 1: Uselessness

» Independent of K :
no useful bounds in function of K

2. Part 2: Extreme uselessness

o 2N
(a) For all n, the bound is -=;

(b) 3 opt. X* with eigenvalues 0, > o,

n—17"" n—1

By 2(b), applying MDS/PCA makes no sense
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Proof of extreme uselessness

Strategy:
» Pull a simple matrix solution out of a hat
» Write primal and dual SDP of [KBLMO7]
» Show it is feasible in both
» Hence it is optimal
>

Analyse solution:
4
> its objective function value is 2n/(n — 1)
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Primal SDP

V1 <i<j<nlet Bj =(1;;) and 0 elsewhere

quantifier | natural form standard form dual var
max o max o
Vi < 1<n | Xy+ )(J'J‘ — 2)&7”‘ >« Aij e X+a<0 Wij
Aijj = —FEy — Ejj + Eij + Ejy
Vi < 7 <n X,'J' > —1 (_Eij — Eﬂ) o X < 2 Zij
X >0 X >0
a>0 a>0
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Dual SDP
mmZuz —|—2Z Yij + Zij)

1<J
Z u By + Z Yig — sz Eji) + wiinj) = 0
i<J
D wy 2 1
i<J
w,y,z >0
Simplify |v| =y+z, v=y— z:
mmZul —1—22 [vij]
1<j
ZU’ZE’LZ + Z Uzg i jl + ijAij) t 0
1<j
D wy 2 1

i<j
w,v >0
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Pulling a solution out of a hat

. 2n
a g
n—1
L S
n—1 n—1
. 2
u _—
n—1
. 1
w _—
n(n —1)
vt = 0

where 1,, = all-one n X n matriz
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Solution verification

» linear constraints: by inspection
> X = 0: eigenvalues of X* are 0, -5, ..., "5
> D il + 3o (vig(By — Eji) + wigAyg) = 0:

Z ui By + Y wi Ay

1<J

- Ezz Az

n—lg n—l% J

2[+ L (—(n=1I,+ (1, —1,))
== n ——~(—n—- n n — 1n

n—1 n(n —1)

1
= —1, >0

nn—1)""
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Corollary

2n

lim v(n, [ KBLMO07]|) = lim =2

n—00 nsoomn —1

as observed in computational experiments
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Subsection 3

Gregory’s upper bound
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Surface upper bound

Gregory 1694, Szpiro 2003

Consider a kn(3) configuration
inscribed into a super-sphere of
radius 3. Imagine a lamp at the
centre of the central sphere that
casts shadows of the surrounding
balls onto the inside surface of
the super-sphere. Each shadow
has a surface area of 7.6; the to-
tal surface of the super-ball is
113.1. So 31 — 14.9 is an up-

7.6
per bound to kn(3).
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Subsection 4

Delsarte’s upper bound
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Pair distribution on sphere surface

» Spherical z-code C has z; - x; < z (i < j <n=|C|)

1
n

» z-code: let o, =0 for t € (2,1) (- = 1/2 for KNP)
» |C| =n < oo: only finitely many oy # 0

2
/ o dt = Z o = ]all pairs| = (L

1,1] ¢11] n

ot #0
1

0‘1 = —’]’L =
vVt € ( ) oy =

Vit € [ ] O¢

NIV

{or>0]te [—1, 1}

8 o O —
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Growing Delsarte’s LP

» Decision variables: o, for ¢ |1 1]

» Objective function:

max |C| = maxn = max E o
g te[—1,1]
o1 #0
= 01 + max E o, = 14+ max E o
7 te[—1,z] 7 te[—1,z]
ot 7#0 ot 7#0

Note n not a parameter in this formulation

» Constraints:
Vit € [—1,2’] 0t20

» [P unbounded! — need more constraints
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The general approach

» We need o to encode the fact that

1
wte[-1,1] o= —[{(i5) |i,j <nAwi-a; =t}

» We use the algebraic theory in [Delsarte et al., “Spherical codes
and designs”, Geometrie Dedicata 6:363-388, 1977]

» It involves the expression of a non-negative polynomial by means
of a linear combination of Gegenbauer polynomials weighted by
the oy

I will skip over the details

» You can also see the proof in [Odlyzko, Sloane, “New bounds on
the number of unit spheres that can touch a unit sphere in n
dimensions”, J. of Comb. Theory A, 26:210-214, 1979|
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Gegenbauer cuts
» Look for function family .% : [-1,1] — R s.t.

VoeF > o(t)oy =0

» Most popular Z: Gegenbauer polynomials G

P Special case G,lf = Pﬁw of Jacobi polynomials (where v = (K — 2)/2)
h+a\ /h+p p i
Pa,,@ i h—i
g ’_2hz( >< 1>(t+1)(t_1)

» Matlab knows them: GX (t) = gegenbauerC(h, (K — 2)/2,t)
» Octave knows them: GE (t) = gs1_sf_gegenpoly_n(h, X2 t)

need command pkg load gsl before function call

» They encode dependence on K
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Delsarte’s LP

» Primal: (given some Gegenbauer polynomial index set H)

