
L E O L I B E R T I

M AT H E M AT I C A L
P R O G R A M M I N G

E C O L E P O LY T E C H N I Q U E

Copyright © 2018 Leo Liberti

published by ecole polytechnique

typeset using LATEX on template https://tufte-latex.github.io/tufte-latex/

Zeroth printing, February 2018

https://tufte-latex.github.io/tufte-latex/

Contents

I An overview of Mathematical Programming 11

1 Imperative and declarative programming 13

1.1 Turing machines 13

1.2 Register machines 14

1.3 Universality 14

1.4 Partial recursive functions 14

1.5 The main theorem 15

1.5.1 The Church-Turing thesis and computable functions 16

1.6 Imperative and declarative programming 16

1.7 Mathematical programming 17

1.7.1 The transportation problem 17

1.7.2 Network flow 19

1.7.3 Extremely short summary of complexity theory 20

1.7.4 Definitions 21

1.7.5 The canonical MP formulation 22

1.8 Modelling software 22

1.8.1 Structured and flat formulations 23

1.8.2 AMPL 23

1.8.3 Python 24

1.9 Summary 26

2 Systematics and solution methods 27

2.1 Linear programming 27

2.2 Mixed-integer linear programming 28

2.3 Integer linear programming 30

4

2.4 Binary linear programming 30

2.4.1 Linear assignment 30

2.4.2 Vertex cover 31

2.4.3 Set covering 31

2.4.4 Set packing 32

2.4.5 Set partitioning 32

2.4.6 Stables and cliques 32

2.4.7 Other combinatorial optimization problems 33

2.5 Convex nonlinear programming 33

2.6 Nonlinear programming 34

2.7 Convex mixed-integer nonlinear programming 36

2.8 Mixed-integer nonlinear programming 37

2.9 Quadratic programming formulations 37

2.9.1 Convex quadratic programming 37

2.9.2 Quadratic programming 38

2.9.3 Binary quadratic programming 39

2.9.4 Quadratically constrained quadratic programming 40

2.10 Semidefinite programming 40

2.10.1 Second-order cone programming 42

2.11 Multi-objective programming 43

2.11.1 Maximum flow with minimum capacity 44

2.12 Bilevel programming 44

2.12.1 Lower-level LP 45

2.12.2 Minimum capacity maximum flow 46

2.13 Semi-infinite programming 46

2.13.1 LP under uncertainty 47

2.14 Summary 48

3 Reformulations 51

3.1 Elementary reformulations 52

3.1.1 Objective function direction and constraint sense 52

3.1.2 Liftings, restrictions and projections 52

3.1.3 Equations to inequalities 52

3.1.4 Inequalities to equations 52

3.1.5 Absolute value terms 52

5

3.1.6 Product of exponential terms 53

3.1.7 Binary to continuous variables 53

3.1.8 Discrete to binary variables 53

3.1.9 Integer to binary variables 53

3.1.10 Feasibility to optimization problems 54

3.1.11 Minimization of the maximum of finitely many functions 54

3.2 Exact linearizations 54

3.2.1 Product of binary variables 54

3.2.2 Product of a binary variable by a bounded continuous variable 55

3.2.3 Linear complementarity 55

3.2.4 Minimization of absolute values 55

3.2.5 Linear fractional terms 57

3.3 Advanced examples 57

3.3.1 The Hyperplane Clustering Problem 57

3.3.2 Selection of software components 61

3.4 Summary 64

II In-depth topics 65

4 Constraint programming 67

4.1 The dual CP 67

4.2 CP and MP 68

4.3 The CP solution method 69

4.3.1 Domain reduction and consistency 69

4.3.2 Pruning and solving 70

4.4 Objective functions in CP 71

4.5 Some surprising constraints in CP 71

4.6 Sudoku 72

4.6.1 AMPL code 72

4.7 Summary 73

5 Maximum cut 75

5.1 Approximation algorithms 76

5.1.1 Approximation schemes 76

6

5.2 Randomized algorithms 76

5.2.1 Randomized approximation algorithms 77

5.3 MP formulations 78

5.3.1 A natural formulation 78

5.3.2 A BQP formulation 79

5.3.3 Another quadratic formulation 79

5.3.4 An SDP relaxation 79

5.4 The Goemans-Williamson algorithm 82

5.4.1 Randomized rounding 82

5.4.2 Sampling a uniform random vector from Sn−1
84

5.4.3 What can go wrong in practice? 85

5.5 Python implementation 85

5.5.1 Preamble 85

5.5.2 Functions 86

5.5.3 Main 89

5.5.4 Comparison on a set of random weighted graphs 90

5.6 Summary 91

6 Distance Geometry 93

6.1 The fundamental problem of DG 93

