
Computability issues in MINLP

Leo Liberti

LIX CNRS, École Polytechnique, Institut Polytechnique de Paris,
91128 Palaiseau, France

Email address: leo.liberti@polytechnique.edu





Contents

Chapter 1. Computability 1
1.1. Formal systems 1
1.2. Decision problems 4
1.3. A FS for MP? 5
1.4. The PA1 formal system 6
1.5. The Reals formal system 8
1.6. Incompleteness of PA1 9

Bibliography 13

v





CHAPTER 1

Computability

In this chapter we look at whether MINLP can be solved. By “solving” a class
of problems such as MINLP we mean whether there exists a single algorithm that
solves every instance of every problem in the class MINLP. We prove that such an
all-powerful algorithm does not exist.

1.1. Formal systems

Computation is a mechanical process, namely a process that does not require
human intervention. This process is based on the manipulation of strings of char-
acters, so we call it “syntactical”. We represent such processes by means of math-
ematical entities known as “formal systems”.

• A formal system (FS) S is defined by an alphabet, a grammar, some
axioms, and some inference rules.

– The alphabet is a finite or countable set of symbols.
– The (formal) grammar encodes the rules for deciding whether a

given string of alphabet symbols is a (syntactically) valid formula
or sentence. The symbols in the left hand side of grammar rules
are nonterminal symbols. The others are terminal symbols; the first
nonterminal symbol is called initial.

– The set A of axioms contains syntactically valid sentences that is
assumed to hold (see below about the interpretation of “holding”).

– The set R of inference rules contains rules for constructing new
sentences that hold from old ones that hold.

• The theory of a FS is the smallest set of sentences obtained by recursively
applying R to A. By definition of inference rules, all sentences in a theory
hold in the FS.

The verification process encoded in the grammar decides whether the given
string is syntactically valid or invalid in the FS. If it is valid, it may be a formula
or a sentence. A formula has at least one free variable symbol, i.e. a symbol that
stands for something else, but which remains unspecified. Sentences have no free
variable symbols. This distinction will become clearer later.

The grammar describes an algorithm that takes a string in input, and recur-
sively matches its parts to the various nonterminal symbols in the grammar. It
stops with YES (i.e. the string is valid) when all the parts have been matched
to terminal symbols, otherwise it stops with NO. Yet unmatched parts are called
terms.

Example 1.1 (How grammars work). Let us consider the following grammar
for a tiny fragment of English (the alphabet is the English alphabet). The “|”
character in the right hand sides of the grammar rules stands for “or”.

1



2 CHAPTER 1. COMPUTABILITY

phrase −→ subject verbal object
subject −→ This | Computers | building | I
verbal −→ adverb verb | verb
adverb −→ never
verb −→ is | run | am | tell

object −→ the noun | a noun | noun
noun −→ university | world | cheese | lies

Consider the string “This is a university”. The grammar starts with the initial
symbol phrase, and matches the whole string to it. Then it looks in the grammar
for the definition of phrase, finding “subject verbal object”. It then looks for the def-
inition of subject, finding an alternative between “This”, “Computers”, “building”,
and “I”, all of which are terminal symbols. Since “This” matches the first word in
the string, “This” becomes a term of type subject. It then climbs back up in the
recursion calls, and follows verbal, and so on. Eventually it maches all words, and
verifies that the string is valid. In the process, it finds the terms “This” (subject),
“is” (verbal and verb), “a university” (object), and “university” (noun). Similarly,
this grammar verifies that the strings “a building is a university”, and “Computers
run a university” are also valid. □

A sentence holds in the FS when it is an axiom, or it is derived from axioms
by a sequence of inference rules. When we say that “a sentence holds in the FS”
we do not specify what status holds for the sentence. We leave this ambiguous
because FSs are syntactical constructs, whereas specifying a status (e.g. “holds
true”) involves a semantic component. If you require a firmer grounding, I suggest
you think of “hold” as “is provable”, on the basis that FSs are syntactical constructs
supposed to describe mechanical (e.g., computerized) proofs. If two sentences P,Q
are identical, we write P ≡ Q.