1 + max > oy
te[-1,3]
Vhe H 3 Gi(t)or > —Gif(1) { Delp|
e
YVt € [—1,2] O¢ Z 0.
MP syntax error: decision variables o in sum quantifier!
» Dual:
L4min Y (—GE(1))d,
heH
Vit € [-1, 2] S GE()d, > 1} |DelD]
heH
Vh e H dy, < 0.
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Delsarte’s theorem

» |Delsarte et al., 1977; Odlyzko & Sloane, 1979|

Theorem
Let dy > 0 and F : [-1,1] — R such that:

(i) 3H € (NU{0}) and d € R >0
s.t. F(t) =Y dGE(t)
heH

(i) Vte[-1,2] F(t)<0

F(1)
Then knz(K) S o

»  Proof based on properties of Gegenbauer polynomials

» Best upper bound: min F(1)/dy = flniI} F(1) = |DelD]
0=

» [DelD| “models” Delsarte’s theorem
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Delsarte’s normalized LP (G (1) = 1)

» Primal:
1 + max ooy
te[—1,%]
o1 #0
Vhe H > GhK(t)at
te[-1,3]
o #0
YVt € [—1, %] O¢
» Dual:
l4+min Y (—1)dp
heH
vte[-LY Y GE(®d
heH
YVhe H dj,

» dy =1= remove 0 from H

v

v

v

IN

—1 5 [DelP|
0 Vs

1 » [DelD|

0
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Focus on normalized [DelD]

Rewrite —d;, as dj:

1 + min > dy
heH
vie[-1,4] X GE(t)d, < —1 3 [DelD|
heH
Vh e H d, > 0

Issue: semi-infinite LP (SILP) (how do we solve it?)
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Approximate SILP solution

vy

Only keep finitely many constraints
Discretize [—1, 1] with a finite ' C [—1, 1]
Obtain relazation [DelD|.:

val([DelD],) < val(|DelD])

Risk: val(|DelD|;) < min F'(1)/dy

not a valid upper bound to kn,(K)

Happens if soln. of [DelD|, infeasible in [DelD|

i.e. infeasible w.r.t. some of the coly many removed constraints

348 /413



SILP feasibility

» Given SILP S =min{c'z |Vt € T a' (t)z < b(t)}

» Relax to LP S = min{c'z |Vt € T a' () < b(t)}
with T C T and |T| < oo

» Solve S, get solution z*

» Let € = max,{a’ (t)a* —b(t) |t € T}

‘ continuous optimization w.r.t. single var. t‘

» If ¢ <0 then z* feasible in S
= val(S) < cTz*

» If ¢ > 0 refine S and repeat
» Apply to |[DelD|r, get solution d* feasible in [DelD]
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|DelD| feasibility

1. Choose discretization T of [—1, z]
2. Solve
1+ min > dp
heH
vieT Y GE({#)d, < -1 }[DelD],
heH
Vhe H dp, > 0

get solution d*

3. Solve PP e =max; {1+ >, GE(t)d; |t € [-1, 2]}
heH

4. If € < 0 then d* feasible in [DelD]
= kn.(K) <1+ ZheH dy,
5. Else refine T' and repeat from Step 2
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Subsection 5

Pfender’s upper bound
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Pfender’s upper bound theorem

Thm.
Let C, = {z; € SE-L | i <nAVj#£i (z;-3; <2)};5¢0>0; f:][-1,1] = Rs.ta:
i) > flxi-zj) >0 (ii) f(t)+co < Ofort e [—1,2] (iii) f(1)+c <1

hj<n

Then kn,(K) =n < -
co

(|Pfender 2006])
Let g(t) = f(t) + co

ncg < nPeo+ Y flwi-ay) by (i)

1,j<n
= Z (f(zi-zj) +co) = Z g(xi - xj)
i,j<n i,j<n
< Zg(aji - Z4) since g(t) <0 fort < zand z; € C, for i <n

i<n

ng(1) since |||l =1 for i <n
< n since g(1) < 1.
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Pfender’s LP

» Condition (i) of Theorem valid for conic combinations of suitable
functions F:

f®) = Z enfn(t)  for some ¢p, > 0,

heH
e.g. F = Gegenbauer polynomials (again)
» Get SILP
max o (minimize 1/¢y > n)
ceRIA|
VtE[—l,Z] Z ChG}IL{(t)"_CO < 0 (1)
heH
Y oenGE(Q) +eo < 1 (i)
heH
VheH ¢, = 0 (conic comb.)

» Discretize [—1, 2] by finite T, solve LP, check validity (again)
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Delsarte’s and Pfender’s theorem compared

» Delsarte & Pfender’s theorem look similar:
Delsarte ‘ Pfender
(i) F(t) G. poly comb (i) f(t) G. poly comb
(i) Vt € [-1,2] F(t) <0 | (ii) Vt € [-1,2] f(£) +co <O
(iit) (1) +co < 1
= kn.(K) < £D = kn.(K) < &

> Try setting F(t) = f(t) + co: condition (ii) is the same

» By condition (iii) in Pfender’s theorem

kn,(K) < R SCO

= Delsarte bound at least as tight as Pfender’s
> Delsarte (i) = [, y F(t)dt > 0= [, (f(t) +co)dt >0
Pfender (i) = f[—1 1 f(t)dt > 0 more stringent