6.2 Some applications of the DGP 94

6.2.1 Clock synchronization 94

6.2.2 Sensor network localization 94

6.2.3 Protein conformation 94

6.2.4 Unmanned underwater vehicles 95

6.3 Formulations of the DGP 95

6.4 The 1-norm and the max norm 95

6.4.1 The 2-norm 96

6.5 Euclidean Distance Matrices 96

6.5.1 The Gram matrix from the square EDM 97

6.5.2 Is a given matrix a square EDM? 98

6.5.3 The rank of a square EDM 98

7

6.6 The EDM Completion Problem 99

6.6.1 An SDP formulation for the EDMCP 99

6.6.2 Inner LP approximation of SDPs 100

6.6.3 Refining the DD approximation 101

6.6.4 Iterative DD approximation for the EDMCP 102

6.6.5 Working on the dual 103

6.6.6 Can we improve the DD condition? 103

6.7 The Isomap heuristic 104

6.7.1 Isomap and DG 104

6.8 Random projections 104

6.8.1 Usefulness for solving DGPs 105

6.9 How to adjust an approximately feasible solution 105

6.10 Summary 106

Bibliography 107

Index 115

Introduction

These lecture notes are a companion to a revamped INF580

course at DIX, Ecole Polytechnique, academic year 2015/2016. The
course title is actually “Constraint Programming” (CP), but I intend
to shift the focus to Mathematical Programming (MP), by which I
mean a summary of techniques for programming computers by
supplying a mathematical description of the solution properties.

This course is about stating what your solution is like, and then
letting some general method tackle the problem. MP is a paradigm
shift from solving towards modelling. This course is different from
traditional MP courses. I do not explain the simplex method, or
Branch-and-Bound, or Gomory cuts. Heck, I don’t even explain
what the linear programming dual is! (There are other courses at
Ecole Polytechnique for that.) I want to convey an overview about
using MP as a tool: the many possible types of MP formulations,
how to change formulations to fit a solver requirement or improve
its performance, how to use MP within more complex algorithms,
how to scale MP techniques to large sizes, with some comments
about how MP can help you when your client tells you he has a
problem and does not know what the problem is, let alone how to
solve it!

A word about notation: letter symbols (such as x) usually denote
tensors1 of quantities. So xi could be an element of x, and xij an 1 I.e. multi-dimensional arrays.

element of xi. And so on. Usually the correct dimensions are either
specified, or can be understood from the context. If in doubt, ask
(write to liberti@lix.polytechnique.fr) — I will clarify and
perhaps amend the notes.

liberti@lix.polytechnique.fr

Part I

An overview of
Mathematical
Programming

1
Imperative and declarative programming

People usually program a computer by writing a “recipe”
which looks like a set of prescriptions: do this, do that if condition
is true, repeat.

Figure 1.1: A Turing Machine (from
2009.igem.org/Turing_machines).

But there is another way of programming a computer, which
consists in putting together complex functions using simpler ones,
such that the end function exactly describes the output of the
problem we are trying to solve.

1.1 Turing machines

You might be familiar with the idea of a Turing Machine (TM):
there is an infinitely long tape divided in cells, each of which can
bear a symbol from some alphabet1 A. 1 An alphabet is an arbitrary set of sym-

bols, such as e.g. {0, 1} or {�,�,�} or
{a,b,. . . ,z}. We assume it is finite.

A mechanical head, capable of writing symbols on cells or eras-
ing them, can move left and right along the tape, or simply rest,
according to some instructions labeled by states2. 2 The name “state” probably stems

from a wish of Turing to equate the
machine states with “states of mind”
[Turing, 1937].

For example, a state q from a finite state set Q corresponds to the
following instruction:

q: read symbol s from current cell, depending on s perform an
movement µ ∈ M = {right, left, stay}, write a symbol t ∈ A in the new
cell, and switch to a new state r.