Example 1.2 (Sentences that hold and those that don’t). With reference to
the grammar in Example 1.1, let us now say that “a building is a university” is
an axiom, and none of the other sentences are axioms. Let us also say that the
inference rules allow the replacement of the string “a building is” with “Com-
puters run”. Then one may never derive “This is a university” from axioms and
inference rules, which. On the other hand, one may derive the sentence “Computers
run a university”. Therefore “This is a university” does not hold in this FS, but
“Computers run a university” holds. □

Example 1.3 (Sentences vs. formulæ). With reference to the grammar in Ex-
ample 1.1, “This is a university” contains a pronoun, “this”, which acts like a
variable symbol. Even outside of FSs, no human could say whether “This is a uni-
versity” is true or false without knowing what “This” refers to. Back into the FS,
pronouns may be resolved (for example by means of an inference rule that replaces
“This” with some other string such as “a building”) or not. In this case, the pro-
noun is not resolved, which means that this string is a valid formula, rather than a
sentence. Unlike sentences, the property of “holding” does not apply to formulæ.

Example 1.4 (Spelling out the grammar and the inference rules). The FS A
of alternating strings [2, Ch. I, §0].

• Alphabet: {a, b,∅}.
• Grammar:

S −→ S a | S b | ∅



1.1. FORMAL SYSTEMS 3

• Axioms:

a(1.1)

b(1.2)

a b(1.3)

b a(1.4)

∀s ∈ S s a → s a b(1.5)

∀s ∈ S s b → s b a(1.6)

• Inference rules: from two sentences P , P → Q that hold, the sentence
Q holds (modus ponens).

Some remarks are in order.

(1) The terminal symbol ∅ is known as the “empty symbol”.
(2) Consider the sentence a b a: is it valid? We use the grammar, starting

with the rule S → S a, which yields S to be the sentence a b. We then
invoke the rule S → S b, which yields S to be the sentence a. Next, we
invoke S → S a again, yielding S = ∅. The process ends having matched
the whole given sentence, which means that the grammar accepts the
sentence: the sentence is valid. Is a a valid? By applying S → S a twice,
we see that the sentence is valid. By contrast, a b c is an invalid sentence.

(3) The last two axioms (1.5)-(1.6) do not just use alphabet characters, but
also other characters. Each such axiom is not really an axiom but rather
an axiom schema, i.e. a “template” describing a countable set of axioms.
These schemata state: “for every sentence of nonterminal type S in this
FS, every sentence that looks syntactically like “s a → s a b” is an ax-
iom”. Schemata are allowed on the basis that any computer can recognize
whether a given sentence matches an axiom schema. The symbol “→”
occurring in axioms simply replaces the construct “if. . . then. . . ” (the
symbol “−→” occurring in formal grammars denotes instead the applica-
tion of a parsing rule).

(4) Again about →: p→ q is equivalent to (¬p)∨ q: the truth tables of these
sentences are the same.

(5) We now discuss axioms and inference rules. Every sentence in the axiom
list is assumed to hold. Is the sentence a a a theorem of A? Not according
to axioms (1.1)-(1.4). Can we find an axiom of the form P → Q that
holds, where Q is a a? Neither of (1.5)-(1.6) applies. Moreover, it is easy
to see that the application of modus ponens to the axioms always generates
longer sentences. Therefore a a is not a theorem of A. Is a, b, a a theorem
of A? By the Axiom schema (1.6), the sentence schema s b→ s b a holds.
By Axiom (1.3), the sentence a b holds. So, if we replace s with a in (1.6)
we see that the sentence a b → a b a holds. Now we apply modus ponens
to P ≡ a b and Q ≡ a b a, which shows that a b a holds: this sentence is
therefore a theorem of A.

□

Exercise 1.5. Prove that the theory of A (the FS of Example (1.4)) consists
of all and only the alternating sequences of a, b. □



4 CHAPTER 1. COMPUTABILITY

Example 1.6 (An elementary FS about numbers). The FS N encodes the ad-
ditive group of integers.