If F are Gegenbauer polynomials, Delsarte requires weaker condition and yields
tighter bound; but Pfender allows for more general F, can get itmproved results

see [Pfender, “Improved Delsarte bounds for spherical codes in small dimensions”,
J. Comb. Theory A, 114:1133-1147, 2007|
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The final, easy improvement

» However you compute your upper bound B:
» The number of surrounding balls is integer
» If kn,(K) < B, then in fact kn,(K) < | B]
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Outline

Introduction Summary

I}[P language Random projections in LP

Solvers Random projection theory

MP systematics Projecting LP feasibility

Some applications Projecting LP optimality
Decidability Solution retrieval

Formal systems Application to quantile regression

Godel

Sparsity and 1 minimization
Motivation
Basis pursuit
Theoretical results
Application to noi
Improvements

Turing
Tarski
Completeness
MP solvability
Efficiency and Hardness

Some combinatorial problems in NP o
NP-hardness Kissing Number Problem

Lower bounds

Upper bounds from SDP?
Gregory’s upper bound
Delsarte’s upper bound
Pfender’s upper bound

and incompleteness

channel encoding

Complexity of solving MP formulations
Distance Geometry

The universal isometric embedding

Dimension reduction

Dealing with incomplete metrics

The Isomap heuristic Clustering in Natural Language
Distance geometry problem Clustering on graphs

Distance geometry in MP Clustering in Euclidean spaces
DGP cones Distance instability
Barvinok’s Naive Algorithm MP formulations

Isomap revisited Random projections again
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Job offers

Optimisation / Operations Senior Manager

vinerde VINCI Airports aston IS&T Controller

Rueil-Malmaison, lle-de-France, France Alstom
B S _— Saint-Ouen, FR
for the delivery of the various optimization projects... to the success of each optimization
project, The Railway industry today is reviews, software depl
running... jobsearchalstom.com

Fares Specialist / Spécialiste Optimisation des Tarifs Aériens
Egencia, an Expedia company

. Pricing Data Scientist/Actuary - Price Optimization Specialist(H-F) Courbereie- iR
Z0TC AXAGlobal Direct EgenciaChaque année, Egencia des milliers de sociétés réparties dans plus de 60
Région de Paris, France pays & mieux gérer | devoyage. N modernes et
The senior pri and Innovation team, and will be dexception 4 des mill voyageurs, de la 31a finalisation de leur
part.. voyage. Nous répondons..
Growth Data scientist - Product Features Team Automotive HMI Software Experts or Software Engineers
= Deezer Elektrobit (EB)
Paris, FR Paris Area, France
OverviewPress play on your next adventure! Music... to join the Product Performance & Elektrobit in Paris interesting.. imizatic , andfor

Optimization team... www.deezercom software...

Analystes et C - Banque -Optimisation des opérati financiére:

> Accenture
Région de Paris, France Deployment Engineer, Professional Services, Google Cloud

N tes ] diplomés etd I ési ~
herchons d I H/F désireux de travailler & cooge

des opé b del

sur des
opérationnels et des processus) en France et au Benelux. Les postes sont & pourvoir en CDI, sur
base d'un rattachement...

Paris, France
Note: By applying to this position your... migration, network optimization, security best...

Electronic Health Record (EHR) Coordinator (Remote) Pr + i

Aledade, Inc. - Bethesda, MD Marriott International, Inc - 4,694 reviews - Bethesda, MD 20817
Must have previous i or with ambulatory EHRs and Analyzes data and builds optimization,. Programming models and familiarity with
practice software, p! bly with expertise in Greenway, ... optimization software (CPLEX, Gurobi).

Operations Research Scientist Research Scientist Aws New Arti ig

Ford Motor Company - 2,381 reviews - Dearborn, M| / Research Scientist views - Palo Alto, CA

Strong knowledge of optimization techniques (e.g. Develop optimization frameworks to We are pioneers in areas such as recommendation engines, product search, eCommerce
support models related to mobility solution, routing problem, pricing and... fraud detection, and large-scale optimization of fulfillment center...
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A typical job offer

Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager

will have the responsibility to optimise and develop operational aspects for VINCI Airports current

and future portfolio of airports. They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering the objectives of the Technical
Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial
Director in the development and implementation of plans, strategies and reporting processes. As part

of the exercise of its function, the Optimisation Manager will undertake the following: Identification
and development of cross asset synergies with a specific focus on the operations and processing functions
of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives
of the various technical services agreements, the strategy of the individual airports and the Group.
This function will include: Participation in the definition of airport strategy. Definition of this
airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation
Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various
technical services agreements with our airports by developing specific technical competences from the
Head Office level. Oversee the management and definition of all optimisation projects. Identificationm,
overview and management of the project managers responsible for the delivery of the various optimization
projects at each asset. Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Development and implementation of the Group
optimisation plan. Definition of economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service
levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the
strategies, trends and best practices of the airport industry and other reference industries in terms of
the applicability to the optimization plan. Study of the needs and preferences of the passengers,
through a continuous process of marketing research at all of the airports within the VINCI Airports
portfolio. Development of benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Development and participation in the expansion or refurbishment projects
of the airports, to assure a correct configuration and positioning of the operational and commercial
area that can allow the optimization of the revenues and operational efficiency. Support the Director
Business Development through the analysis and opportunity assessment of areas of optimization for all
target assets in all bids and the preparation and implementation of the strategic plan once the

assets are acquired. Maintain up to date knowledge of market trends and key initiatives related

to the operational and commercial aspects of international airports [...]