We can formally store such instructions in a dictionary3 π : Q → 3 A dictionary is a data structure
which stores a map key 7→ value in
the form of (key, value) pairs, and is
optimized for efficiently retrieving
values corresponding to a given key —
see your favorite basic data structure
course.

A×M× A×Q mapping states q to quadruplets (s, µ, t, r).
We assume Q must contain an initial state S0 and a final state

Shalt. Then the TM with program π starts in state S0, and applies the
rules in π until r = Shalt.

Any TM is given the sequence of symbols written in the cells of
the tape prior to starting the computation as input, and obtains as
an output the sequence of symbols written in the cells of the tape
after the computation ends. Note that the computation need not
always end. Consider, e.g., the TM with alphabet A = {0, 1} and
the program π(1) = (0, stay, 0, 2) and π(2) = (0, stay, 0, 1) with
starting tape (0, 0, . . .), S0 = 1 and Shalt = 3: this simply flips states
from 1 to 2 and back to 1 forever. If we take the sequence (1, 1, . . .)

2009.igem.org/Turing_machines

14 mathematical programming

as a starting tape, we find no relevant instruction in π(1) which
starts with 1, and hence the TM simply “gets stuck” and never
terminates.

1.2 Register machines

Computation models which are closer to today’s computers are
register machines (RM) [Minsky, 1967]. RMs consist of a finite set R
of registers R1, R2, . . . which can contain a natural number, a finite
set Q of states, and some very basic instructions4 such as: 4 The instruction may vary, according

to different authors; those given below
are very simple, and due to Marvin
Minsky.

(a) given j ∈ R, let Rj ← Rj + 1, then switch to a new state r

(b) given j ∈ R, if Rj > 0 then Rj ← Rj − 1 then switch to a new
state r else switch to a new state s.

Figure 1.2: A program in Minsky’s RM
(from [Liberti and Marinelli, 2014]).

Registers are similar to bytes of memory, states are used to enu-
merate instructions in a program (as for TMs), and the instructions
have very basic semantics on the memory similar to what you could
find in a very simple CPU.

1.3 Universality

TMs and RMs are flexible enough so that they can “simulate” other
TMs and RMs. Specifically, we are able to design a TM U such that

U(〈T, x〉) = T(x), (1.1)

where T is the description of any TM, 〈T, x〉 is a pair given to U as
input, and T(x) denotes the output of T when fed the input x. The
TM U is called a universal TM (UTM).5 The same can be said for 5 In more recent terminology, the

program of a UTM is sometimes
described as an interpreter.

RMs.
How do we “describe a TM”? Since there are only countably

many possible TM (or RM) descriptions, we can count them, and
then match them to natural numbers. We can therefore speak of the
i-th TM (or RM) where i ∈ N. In fact we can do better: through
Gödel numbers6 we can compute i from the TM (or RM) description, 6 Many Gödel number schemes are

possible. Gödel actually defined them
for logical propositions, but every
sequence s = (s1, . . . , sk) of symbols
of A can be encoded as an integer,
and any thusly obtained integer
can be decoded into the original
sequence. Gödel assigned the number
G(s) = 2s1 3s2 5s3 · · · psk

k to the sequence
s. [Gödel, 1930]

and given an i ∈ N computed this way, we can infer the TM (or
RM) which originated it.

UTMs can be used to prove several mind-boggling results, such
as the existence of problems which cannot be solved by any TM.7

7 Just google halting problem, see
Fig. 1.4.

1.4 Partial recursive functions

Without any loss of generality, we consider TMs or RMs having
natural numbers as inputs and output. We investigate a class of
functions φ : Nk → N, called partial recursive (p.r.) [Cutland, 1980],

imperative and declarative programming 15

for all values of k ≥ 0, built recursively using some basic functions
and basic operations on functions.

The basic p.r. functions are:

• for all c ∈N, the constant functions constc(s1, . . . , sk) = c;

• the successor function succ(s) = s + 1 where s ∈ N, defined for
k = 1 only;

• for all k and j ≤ k, the projection functions projkj (s1, . . . , sk) = sj.

Figure 1.3: Alonzo Church, grey
eminence of recursive functions.

The basic operations are:

• composition: if f : Nk → N and g : N → N are p.r., then
g ◦ f : Nk →N mapping s 7→ g(f (s)) is p.r.