• Alphabet: {+,−} ∪ N.
• Grammar:

expr −→ expr op expr | ( −expr ) | int
op −→ + | −
int −→ N

• Axioms:

∀a, b ∈ expr a+ b = b+ a

∀a, b, c ∈ expr (a+ b) + c = a+ (b+ c)

∀a ∈ expr a+ (−a) = 0

∀a ∈ expr a+ 0 = a

∀a ∈ expr a− (−a) = a+ a

• Inference rules: for two valid sentences P,Q of N,

(P ∧ (P → Q)) → Q

(modus ponens).

Some remarks.

(1) We recall that −→ denotes a parsing rule in formal grammars, while →
replaces “if. . . then. . . ” in axioms.

(2) The symbol “=” appearing in the axioms is not explicitly part of the
alphabet of N, but it is part of the first-order logic required to work with
integers (see e.g. Peano’s axioms).

(3) All of the axioms are in fact axiom schemata. The first four correspond to:
commutativity, associativity, identity, inverse. The last one is a syntactical
axiom that allows for a more humanly readable sentences.

(4) Although we did not explicitly list them, the axioms also include those
that allow integer computation with sums and differences (i.e. Peano’s
axioms applied recursively).

□

Exercise 1.7. Is “1 + 2− 3” a valid sentence in N? How about “1 + 2−−3”?
What is the theory of N (the FS of Example 1.6)? □

1.2. Decision problems

A decision problem is a set P of sentences. One must decide if a given sentence s
belongs to P . A decision problem P is decidable if there exists a decision algorithm
D : P → {0, 1} such that, for each s ∈ P , D(s) = 1 if s ∈ P , and D(s) = 0 if s ̸∈ P .

A FS F naturally provides a decision problem about its theory: given a sentence
s produced by F, does it hold or not? If we call sentences that hold “provable”,
then one must decide if f is provable from the axioms and the rules of inferences of
F. In this syntactical sense, a proof of s is a finite sequence of valid sentences of F
ending with s, where each sentence in the sequence is either an axiom or is derived
from previous sentences in the sequence by inference rules.

A simple syntactical transformation turns any sequence of sentences (t1, . . . , tn)
into a single sentence t1∧. . .∧tn. Therefore proofs are also conjunctions of sentences,
and, therefore, also sentences themselves.



1.3. A FS FOR MP? 5

1.2.1. Decidability and completeness. A FS F is decidable if its associated
decision problem is decidable. Moreover, F is complete if, for any s produced by F,
either s provable, or ¬s is provable (we recall that “¬” denotes logical negation).
If there is at least one sentence s such that neither s nor ¬s is provable in F, we
say that F is incomplete.

If F is complete, it is also decidable. Consider the following decision algorithm:
given f generated in F, starting from i = 1 construct all of the (finitely many)
proofs of given length i. If one of these proofs proves f , stop and return YES. If
one of these proofs proves ¬f , stop and return NO. If no proof of length i stops
the algorithm, increase i and repeat. As long as F is complete, this algorithm must
terminate.

The fact that there are finitely many proofs of given length follows because
axiom schemata (which describe potentially infinite sets of axioms) only give rise
to finitely many axioms within a given proof context.

On the other hand, there are cases of incomplete and undecidable FSs, as well
as incomplete and decidable. The point is that that, even if there are sentences
s such that neither s nor ¬s is provable in F, a decision algorithm might still be
able to recognize such s syntactically, and return 0. The subtlety is that decision
algorithms simply decide whether s ∈ P or not, but if s ̸∈ P , it might be because
¬s ∈ P or because neither s nor ¬s are in P . A decision algorithm that returns 0
does not need to specify which of the two alternatives holds.

1.2.2. Other types of problems. Not all problems are decision problems.
Given a function f defined by its description, does there exist an algorithm that
computes it? This problem is a computability problem.

Exercise 1.8. Let f be the function mapping every i ∈ N to the i-th prime.
Is it computable?

For problems of other types, we usually consider their solvability. This is also
the case of optimization problems.

In the rest of this chapter, we shall provide FSs for modelling feasibility prob-
lems in Polynomial Programming (PP) and Integer Polynomial Programming (IPP).
Since both of these problem classes are subclasses of NLP and MINLP respectively,
we are going to be able to reason about the solvability of NLPs and MINLPs.