...and blah blah blah: 1S THIS APPROPRIATE FOR MY @Y%,



Rationalizing the application process

vvyyvyy

v

You collect many offers
Don’t have time to tailor application to each offer
Partition offers into groups: clustering

Need a similarity relation
given two offers, do they describe “similar jobs™?
Try Natural Language Processing (NatLangProc):
»  Automated summary
»  Relation Eztraction
» Named Entity Recognition (NER)
» Keywords
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Automated summary
./summarize.py jobOl.txt

They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering
the objectives of the Technical Services Agreements activities of VINCI
Airports. The Optimisation Manager will support the Commercial Director
in the development and implementation of plans, strategies and reporting
processes. Identification and development of cross asset synergies with
a specific focus on the operations and processing functions of the airport.
Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Definition of
economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of
processing efficiency, service levels, passenger convenience and
harmonization of the non-aeronautical activities. Development of
benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Maintain up to date knowledge of market
trends and key initiatives related to the operational and commercial
aspects of international airports. You have a diverse range of
experiences working at or with airports across various disciplines such
as operations, ground handling, commercial, etc. Demonstrated high

level conceptual thinking, creativity and analytical skills.

Does it help? hard to say
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Relation Extraction
./relextr-mitie.py jobOl.txt

======= RELATIONS =======

Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office

Head Office [ INFLUENCED_BY ] Self

Head Office [ INTERRED_HERE ] Self

VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self

Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office

Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEQOPLE_INVOLVED ] Head Office

Self [ PLACE_OF_DEATH ] Head Office

Head Office [ RELIGION ] Self

VINCI Airports [ RELIGION ] Optimisation Strategy

Does it help? hardly
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Named Entity Recognition

./ner-mitie.py jobOl.txt

==== NAMED ENTITIES =====

English MISC

French MISC

Head Office ORGANIZATION

Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON

Technical Services Agreements MISC
VINCI Airports ORGANIZATION

Does it help? ...maybe

For a document D, let NER(D) = named entity words
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Subsection 1

Clustering on graphs
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Constructing the graph

1. Recognize named entities from all documents
2. Use them to compute similarities among documents

3. Use modularity clustering
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The named entities

=

oo WwoN

Operations Head Airports Office VINCI Technical Self French / Strategy Agreements English
Services Optimisation

Europe and P&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earniz AGD
AXA Irmuvatwn Coordinate International En h

Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization
Crunch/analyze Team Press Performance Deezer Data Computer

Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front
Benelux

Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance
market develop Finance & ISET Saint-Ouen Region Control Followings VP Sourcing external

Corporate Sector and Alstom Tax Directors Strategic Committee

‘ustomer Specialist Expedia Service Interact Paris Travel Airline French France Management
Egencia English Fares with Company Inc
Paris Integration France Automation Automotive French . Linuz/Genivi HMI Ul Software EB
Architecture Elektrobit technologies GUIDE Engineers German Technology SW well-structured
Experts Tools
Product Google Managers Python JavaScript AWS JSON BigQuery Java Platform Engineering
HTML MySQL Services Professional Googles Ruby Cloud OAuth
EHR Aledades Provide Wellness Perform ACO Visits EHR-system-specific Coordinator Aledade

Medicare Greenway Allscripts
Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata € Python Company

GDIA Ford Visa SPARK Data Applied Science Work C 2 Linux Physics Microsoft
Operations Monte JAVA Mobility Insight Analytics Engineering Computer Motor SQL Operation
Carlo PowerPoint

Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics
Service Maintains Deliver SM&G SAS/HPF SAS Data Science Economics Marriott PROFILE
Providers OR Engineering Com ﬁuter SQL Education

Alto Statistics Java Sunnyvale Research ML Learning Science Operational Machine Amazon
Computer C++ Palo Internet R Seattle

LLamasoft Work Fortune Chain Supply C# Top Guru What Impactful Team LLamasofts Makes
Gartner Gain

Worldwide Customer Java Mosel Service Python Energy Familiarity CPLEX Research Partnering
Amazon R SQL CS Operations

Operations Science Research Engineering Computer Systems or Build

Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain
Economics Experience R Research US Scientist UK SQL Japan Economist

Competency Statistics Knowledge Employer communication Research Machine EEO United ORMA
Way OFCCP Corporation Mining € C# Python Visual Studio Opportunity Excellent Modeling Data
Jacksonville Arena Talent Skills Science Florida Life Equal AnyLogic Facebook CSX Oracéeﬁf;l" £13

Dttt ormas Voconrma (Irmereratamae Tovdaretonml] Utmomarry f Qtmateoe Amvalortarme o ram comam ey  Tamvmvardom Thvr oy e e b