• primitive recursion:8 if f : Nk → N and g : Nk+2 → N are p.r.,

8 For example, the factorial function
n! is defined by primitive recursion
by setting k = 0, f = const1 = 1,
g(n) = n(n− 1)!.

then the function φ f ,g : Nk+1 →N defined by:

φ(s, 0) = f (s) (1.2)

φ(s, n + 1) = g(s, n, φ(s, n)) (1.3)

is p.r.

• minimalization: if f : Nk+1 → N, then the function ψ : Nk → N

maps s to the least9 natural number y such that, for each z ≤ y, 9 This is a formalization of an opti-
mization problem in number theory:
finding a minimum natural number
which satisfies a given p.r. property f
is p.r.

f (s, z) is defined and f (s, y) = 0 is p.r.

Notationally, we denote minimalization by means of the search
quantifier µ:10

10 The µ quantifier is typical of com-
putability. Eq. (1.4) is equivalent
to ψ(s) = min{y ∈ N | ∀z ≤
y (f (s, y) is defined) ∧ f (s, y) = 0}.

ψ(s) ≡ µy (∀z ≤ y (f (s, z) is defined) ∧ f (s, y) = 0). (1.4)

1.5 The main theorem

Figure 1.4: The Halting Problem
(vinodwadhawan.blogspot.com).

The main result in computability states that TMs (or RMs) and
p.r. functions are both universal models of computation. More
precisely, let T be the description of a TM taking an input s ∈
Nk and producing an output in N, and let ΦT : Nk → N the
associated function s 7→ T(s). Then ΦT is p.r.; and, conversely, for
any p.r. function f there is a TM T such that ΦT = f .

Here is the sketch of a proof. (⇒) Given a p.r. function, we
must show there is a TM which computes it. It is possible, and not
too difficult,11 to show that there are TMs which compute basic

11 See Ch. 3, Lemma 1.1, Thm. 3.1, 4.4,
5.2 in [Cutland, 1980]

p.r. functions and basic p.r. operations. Since we can combine TMs
in the appropriate ways, for any p.r. function we can construct a
TM which computes it.

(⇐) Conversely, given a TM T with input/output function
τ : Rn → R, we want to show that τ(x) is a p.r. function.12 We 12 This is the most interesting direction

for the purposes of these lecture notes,
since it involves “modelling” a TM by
means of p.r. functions.

assume T’s alphabet is the set N of natural numbers, and that the
output of T (if the TM terminates) is going to be stored in a given

vinodwadhawan.blogspot.com

16 mathematical programming

“output” cell of the TM tape. We define two functions:

ω(x, t) =

{
value in output cell after t steps of T on input x
τ(x) if T stopped before t steps on input x

σ(x, t) =

{
state label of next instruction after t steps of T
0 if T stops after t steps or fewer,

where we assumed that Shalt = 0. Now there are two cases: either T
terminates on x, or it does not. If it terminates, there is a number t∗

of steps after which T terminates, and

t∗ = µt(σ(x, t) = 0) (1.5)

τ(x) = ω(x, t∗). (1.6)

Note that Eq. (1.5) says that t∗ is the least t such that σ(x, t) = 0 and
σ(x, u) is defined for each u ≤ t.

Start here ↓

over to next column→

← finally, this

Figure 1.5: Details of the proof from
[Cutland, 1980], p. 95-99 — with
slightly different notation.

If T does not terminate on x, then the two functions µt(σ(x, t) =
0) and τ(x) are undefined on x. In either case, we have

τ(x) ≡ ω(x, µt(σ(x, t) = 0)).

By minimalization, the fact that τ(x) is p.r. follows if we prove that
ω and σ are p.r. This is not hard to do, but it is quite long, and
is beside the scope of these lectures. Informally, one starts from
the Gödel number of T, decodes it into T (this decoding function
is p.r.), and essentially executes T over its input until step t. That
this last task is p.r. follows by decomposing it into two functions:
finding the new state and tape content after an instruction has been
executed, and finding the next instruction. These two functions are
in fact primitive recursive,13 and hence p.r. (see Fig. 1.5), which 13 A function is primitive recursive if

it can be build from repeated appli-
cation of composition and primitive
recursion to the basic p.r. functions —
i.e. minimalization is not necessary.

concludes this proof sketch.14

14 This proof sketch was adapted from
[Cutland, 1980]

1.5.1 The Church-Turing thesis and computable functions

Figure 1.6: TMs are all that is the case!
(rationallyspeaking.blogspot.fr).