1.3. A FS for MP?

Although a general FS for MP was never proposed so far, we can describe the
part that is used to generate valid MP formulations: the alphabet and the grammar.
We are not going to give complete formal descriptions of these because it would be
long and tedious. Software such as AMPL [1], however, provides an example of an
implemented grammar for MP. The appendix of the AMPL book gives the rules of
the formal grammar. We note that:

• the alphabet is a union of several alphabets: (i) integers; (ii) a countable
supply of variable symbols; (iii) all arithmetic (sum, subtraction, multipli-
cation, division, power) and some transcendental (logarithm, exponential,
trigonometric) operators; (iv) logical quantifiers (for all, there exists), con-
nectives (and, or, not, implies), and relations (membership, equality); (v)
MP symbols (objective direction operators, sum and product quantifiers,
less than or equal, greater than or equal).



6 CHAPTER 1. COMPUTABILITY

• The grammar produces: (i) floating point numbers out of integers, (i)
mathematical expressions in numbers and variables, (iii) whole MP formu-
lations. Floating point numbers and mathematical expressions are valid
formulæ, whereas formulations are sentences.

The extension of this alphabet and grammar to a full FS MP requires axioms and
inference rules.

For axioms, a possible idea is to introduce an axiom schema based on a general
solution algorithm A applicable to all sentences in MP, such that, for any P ∈ MP,
A(P ) = 1 if P has optima or feasible points, and A(P ) = 0 if P is infeasible. One
inherent limitation of this idea is that non-terminating algorithms do not qualify
as valid axiom schemata. This idea therefore rests on whether there exists a single
general solution algorithm that establishes feasibility of all sentences in MP. We
shall see in the following that such an algorithm does not exist. The best one can
do is to apply this FS to a subset of MP for which such an algorithm does exist,
e.g. Mixed-Integer Polynomial Programs (MIPP) with bounded integer variables.

Inference rules are not strictly necessary for this FS, but one may, for conve-
nience, introduce exact reformulations (i.e. those that leave formulation feasibility
unchanged) as a set of inference rules.

The theory of MP is the set of all feasible MP formulations.

1.4. The PA1 formal system

Here we look at a simpler FS than MP, based on Peano axioms with first order
logic, called PA1. It constructs formal sentences involving integers. Recall that
in first order variable symbols may only range over the “base elements” of the
discourse (in this case the integers), but not over relations between integers.

Example 1.9 (Propositional, first, and second order logic). The sentence P ∨
Q→ P is part of propositional logic, which deals with sentences without quantifiers.
The sentence ∀x (x+0 = x) is part of first order logic, an extension of propositional
logic that allows the use of variables over a certain domain of discourse (in this
case the integers). The formal version of the natural language sentence “for every
arithmetical operator ⊕ ∈ {+,×} on integers there exists an integer e such that for
all integer x we have x ⊕ e = x” is an example of second order logic, an extension
of first order logic that allows quantification over relations concerning the domain
of discourse. □

Our interest in PA1 is that, in particular, it constructs sentences corresponding
to feasibility-only IPPs of the form

min{0 | ∀i ≤ m pi(x) ≤ 0},

where x = (x1, . . . , xn) is a vector of decision variables, and each pi(x) is a multi-
variate polynomial. Solving the IPP above involves finding a solution x′ such that
pi(x) = 0 for all i ≤ m. So the PA1 sentence corresponding to a IPP is of existential
type:

(1.7) ∃x ∈ Nn ∀i ≤ m pi(x) = 0.

Such a sentence “holds” if it can be proved that the quantified x actually exists,
i.e. an existential PA1 sentence holds if the corresponding IPP is feasible.

Here is a description of PA1.



1.4. THE PA1 FORMAL SYSTEM 7

• Alphabet: +,×,∧,∨,→,∀,∃,¬,=, 0, S(·) and a countable set of variable
symbols x1, x2, . . .. The S(·) function is the successor function, i.e. all
integers i we have S(i) = i+ 1.

• Grammar: first order logic with integer arithmetic. Instead of giving
a precise description, we simply recall that this grammar produces valid
formulæ that may have unquantified variable symbols, and valid sentences
where no unquantified variables appear. This implies that only sentences
may “hold” (or not hold), and that sentences may consist of a formula
prefixed by the appropriate quantifiers.