Word similarity: WordNet

entity

abstract_entity physical_entity thing

- —

absmaction physical object Eorror

- ~_
- T

instrumentation being

conveyance person

mad vehicle public ui@}sport male person  female person

- -

P - ~_ | |
Wheeled vehicle bus train béy g%rl
—1

Self propelled bicycle School bus Boat train
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WordNet: hyponyms of “boat”

v,‘,‘ anoe

cdpoe

birchba

R

rowing_boat
jollyeboat
4
vl
PRvhgr steamboat
L/.b- eshell et rea
04 -

- gorslola
sma " racine_skiff
lifebpéat

jhaleboa@urRoat

fioat
sutiracle

mot@Epoat

tbepEeaihoat

otorboat hiytteofoil
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Wu-Palmer word similarity

Semantic WordNet similarity between words wy, wo:

i - 2 depth(lca(wy, ws))
MU ) e (shpath (wy, wn)) + 2 depth(lca(wr, w2))

» lca: lowest common ancestor

earliest common word in paths from both words to WordNet root
>
Example: wup(dog, boat)?

lca( dog, boat ) = whole; depth( whole ) = 4

18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate
-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat

13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat

wup(dog, boat) = 8/21 = 0.380952380952
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Extensions of Wu-Palmer similarity

» to lists of words H, L:

wup(H, L) = ﬁ Z Z wup(v, w)

veEH weL

» to pairs of documents Dy, Ds:
wup (D1, D) = wup(NER(D;), NER(Dy))

» wup and its extensions are always in [0, 1]
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The Wu-Palmer similarity matrix

0.47 0.42 0.37 0.46 0.35 0.43 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.36 0.47 0.45 0.45 0.43 0.51 0.30 0.42
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.33 0.31 0.29 0.40 0.23 0.28 0.27 0.28 0.26 0.31 0.21 0.26
0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39
0.54 0.46 0.43 0.52 0.39 0.49 0.49 0.51 0.31 0.46 1.00 0.39 0.56 0.29 0.38 0.36 0.36 0.34 0.41 0.24 0.35
0.50 0.45 0.40 0.49 0.37 0.45 0.47 0.48 0.29 0.43 0.39 1.00 0.70 0.40 0.50 0.49 0.48 0.46 0.54 0.35 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.27
0.38 0.35 0.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43
0.49 0.43 0.39 0.48 0.36 0.44 0.45 0.47 0.28 0.42 0.38 0.50 0.29 0.48 1.00 0.39 0.39 0.36 0.45 0.26 0.37
0.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.44
0.47 0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.43
0.44 0.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.53 0.31 0.43
0.54 0.47 0.43 0.53 0.40 0.49 0.50 0.51 0.31 0.46 0.41 0.54 0.33 0.52 0.45 0.54 0.51 0.53 1.00 0.36 0.46
0.31 0.32 0.24 0.33 0.26 0.28 0.28 0.30 0.21 0.31 0.24 0.35 0.20 0.30 0.26 0.33 0.32 0.31 0.36 1.00 0.47
0.44 0.40 0.35 0.44 0.34 0.40 0.40 0.42 0.26 0.39 0.35 0.46 0.27 0.43 0.37 0.44 0.43 0.43 0.46 0.47 1.00
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The Wu-Palmer similarity matrix

1.00
0.63
0.51
0.51
0.66
0.45
0.46
0.47
0.72
0.58
0.54
0.50
0.72

0.49
0.47
0.47
0.44
0.54

0.44

Too uniform! Try zeroing values below median
0.49 0.47 0.47

0.63
1.00
0.45
0.45
0.54

0.57
0.49
0.46
0.45
0.59

0.47

0.51
0.45
1.00

0.53

0.58
0.47

0.59

0.51
0.45

1.00
0.63
0.45
0.46
0.46
0.67
0.56
0.52
0.49
0.68

0.48
0.47
0.47
0.45
0.53

0.44

0.66 0.45 0.46 0.47 0.72

0.54 0.57

0.53 0.58

0.63 0.45 0.46 0.46 0.67

1.00 0.49

1.00 0.66

1.00 0.44 0.66

0.44 1.00 0.67

0.49 0.66 0.66 0.67 1.00
0.54 0.54 0.55

0.49 0.49 0.51
0.45 0.47 0.48
0.50 0.67 0.67 0.68

0.44 0.45 0.47

0.49 0.50 0.51

0.58
0.49
0.47
0.56

0.54
0.54
0.55

1.00
0.46
0.43
0.59

0.46

0.54
0.46

0.52
0.49
0.49
0.51

0.46
1.00

0.56

0.50
0.45

0.49

0.45
0.47
0.48

0.43

1.00
0.70

0.50
0.49
0.48
0.46
0.54

0.72
0.59
0.59
0.68
0.50
0.67
0.67
0.68

0.59
0.56
0.70
1.00

0.48

0.44
0.45
0.47

0.47

0.45
0.45

0.49

0.45

1.00
0.48
0.46
0.54

0.47

0.44
0.45

0.48

0.46

0.48
1.00

0.51

0.45

0.46

0.54
0.47

0.53

0.49
0.50
0.51

0.46

0.54

0.52
0.45
0.54
0.51
0.53
1.00

0.46

0.44

0.44

0.46

0.43

0.44

0.46

1.00 0.47
0.47 1.00

371 /413



The similarity graph

N

A \/a\ 4
N

‘ »‘f" "“"%
i\‘ W ,m/.‘&‘&
N =

G = (V, E), weighted adjacency matrix A
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Modularity clustering

“Modularity is the fraction of the edges that fall within a cluster minus
the expected fraction if edges were distributed at random.”