Not only TMs and p.r. functions can be used to express univer-
sal computation. Every “sensible” computational model ever imag-
ined was shown to be equivalent to TMs, RMs and p.r. functions.
The Church-Turing thesis states that this empirical observation is in
fact a truth. Any function which can be computed by a TM is called
a computable function.

1.6 Imperative and declarative programming

Today, most people program a computer by means of imperative
instructions. We might tell a computer to store a certain value in
a given register, to test a condition and move control to a different
instruction if the condition is verified, or unconditionally move
control to another instruction. If we are using a high-level language,
we use assignments, tests and loops.15 Languages whose programs 15 Assignments, tests and loops are

the essential syntactical elements of
any computer language which makes
the language universal, i.e. capable of
describing a universal TM, see [Harel,
1980]

rationallyspeaking.blogspot.fr

imperative and declarative programming 17

consist of finite lists of imperative instructions are called imperative
languages.16

16 E.g. Fortran, Basic, C/C++, Java,
Python.

The execution environment of an imperative language is a TM,
or RM, or similar — in short, a “real computer”. As is well known,
CPUs take instructions of the imperative type, such as “move a
value from a register to a location in memory” or “jump to instruc-
tion such-and-such”.

We saw in previous sections that p.r. functions have the same
expressive capabilities as imperative languages. And yet, we do
not prescribe any action when writing a p.r. function. This begs
the question: can one program using p.r. functions? This is indeed
possible, as the many existing declarative languages testify.17 17 E.g. LISP, CAML.

Declarative languages based on p.r. functions usually consist of
a rather rich set of basic functions, and various kinds of operators
in order to put together new functions.18 The complicated functions 18 Although it would be theoretically

possible to limit ourselves to the basic
functions and operators above, this
would yield unwieldy programs for a
human to code.

obtained using recursive constructions from the basic ones are
the “programs” of a declarative language. Each such function is
evaluated at the input in order to obtain the output. Since each
complex function is the result of various operators being applied
recursively to some basic functions, its output can be obtained
accordingly.

The natural execution environment of a declarative language
would be a machine which can natively evaluate basic functions,
and natively combine evaluations using basic operators. In practice,
interpreters are used to turn declarative programs RM descriptions
which can be executed on real computers.

Figure 1.7: Academic journals in MP.

1.7 Mathematical programming

We now come to the object of these notes. By “Mathematical
Programming” we indicate a special type of declarative program-
ming, namely one where the interpreter varies according to the
mathematical properties of the functions involved in the program.

For example, if all the functions in a MP are linear in the vari-
ables, and the variables range over continuous domains,19 one can 19 Optimizing a linear form over

a polyhedron is known as linear
programming.

use very efficient algorithms as interpreters, such as the simplex20

20 From any vertex of the polyhedron,
the simplex method finds the adjacent
vertex improving the value of the
linear form, until this is no longer
possible.

or barrier21 methods [Matoušek and Gärtner, 2007]. If the functions

21 From any point inside a polyhedron,
the barrier method defines a central
path in the interior of the polyhedron,
which ends at the vertex which
maximizes or minimizes a given linear
form.

are nonlinear or the variables are integer, one must resort to enu-
merative methods such as branch-and-bound. [Liberti, 2006] Working
implementations of these solution methods are collectively referred
to as solvers. They read the MP (the program), the input of the prob-
lem, and they execute an imperative program which runs on the
physical hardware.

1.7.1 The transportation problem

MP is commonly used to formulate and solve optimization prob-
lems. A typical, classroom example is provided by the transportation

18 mathematical programming

problem22 [Munkres, 1957]. 22 The transportation problem is
one of the fundamental problems in
MP. It turns up time and again in
practical settings. It is at the basis of
the important business concern of
assignment: who works on which task?

Given a set P of production facilities with production capacities
ai for i ∈ P, a set Q of customer sites with demands bj for j ∈ Q,
and knowing that the unit transportation cost from facility i ∈ P to
customer j ∈ Q is cij, find the optimal transportation plan.

a1

a2

a3

b1

b2

c11c12

c21

c22 c 31

c32

Figure 1.8: Visualize the setting of
the transportation problem using a
bipartite graph, facilities on the left,
customers on the right; arcs are the
potential transportation possibilities.