• Axioms: Peano axioms, namely
PA1 ∀x (0 ̸= S(x))
PA2 ∀x, y (S(x) = S(y) → x = y)
PA3 ∀x (x+ 0 = x)
PA4 ∀x (x× 0 = 0)
PA5 ∀x, y (x+ S(y) = S(x+ y))
PA6 ∀x, y (x× S(y) = x× y + x)
PA7 for every (k + 1)-ary function ϕ, if y = (y1, . . . , yk)

∀y (ϕ(0, y) ∧ ∀x(ϕ(x, y) → ϕ(S(x), y))) → ∀xϕ(x, y).
Axiom PA7 is an axiom schema that encodes mathematical induction.

• Inference rules: in PA1 we inherit inference rules from two more basic
FSs, i.e. propositional logic (PL), and predicate calculus (PC), which adds
variables to PL. See the Wikipedia entry “List of rules of inference” for
a complete discussion of these rules. The most important rule is modus
ponens (mp), which is the only one necessary as long as the sentences
P → (Q → P ), (P → (Q → R)) → ((P → Q) → (P → R)), (¬P →
¬Q) → (Q→ P ) are added to the axioms.

Here are the main rules from PL:
PL1 law of the excluded middle: if Q holds whenever P holds, and ¬Q

holds, then ¬P holds
PL2 anything follows from a contradiction: if P and ¬P both hold, then

any Q holds
PL3 double negation introduction and elimination: if P holds, ¬¬P holds,

and if ¬¬P holds, P holds
PL4 deduction theorem: if Q holds whenever P holds, then P → Q
PL5 modus ponens: if P → Q and P both hold, then Q holds
PL6 modus tollens: if P → Q and ¬Q both hold, then ¬P holds
PL7 conjunction introduction: if P and Q both hold, then P ∧Q holds
PL8 conjunction elimination: if PandQ holds, then both P and Q hold
PL9 disjunction introduction: if P holds then P ∨ Q holds for whatever

Q; if Q holds then P ∨Q holds for whatever P
PL10 case analysis: if P → R, Q→ R and P ∨Q all hold, then R holds
PL11 disjunctive syllogism: if P ∨Q and ¬P both hold, then Q holds (and

symmetrically, if ¬Q holds, then P holds)
PL12 constructive dilemma: if P → R, Q → S, and P ∨ Q all hold, then

R ∨ S holds.
Unlike rules of PL, the applicability of the rules of PC depends on

the context (i.e. the point of the proof at which they are applied). Let



8 CHAPTER 1. COMPUTABILITY

x be a variable symbol of the alphabet, f be a valid formula produced
by the grammar, and P (f |x) be the sentence obtained by replacing in P
each occurrence of x with f , whenever x is free in P (i.e. not bound by a
quantifier within P ). The main rules of PC are:
PC1 universal introduction: assuming (i) f is variable not occurring in P

and (ii) f is not quantified in a scope including P , if P (f |x) holds
then ∀x P holds

PC2 universal eliminattion: assuming no free occurrence of x in P is within
a scope of a quantifier acting on a variable in f , if ∀x P holds, then
P (f |x) holds

PC3 existential introduction: assuming no free occurrence of x in P is
within a scope of a quantifier acting on a variable in f , if P (f |x)
holds, then ∃x P holds

PC4 existential elimination: assuming (i) f is a variable not occurring
in P , (ii) Q is a sentence where f does not appear, (iii) f is not
quantified in a scope including P or Q, if ∃x P holds and Q can be
derived from P (f |x), then Q holds.

Example 1.10 (How proofs work in FSs). Using PA1 we prove that the sentence
∀x(x = x) holds:

by (AxiomPA3) ∀x x+ 0 = x (1)
by (eq) ∀t, r, s t = r → (t = s→ r = s) (2)
by (1, 2) ∀x x+ 0 = x→ (x+ 0 = x→ x = x) (3)
by (1, 3,mp) ∀x x+ 0 = x→ x = x (4)
by (1, 4,mp) ∀x x = x QED

Note: (eq) above denotes a theorem from PL with equality:
(PL Eq Axiom) (t = r ∧ t = s) → r = s
(same truth tables) t = r → (t = s→ r = s). □

The theory generated by PA1 consists of the provable first-order formal sen-
tences about N.