>
>
>

“at random” = random graphs over same degree sequence
degree sequence = (ki,...,ky) where k; = |N(4)|

“expected” = over all possible “half-edge” recombinations

degree sequence invariant operation

G—0 0——0 O
@ &——06 G

expected edges between w,v: kyk,/(2m) where m = |E|
mod(u, ’U) = ﬁ(Auv — kuk‘v/(Qm)) param
mod(G) = > mod(u,v)Tyuy

{uv}eE
Zyp = 1 if u,v in the same cluster and 0 otherwise var

“Natural extension” to weighted graphs: ko =Y, Auv, m =3, Auv

373 /413



Use modularity to define clustering
> What is the “best clustering”

» Maximize discrepancy between actual and expected

“as far away as possible from average”

max  ». mod(u,v)Ty,
{u,v}eFE
YueViveV xy €{0,1}

» Issue: optimum could be intransitive

» Idea: treat clusters as cliques (cven if zero weight)
= clique partitioning constraints for transitivity
Vi<j<k wmytag—zg, < 1
Vi<j<k  @ij— i+ Tk 1
Vi<j<k — Zij + Tk + Tik 1

if i, € C and j,k € C then i,k € C
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The resulting clustering

job03.0xt

job10

)

job01, job02, job03, job05

job04, job06, job22

cluster 1:

cluster 2:

job27.6xt

job07, job08, jobll, jobl2, job20

cluster 3:
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[s it good?

Vinci Accenture | Elektrobit
Axa Expedia Google
Deezer | fragmentl | Ford
Alstom Marriott
Aledade Llamasoft
fragment2

> ? — named entities rarely appear in WordNet

» Desirable property: chooses number of clusters
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Subsection 2

Clustering in Euclidean spaces
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Clustering vectors

Most frequent words over collection of documents
./keywords.py

global environment customers strategic processes teams sql job industry use
java developing project process engineering field models opportunity drive
results statistical based operational performance using mathematical computer
new technical highly market company science role dynamic background products
level methods design looking modeling manage learning service customer
effectively technology requirements build mathematics problems plan services
time scientist implementation large analytical techniques lead available plus
technologies sas provide machine product functions organization algorithms
position model order identify activities innovation key appropriate different
complex best decision simulation strategy meet client assist quantitative
finance commercial language mining travel chain amazon pricing practices
cloud supply

(ted|t=w)|C]

tfidf d) =
idfo(w, d) {heClweh}
keyword(i,d) = word w having i*" best thdfc(w, d)value
vec(d) = (thidfe(keyword(i,d),d) | i < m)

Transforms documents to vectors

’tfidf: text frequency inverse document frequency
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Minimum sum-of-squares clustering

» MSSC, a.k.a. the k-means problem
» Given points py,...,p, € R™, find clusters Ci,...,Cy

minz Z lpi — centroid(Cj)Hg

i<k i€C;
where centroid(C;) = ﬁ S oo
7 ieC;

» /-means alg.: given initial clustering Cy, ..., Cj

1: Vj < k compute y,; = centroid(C})

2: Vi <n,j <k if y; is the closest centr. to p; let 2;; = 1 else 0
3: Vj <k update Cj < {p; | ;5 = 1 Ni < n}

4: repeat until stability
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k-means with k = 2

Vinci
Deezer
Accenture
Expedia
Google
Aledade
Llamasoft

AXA
Alstom
Elektrobit
Ford
Marriott
Amazon 1-3
CsSX
WestRock
MITRE
Clarity
fragments 1-2
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k-means with & = 2: another run

Deezer
Elektrobit
Google
Aledade

Vinci

AXA
Accenture
Alstom
Expedia
Ford
Marriott
Llamasoft
Amazon 1-3
CSX
WestRock
MITRE
Clarity
fragments 1-2
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k-means with k = 2: third run/

AXA Vinci
Deezer Accenture
Expedia Alstom
Ford Elektrobit
Marriott Google
Llamasoft Aledade
Amagzon 1-3

CSX

WestRock

MITRE

Clarity

fragments 1-2

A fickle algorithm
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why?

We can’t trust k-means
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Subsection 3

Distance instability
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Nearest Neighbours

k-NEAREST NEIGHBOURS (k-NN). '
Given: L e
> keN S
» a distance function d : R™ x R™ — R, ) '
> g set X CR" Ll
» a point z € R" N X, ’ :
find the subset Y C X such that:
! ‘ 1
(a) 1V = , Zk_'
=9
(b) WyeY,zeX (dzy) <d(zx))

>
>

basic problem in data science

pattern recognition, computational geometry, machine learning, data
compression, robotics, recommender systems, information retrieval, natural
language processing and more

FExample: Used in Step 2 of k-means:
assign points to closest centroid

[Cover & Hart 1967]
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With random variables

» Consider 1-NN
» Let ( = |X|

» Distance function family
{d" :R" x R" —» R, },,

» For each m:

4
| 4

| 2

random variable Z™ with some distribution over R"
for i < ¢, random variable X" with some distrib. over
R’n

X" iid w.r.t. 7, Z™ independent of all X"

Dy = min dm(zm, XT)
D =maxd™(Z™, X™)
i<t
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Distance Instability Theorem