If this is the first optimization problem you have ever come
across, you are likely to find it meaningless. Since the only costs
mentioned by the definition are transportation costs, we understand
that the optimization must affect the total transportation cost.
However, what exactly is meant by a “transportation plan”?

The formalization of a problem description is really an art,
honed with experience and by knowing how to recognize patterns
and structures within an informal text description of the problem.
The first question one needs to ask when confronted with an infor-
mal description of a problem is what are the decision variables?,
or, in other words, what is being decided? There is rarely a unique
correct answer,23 but the answer will influence the type of formula-

23 Sometimes there is none; this
often happens when consulting with
industry — if they had a formal
description of the problem, or one
which is close to being formal, they
would not be needing our services!

tion obtained, and the efficiency of the solver. Experience will point
the most likely correct direction.

In the transportation problem we are given the costs of transport-
ing a unit of material from some entity (facility) to another (cus-
tomer). This appears to imply that, in order to minimize the total
cost, we shall need to decide on some quantities. Which quantities?
We know that each facility cannot exceed its production capacity,
and we know that each customer must receive its demanded sup-
ply. We should therefore decide quantities out of each production
facility and into each customer site. One possibility24 is to consider 24 MP beginners usually come up with

the following set of decision variables:
∀i ∈ P, yi is the quantity of commodity
shipping from i; ∀j ∈ Q, zj is the
quantity of commodity shipping to
j. Intuition fails them when trying
to express the transportation costs in
terms of yi and zj.

decision variables xij for each facility i ∈ P and customer j ∈ Q, xij

which denote the quantity of commodity shipped from i to j. The
total cost is the sum of the unit costs multiplied by quantities:

min ∑
i∈P
j∈Q

cijxij.

Figure 1.9: Student’s view of the
transportation problem (twiki.esc.
auckland.ac.nz).

The capacity constraints dictate that the amount of commodity
shipped out of each facility cannot exceed its capacity:

∀i ∈ P ∑
j∈Q

xij ≤ ai.

The demand constraints make sure that each customer receives at
least its desired demand:

∀j ∈ Q ∑
i∈P

xij ≥ bj.

What else? Well, suppose you have two facilities with capacities
a1 = a2 = 2 and one customer with demand b1 = 1. Suppose that
the transportation costs are c11 = 1 and c21 = 2 (see Fig. 1.10). Then

twiki.esc.auckland.ac.nz
twiki.esc.auckland.ac.nz

imperative and declarative programming 19

the problem reads:

min x11 + 2x21

x11 ≤ 2

x21 ≤ 2

x11 + x21 ≥ 1.
2.0

2.0

1.0

1.0

2.0

Figure 1.10: A very simple transporta-
tion instance.

The optimal solution is x11 = 2, x21 = −1: it satisfies the
constraints and has zero total cost.25 This solution, however, cannot

25 Every solution on the line x11 + x21 =
1 satisfies the constraints; in particular,
because of the costs, the solution
x11 = 1 and x21 = 0 has unit cost.

be realistically implemented: what does it mean for a shipped
quantity to be negative (Fig. 1.11)?

This example makes two points. One is that we had forgotten a
constraint, namely:

∀i ∈ P, j ∈ Q xij ≥ 0.

Figure 1.11: Negative shipments look
weird (artcritique.wordpress.com).

The other point is that forgetting a constraint might yield a solu-
tion which appears impossible to those who know the problem setting.
If we had been given the problem in its abstract setting, without
specifying that xij are supposed to mean a shipped quantity, we
would have had no way to decide that x21 = −1 is inadmissible.

1.7.2 Network flow

In the optimization of industrial processes, the network flow prob-
lem26 [Ford and Fulkerson, 1956] is as important as the transporta-

26 Network flow is another fundamen-
tal MP problem. Its constraints can be
used as part of larger formulations in
order to ensure network connectivity.

tion problem.

Consider a rail network connecting two cities s, t by way of a number
of intermediate cities, where each link of the network has a number
assigned to it representing its capacity. Assuming a steady state
condition, find a maximal flow from city s to city t.

Note that the network flow problem is also about transportation.