One last remark about PA1: it can easily be extended to Z by replacing every
x ∈ Z occurring in a sentence by the expression y − z where y, z ∈ N. This makes
the sentence formally part of PA1.

1.5. The Reals formal system

We now introduce a FS that describes provable sentences about real numbers.
As for PA1, we are interested specifically in existentially quantified sentences

(1.8) ∃x ∈ Rn ∀i ≤ m pi(x) = 0,

that provide a good model for PP.

• Alphabet: +,×,∧,∨,∀,∃,=, <,≤, 0, 1, countably many variable sym-
bols.

• Grammar: again we do not go into details. It generates valid formulæ
and sentences, similarly to PA1. Only sentences may hold (or not hold).

• Axioms: field axioms and order axioms, namely
(1) Associativity of addition and multiplication (field)
(2) Commutativity of addition and multiplication (field)
(3) Additive and multiplicative identity (field)



1.6. INCOMPLETENESS OF PA1 9

(4) Additive inverses (field)
(5) Multiplicative inverses (field)
(6) Distributivity of multiplication over addition (field)
(7) Only one of a > b, a = b, b > a holds (order)
(8) Transitivity: if a > b and b > c then a > c (order)
(9) Invariance to addition and multiplication (order):

a > b→ a+ c > b+ c and a > b ∧ c > 0 → ac > bc.
• Inference rules: same as PA1.

The theory generated by Reals consists of the provable first-order formal sen-
tences about R.

1.6. Incompleteness of PA1

Gödel’s 1st incompleteness theorem states that any FS that extends PA1 is
either incomplete or inconsistent.

We recall that an incomplete FS F has sentences P such that neither P nor ¬P
holds. In the provability interpretation of “holds”, this means that some sentences
of F cannot be proved or disproved within the system. This is evidently an unsat-
isfactory state of affairs, in the sense that it would be more desirable to be able to
prove or disprove every sentence generated by the grammar of F.

A FS F is inconsistent if there is a sentence P such that both P and ¬P hold.
By the inference rule PL2 (also known as ex falso quodlibet), this shows that all
sentences Q produced by the FS must then hold. Although we listed this as an
inference rule, it can be easily proved in PL from other inference rules:

(by hypothesis) both P and ¬P hold
(by disjunction introduction) P ∨Q holds

(by disjunctive syllogism) ¬P and P ∨Q hold, so Q holds QED

A FS having a theory consisting of all of its sentences offers a trivial decision
problem (the decision algorithm always returning 1 on all sentences is correct) and
is therefore useless (alphabet and grammar would have sufficed). An inconsistent
FS is therefore totally useless.

According to Gödel’s 1st incompleteness theorem, FSs extending PA1 are either
unsatisfactory or totally useless.

1.6.1. Gödel’s incompleteness theorem. The proof of Gödel’s incomplete-
ness theorem is both technical and thought-provoking. The technical part, however,
is not very thought-provoking (just a lot of details). Accordingly, we shall focus on
the thought-provoking part.

Let G be any FS extending PA1. We prove that G is complete iff it is inconsis-
tent.

For any valid sentence P in G, “P is provable in G” is a natural language
sentence about a fact related to G. We shall prove later that a formal version
of this statement can be generated in G. So this statement is both part of the
formal language of G as well as the informal meta-language we use to discuss G.
We establish the following convention:

• we use the informal sentence “P is provable in G” in meta-language;
• we use “G ⊢ P” in the formal language.



10 CHAPTER 1. COMPUTABILITY

We shall see that the formal sentence “G ⊢ P” in G can be used to generate the
more interesting sentence

(1.9) ϕ ≡ G ̸⊢ ϕ.