» Let p > 0 be a constant
> If

B <l (d™(Z™, X)) converges as m — 00
then, for any ¢ > 0,

closest and furthest point are at about the same distance

Note “3¢” suffices since Ym we have X" iid w.r.t. ¢
[Beyer et al. 1999]
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Distance Instability Theorem

» Let p > 0 be a constant
> If

o (@2, Xy Y _
st Vo (g ) =

then, for any ¢ > 0,

lim P(D™, < (1+¢)D™, ) =1

max
m—0o0

Note “37” suffices since Vm we have X" iid w.r.t. 4
[Beyer et al. 1999
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Preliminary results

» Lemma. {B™},, seq. of rnd. vars with finite variance
and lim E(B™)=bA lim Var(B™) = 0; then
m—0oQ

m—r 00

Ve >0 lim P(|B™ —b|| <e) =1
m—0o0

denoted B™ —p b‘

> . {B™},, seq. of rnd. vars and g a
continuous function; if B™ —p b and ¢(b) exists,

» Corollary. If {A"},,, {B™} seq. of
rnd. vars. s.t. A™ —p a and B™ —p b # 0 then

A™m a
B P
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Proof

- = E((d™(Z™, X™))?) independent of i

(since all X" iid)

V= Ay
» E(V;,) =1 (rnd. var. over mean) = lim,, E(V,,) =1
» Hypothesis of thm. = lim,, Var(V;;,) =0
» Lemma=V,, —pl
VT =V, |i <) —p 1 (by iid)

Slutsky’s thm. = min(V™) —p min(1) = 1
simy for max

max (V™)
min(V™)

Corollary = —p 1

Difiax _ pmmax(V")

in fom min(Vm)
Result follows (defn. of —p and D, > DI )
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A precision limit

» Closest and farthest point from z:
can’t be told apart with precision > ¢

» In real algorithms, often want “closest”

» Hope of telling apart closest from second-closest?
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Loss of precision € for K < 10000
Uniform(0, 1)

1

0

“distres-10000.dat" using 1:2 ——

o 1000

2000

3000

4000

5000 6000 7000 8000 9000 10000

Exponential(1)

1

0

“distres_exp-10000.dat” using 12 ——

0 1000

2000

3000

4000

5000 6000 7000 8000 9000 10000

Normal(0, 1)

1 T T

“distres_normal-10000.dat" using 1:2 ——

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P Precision falls exponentially fast

v

Generates algorithmic instability
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When it applies

v

iid random variables from any distribution

Particular forms of correlation

e.g. U; ~ Uniform(0,v/i), X, = Uy, X; = U; + (X;_1/2) for i > 1
Variance tending to zero

e.g. X; ~N(0,1/7)

Discrete uniform distribution on m-dimensional
hypercube

Computational experiments with k-means:
instability already with n > 15
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...and when it doesn’t

» Complete linear dependence on all distributions
can be reduced to NN in 1D

» Exact and approximate matching

» Query point in a well-separated cluster in data

» Implicitly low dimensionality
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Subsection 4

MP formulations
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Why?

\{

With k-means being so fast, why bother with MP?
» Principle:
changing an MP is easier than changing an algorithm
» Side constraints
e.g. clusters are spheres, or other shapes
» Clustering subproblems

e.g. assign resources subject to optimal clustering

» MP delivers a bound
“can’t do better than bound” guarantee
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MP formulation

min 37 37 [lpi — y;ll5 i

LYS  i<n j<k

Vi<k Si Do Pty =
7 i<n
J<k
Vi <k Yoy =
i<n
Vi<k Yj €
r €
s €

Yj

1
Sj
R™

{O, 1}nk
Nk

(MSSC)

variables

MINLP: nonconvex terms; continuous, binary and integer
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Reformulation

The (MSSC) formulation has the same optima as:

min Y > Pijxy; )
.y, P i<n <k
Vi<n,j<k pi—yli < Py
Vi <k DoPiti; = Y YT
i<n i<n
i<k
Vi <k y; € ([Iginpih, m<aXp¢h] | h < k)
z e {01}
P € [0,PY"* J

» The only nonconvexities are
products of binary by continuous bounded variables
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Products of binary and continuous vars.

>
>
>
>
>

Suppose term xy appears in a formulation

Assume z € {0,1} and |y € [0, 1] | is bounded
means “either z =0 or z = ¢”
Replace xy by a new variable z
Adjoin the following constraints:
z € [0,1]
(1—fv)§ z <y+(l-ux)
r< z <z

= Everything’s linear now!

[Fortet 1959]
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Products of binary and continuous vars.

Suppose term zy appears in a formulation

Assume x € {0,1} and |y € [y*, yY]| is bounded

>
>
» means “either z =0 or z = y”
» Replace xy by a new variable z
>

Adjoin the following constraints:

z € [min(y*,0), max(y",0)]
y— (1 —z)max(|y”], [y"]) < 2z <y+ (1 —z)max(|y”|, [y"])
< z

—amax(|y"], [y"]) < wmax(|y"], [y"|)
» = Everything’s linear now!