• We model the rail network by a directed graph27 G = (V, A), 27 A directed graph, or digraph, is a
pair (V, A) where V is any set and
A ⊆ V ×V. We shall assume V is finite.
Elements of V are called nodes and
elements of A arcs.

and remark that s, t are two distinct nodes in V.

• For each arc (u, v) ∈ A we let Cuv denote the capacity of the arc.

The commodity being transported over the network (people,
freight or whatever else) starts from s; we assume this commodity
can be split, so it is routed towards t along a variety of paths. We
want to find the paths which will maximize the total flow rate.28 28 Assuming a constant flow, this is

equivalent to maximizing the total
quantity.

We have to decide which paths to use, and what quantities of
commodity to route along the paths. Since paths are sequences of
arcs, and the material could be split at a node and follow different
paths thereafter, we define decision variables xuv indicating the flow
rate along each arc (u, v) ∈ A.

Figure 1.12: A negative flow coupler
from starships of the rebellion era
(starwars.wikia.com).

A solution is feasible if the flow rates are non-negative (Fig. 1.12):

∀(u, v) ∈ A xuv ≥ 0,

if the flow rates do not exceed the arc capacities:

∀(u, v) ∈ A xuv ≤ Cuv,

artcritique.wordpress.com
starwars.wikia.com

20 mathematical programming

and if the positive flow rates along the arcs define a set of paths
from s to t.

Figure 1.13: A Max Flow instance.

How do we express this constraint? First, since the flow orig-
inates from the source node s, we require that no flow actually
arrives at s:

∑
(u,s)∈A

xus = 0. (1.7)

Next, no benefit29 would derive from flow leaving the target node t: 29 Eq. (1.8) follows from (1.7) and (1.9)
(prove it), and so it is redundant. If
you use these constraints within a
MILP, nonconvex NLP or MINLP,
however, they might help certain
solvers perform better.

∑
(t,v)∈A

xtv = 0. (1.8)

Lastly, the total flow entering intermediate nodes on paths between
s and t must be equal to the total flow exiting them:30 30 These constraints are called flow

conservation equations or material
balance constraints.∀v ∈ V r {s, t} ∑

(u,v)∈A
xuv = ∑

(v,u)∈A
xvu. (1.9)

Figure 1.14: An optimal solution for
the instance in Fig. 1.13.

The objective function aims at maximizing the amount of flow
from s to t. Since flow is conserved at any node but s, t, it follows
that however much flow exits s must enter t, and hence that it
suffices to maximize the amount of flow exiting s:31

31 We could equivalently have maxi-
mized the amount of flow entering t
(why?).

max ∑
(s,v)∈A

xsv.

1.7.3 Extremely short summary of complexity theory

Formally, decision and optimization problems are defined as sets
of infinitely many instances (input data) of increasing size. This
is in view of the asymptotic worst-case complexity analysis of
algorithms, which says that an algorithm A is O(f (n)) (for some
function f) when there is an n0 ∈ N such that for all n > n0 the
CPU time taken by A to terminate on inputs requiring n bits of
storage is bounded above by f (n).

If a problem had finitely many (say m) instances, we could pre-
compute the solutions to these m instances and store them into a
hash table, then solve any instance of this problem in constant time,
making the problem trivial.

We say a decision problem is in P when there exists a polynomial-
time algorithm that solves it, and in NP if every YES instance has a
solution which can be verified to be YES in polynomial time.

Problems are NP-hard when they are as hard as the hardest prob-
lems in NP: NP-hardness of a problem Q is proved by reducing
(i.e. transforming) a known NP-hard problem P to Q in polynomial
time, such that each YES instance in P maps to a YES instance in Q
and every NO instance in P to a NO instance in Q.

Figure 1.15: Hardness/completeness
reductions.

This method works since, if Q were any easier than P, we could
solve P by reducing it to Q, solve Q, then map the solution of Q
back to P; hence P would be “as easy as Q” (under polynomial-time
reductions), contradicting the supposition that Q is easier than P.

These notions are informally applied to optimization problems
by referring to their decision version: given an optimization problem

imperative and declarative programming 21

Find the minimum of f (x) subject to g(x) ≤ 0,

its decision version is

given a number F, is it the case that there exists a solution x such that
f (x) ≤ F and g(x) ≤ 0?

Figure 1.16: The bisection method
(from codeproject.com).