In the meta-language, ϕ states “ϕ not provable in G”.
Note that ϕ is self-referential. Since FSs encode syntactical operations only,

there is no issue of the “ill-defined meaning” of ϕ. We are not “defining” ϕ in the
sense of understanding what it means: we are simply constructing the sentence ϕ
by means of the grammar and rules of G. (And, by the way, not every semantic
self-referential definition is ill-defined.)

A reader might wonder why we call Eq. (1.9) a “sentence” rather than “a
formula”, since ϕ appears to be a free variable symbol in the string. But PA1 is
a 1st order logic, so the variable symbols may only range over integers, whereas ϕ
denotes a sentence. We are actually using the various sentence variables (P,Q, ϕ,
etc.) as short-hand in order to avoid writing complete sentences, which may be
excessively long. The point is that ϕ can (at least potentially) be written down
explicitly in a finite amount of space. This is not true of a variable ranging over
the integers, which should be written down as “0 ∨ 1 ∨ 2 ∨ . . .”, taking an infinite
amount of space.

(1) Assume first that G is complete. Then either ϕ is provable in G or ¬ϕ is
provable in G. We look at these two cases in turn.

• If ϕ is provable in G then we replace ϕ with its definition (Eq. (1.9))
and infer that G ̸⊢ ϕ is provable in G. This, in turn, implies that ϕ is
not provable in G, which leads to a contradiction.

• If ¬ϕ is provable in G, then we again replace ϕ with its definition
and infer that ¬G ̸⊢ ϕ is provable in G. This, in turn, implies that
it is not true that ϕ is not provable in G, or, equivalently, that ϕ is
provable in G. Therefore both ¬ϕ and ϕ are provable in G, which
means that G is inconsistent.

Since the first case leads to a contradiction, the second case necessarily
holds (law of the excluded middle): the completeness of G implies its
inconsistency.

(2) Assume next that G is inconsistent. Then any sentence Q generated by G
is provable in G, making G complete.

Aside from the formal constructions in G of the two sentences above (G ⊢ P , and
the sentence ϕ formally stating that G ̸⊢ ϕ), this argument concludes the proof
of Gödel’s 1st incompleteness theorem. If we want G to be consistent, it must be
incomplete.

1.6.1.1. Gödel’s encoding. The second part of this proof (the argument 2 above)
is valid for every FS. The first part (the argument 1) actually uses the fact that G
extends PA1. Since PA1 generates statements about integers, we will need to devise
an encoding of formulæ of PA1 in integers, and the corresponding decoding.

While every valid formula can be encoded into an integer, the encoding may
be such that not every integer can be decoded into a formula. Gödel’s original
encoding and decoding is ingenious but complicated, and constitutes the part of
Gödel’s proof that is technical but not necessarily thought-provoking.

We are going to assume for simplicity that the encoding and the decoding are
given: for any s generated by G we denote the unique integer corresponding to s



1.6. INCOMPLETENESS OF PA1 11

by ⌜s⌝. Conversely, for any integer n corresponding to a formula s of G, we write
⟨n⟩ = s. Thus, for any formula s we have ⟨⌜s⌝⟩ = s.

The integer encoding of a formula is also called its Gödel number.
1.6.1.2. The syntactical concept of proof. A large portion of the technical part

of Gödel’s proof uses his encoding in order to construct the relation proof(x, y) on
two integers x, y. This relation has the following property: as long as x, y can be
decoded into sentences, proof(x, y) is a sentence of G that states that the sentence
⟨x⟩ is a proof of the sentence ⟨y⟩.

The realisation that a certain paragraph contains a proof of a certain statement
might appear full of human significance to many mathematicians. What Gödel
showed is that, as long as the reasoning is confined to a given FS, this realisation can
be carried out by a computer. Moreover, he also showed that the meta-linguistic
discourse that says “there’s a proof of P in G” can itself be formalized directly
within the FS. This is why we were able to assume, in the argument above, that
the sentence “G ⊢ P” can be generated within G.

If this still sounds surprising, recall that proofs in FSs are simply sentences
structured as conjunctions of smaller sentences with this property: the first is an
axiom, the last is the sentence being proved, and the intermediate ones are derived
from previous ones using inference rules. Valid sentences are produced by grammars
over alphabets, axioms are valid sentences that hold, and inference rules produce
sentences that hold from other sentences that hold. Everything is purely syntactical.
Gödel’s construction of proof(x, y) is a careful encoding in integers over every axiom
and inference rule of PA1, such that ⟨x⟩ is a syntactical proof of ⟨y⟩ within PA1.