[L. et al. 2009]
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MSSC is a convex MINLP
>

i<nj<k
Vi<n,j<k 0<

Vi<n,j<k Pj—(1-z;)PY<
Vi<n,j<k

min
z,y,P,x,¢

llp: — ;i3

Zpixij

Vi <k

Vi<n,j<k  y;—(1—ay)max(jy"],[yY]) <

Vi<n,j<k  —azymax(jy"|[yY]) <

> @i
i<k
Vi<k o y;

Vi<n

x

X
Vi<n,j<k &ij

;s &ijy y¥, yY are vectors in R™

M M M M M

< By

<a;;PY

Py
Z &ij

i<n

<yj+ (1 —wi;) max(ly”|, ly"])
< @i max(|y”|, [y7])

1

v",y"]

{0,1}"F

[0, PUI"E

[0, PY]"™*

[min(yL, 0), max(yU7 0)]
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How to solve it

» cMINLP is NP-hard
» Algorithms:

» Outer Approzimation (OA)
» Branch-and-Bound (BB)

Best (open source) solver: BONMIN

v

» Another good (commercial) solver: KNITRO
» With k = 2, unfortunately. . .

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution,
best possible 6.1855969 (32142.17 seconds)

» Interesting feature: the bound
guarantees we can’t do better than bound

all BB algorithms provide it
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BONMIN

Alstom Vinci
Elektrobit AXA
Ford Deezer
Llamasoft Accenture
Amagzon 2 Expedia
CSX Google
MITRE Aledade
Clarity Marriott
fragment 2 | Amazon 1 & 3

WestRock

fragment 1
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Couple of things left to try

» Approximate ¢ by ¢; norm
0y is a linearizable norm

» Randomly project the data
lose dimensions but keep approrimate shape
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Linearizing convexity

> Replace [[p; — ;3 by l[pi — ;llx
> Warning: optima will change

but still within “clustering by distance” principle

Vi<n,j <k |pi—ylli=> IPia — Yjal
a<d

» Replace each | - | term by new vars. Q;jq € [0, PY]
Adjust PY in terms of || - |1

» Adjoin constraints

Vi<n i<k Y Qija
a<d
Vi<n,j<ka<d —Qija

IN
X

IN

DPia — Yja < Qija

» Obtain a MILP
Most advanced MILP solver: CPLEX
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CPLEX

objective 112.24, bound 39.92, in 44.74s

AXA
Deezer

Ford
Marriott
Amazon 1-3
Llamasoft
CsX
WestRock
MITRE
Clarity
fragments 1-2

Vinci
Accenture
Alstom
Expedia
Elektrobit
Google
Aledade

Interrupted after 281s with bound 59.68
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Subsection 5

Random projections again
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Works on the MSSC MP formulation too!

min Y 3 | Tpi — Ty;ll5 245 )
TYsS  i<n j<d
Vi <d é > Tpixy; = Ty,
i<n
Vi<n Yowyy =1
Jj<d y
\V/j S d Z Tijg = S5
i<n
vji<d y € R™
x € {0,1}
s € N

where T 1s a k X m random projector
replace T'y by v/
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Works on the MSSC MP formulation too!

min >0 37 ||Tp; — yjll5 i )
Y8 i<n j<d
Vj<d % Y. Tpivi; =
i<n
Vi<n Yoy =1
j=d MSSC!
VJ S d Z Tij = S5 ( )
<n
Vi <d y; € RF
r € {0,1}
s € N¢

> where k = O(% Inn)
» less data, || < |y| = get solutions faster
P Yields smaller cMINLP
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BONMIN on randomly proj. data

objective 5.07, bound 0.48, stopped at 180s

Deezer

Ford
Amazon 1-3
CSX
MITRE

fragment 1

Vinci
AXA
Accenture
Alstom
Expedia
Elektrobit
Google
Aledade
Marriott
Llamasoft
WestRock
Clarity
fragment 2
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CPLEX on randomly proj. data

... although it doesn’t make much sense for || - |1 norm...

objective 53.19, bound 20.68, stopped at 180s

Vinci AXA
Deezer Accenture
Expedia Alstom
Google Elektrobit
Aledade Marriott
Ford Llamasoft
Amazon 1-3 WestRock
CSX MITRE
Clarity fragment 1-2
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Many clusterings?

Compare them with clustering measures

e.g. “adjusted mutual information score”

bonmRP bonmin cplxRP

bonminRP 1.
.170
.095
.333

bonmin
cplexRP
cplex

kmeans2-2
kmeans2-3
modularity

0
0
0
kmeans2-1 0.
0
0
0

000

333

.316
.315
.346

0.
.000
.021
.079
.179
.179
.086
.178

O OO O OO

170

0.
.021
.000

O OO O OO

095

044

.095
.185
.069
.055

2]
el
=
[0}
"

OO OO, OO0OOo

.333
.079
.044
.000
.317
.316
775
.271

g
o
I
=

OO Or OO OoOOo

.333
.179
.095

317

.000
.316
.249
.271

W
8
o
o
N

OO OO0OO0OO0OOo

.316
.179
.185
.316
.316
.000
.381
.286

kmea3
.315
.086
.069
.7T75
.249
.381
.000
.252

O, OO O0OO0OO0OOo

=1
o
o
e
—

O OOO0OO0OOoOOo

.346
.178
.055

271

.271
.286
.252
.000
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THE END
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