1.6.1.3. Constructing Gödel’s self-referential sentence. Gödel’s proof hinges over
Eq. (1.9). We shall construct it from proof(x, y) and from a function on three inte-
gers, sost(m,n, p) that is defined wheneverm, p are Gödel numbers of valid formulæ,
and n is the Gödel number of a formula consisting of a variable symbol. This func-
tion returns an integer which is the Gödel number of the formula f obtained by
replacing every variable symbol ⟨n⟩ in the formula ⟨m⟩ by the integer p.

Example 1.11 (Formal replacements with sost). Consider the formula h ≡
¬proof(x, y). Let m = ⌜h⌝, n = ⌜x⌝, and p = ⌜a ∧ s ∧ ⟨y⟩⌝, where a is an axiom
of PA1 and s is a sentence that holds in PA1. Then sost(m,n, p) is the integer that
encodes the formula

¬proof(⌜a ∧ s ∧ ⟨y⟩⌝, y),

which states that a ∧ s ∧ ⟨y⟩ is not a proof of ⟨y⟩. □

Armed with proof and sost, we define in G the valid formula

¬∃x proof(x, sost(y, ⟨y⟩, y),

which we call γ(y) to emphasize the fact that y is a free variable in this formula.
Note the use of the sost operation in γ(y): whenever the variable symbol y appears
in the formula ⟨y⟩, it is replaced with the formula ⟨y⟩.

Example 1.12 (A self-referential replacement). Consider the formula h as de-
fined in Eg. 1.11, and let y = ⌜h⌝. Then sost(y, ⟨y⟩, y) returns the integer that
encodes the formula

¬proof(x, ⌜¬proof(x, y)⌝) (⋆),



12 CHAPTER 1. COMPUTABILITY

since the variable symbol y in the second argument of the proof relation appearing
in h was replaced with h itself. The resulting formula (⋆) states that ⟨x⟩ is not a
proof of the fact ⟨x⟩ is not a proof of y. □

We now come to the crucial point. We let q = ⌜γ(y)⌝, and define ϕ ≡ γ(q),
i.e. ϕ ≡ ¬∃x proof(x, sost(q, ⟨y⟩, q)). Also, let ψ ≡ ⟨sost(q, ⟨y⟩, q)⟩: this makes it
obvious that ϕ states “there is no proof in G for ψ”. Since ϕ ≡ γ(q) we have that

ϕ is generated by replacing the free variable “y” in “γ(y)” with q. (†)
Moreover, By definition of sost, we have that

ψ is generated by replacing the free variable “y” in ⟨q⟩ with q. (‡)
Finally, let us look at ϕ, ψ more closely by comparing their generation processes
(†) and (‡) syntactically. The only difference is that ϕ replaces in γ(y), whereas
ψ replaces in ⟨q⟩. But we had defined q to be the Gödel number of γ(y), which
implies ⟨q⟩ ≡ γ(y). Therefore (†) and (‡) are the same, which means that ϕ ≡ ψ.
Hence, ϕ actually states “there is no proof in G for ϕ”. The last observation is that
ϕ was the result of a replacement of the only free variable (y) with an integer (q),
and hence ϕ is actually a sentence, not a formula.

The “crucial point” above looks like a magician’s trick. Something syntactically
trivial like a replacement suddenly becomes, in a sleight of hand, a self-referential
sentence that allows the proof of Gödel’s incompleteness theorem. Some treatments
make it more obvious that there is a fixed-point process of replacement leading to a
limit (Eq. (1.9)). In this treatment, I like the fact that the result emerges from the
syntactical comparison between two sentences (†)-(‡) that only differ by a single
symbol, which turns out to spell out to the same formula. This makes it evident
that all the reasoning behind this proof could be verified by a computer.



Bibliography

[1] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[2] R.M. Smullyan. Theory of formal systems. Princeton University Press, Princeton, NJ, 1961.

13