Barring unboundedness, solving the decision version in polytime
allows the (at least approximate) solution of the optimization
problem in polytime too via the bisection method, which takes a
logarithmic number of steps in terms of the range where f varies, at
least if this range is discrete.

1.7.4 Definitions

A mathematical program (MP) consists of parameters, decision
variables, objective functions and constraints.

• The parameters encode the input (or instance): their values are
fixed before the solver is called. The decision variables encode
the output (or solution): their values are fixed by the solver, at
termination.

• Decision variables are usually specified together with simple
constraints on their domain, such as e.g. interval ranges of the
form

x ∈ [xL, xU],

where x is a vector of n decision variables and xL, xU ∈ Rn such
that xL

j ≤ xU
j for each j ≤ n, or integrality constraints of the form

∀j ∈ Z xj ∈ Z,

where Z is a subset of the decision variable indices {1, . . . , n}.

• Objective functions have one of the following forms:

min f (p, x)

max f (p, x),

where p is a vector of q parameters, x is a vector of n decision
variables, and f is a function mapping Rq+n → R. A MP can
have zero or more objective functions. Usually, it has one.

• Constraints have one of the following forms:

g(p, x) ≤ 0

g(p, x) = 0

g(p, x) ≥ 0,

where, again, g : Rq+n → R. A MP can have zero or more
constraints.

codeproject.com

22 mathematical programming

For most MP subclasses, the functions f , g in the objectives and
constraints are explicitly given32 as mathematical expressions recur- 32 When f , g are not given explicitly we

have Black-box optimization.sively built up of parameter symbols and decision variable symbols,
combined by means of the usual arithmetical operators and a few
transcendental operators such as logarithms, exponentials and (very
rarely) some trigonometric functions.

1.7.5 The canonical MP formulation

Most MP formulations have the following form:

minx f (x)
∀i ≤ m gi(x) ≤ 0

x ∈ [xL, xU]

∀j ∈ Z xj ∈ Z.

 (1.10)

Figure 1.17: Parsing a recursively built
mathematical expression yields an
expression tree (from maplesoft.com).

Remarks:

1. we do not explicitly mention the parameters in the function
forms;

2. most MPs in the mathematical literature have exactly one objec-
tive;33 33 The study of MPs with multiple

objectives is known as multi-objective
programming (MOP), see Fig. 1.18 and
Sect. 2.11.

Figure 1.18: MOP yields a Pareto set of
solutions (from www.noesissolutions.

com).

3. objectives in maximization form max f can be transformed to
minimization form by simply considering the problem min− f
then taking the negative of the optimal objective function value,
since:

max f = −min(− f);

4. most MPs in the mathematical literature have a finite number of
constraints;34

34 The study of MPs with infinitely
many constraints is known as semi-
infinite optimization, see Sect. 2.13.

5. constraints in the form g(x) ≥ 0 can be replaced by −g(x) ≤ 0,
and those in the form g(x) = 0 by pairs of constraints (g(x) ≤
0, g(x) ≥ 0).

Let P be a MP formulation such as Eq. (1.10). We let:

F (P) = {x ∈ [xL, xU] | ∀i ≤ m gi(x) ≤ 0∧ ∀j ∈ Z xj ∈ Z} (1.11)

be the feasible set of P. Any x ∈ F (P) is a feasible solution. A feasible
solution x′ is a local optimum35 if there is a neighbourhood B of x′ 35 There are other definitions of local

optimality, involving e.g. the deriva-
tives of f at x′ (but for them to hold, f
must obviously be differentiable).

such that B ⊆ F (P) and f (x′) is minimal in B. A locally optimal
solution x∗ is a global optimum if B = F (P). We also let G(P) be the
set of global optima of P, and L(P) be the set of local optima of P.

Figure 1.19: Gradient-based minimality
conditions (from www.sce.carleton.

ca).

1.8 Modelling software

If the solvers are the interpreters for MP, the modelling software
provides a mapping between optimization problems, formulated in
abstract terms, and their instances, which is the actual input to the
solver.

maplesoft.com
www.noesissolutions.com
www.noesissolutions.com
www.sce.carleton.ca
www.sce.carleton.ca

imperative and declarative programming 23

1.8.1 Structured and flat formulations

Compare the transportation problem formulation given above:

min ∑
i∈P
j∈Q

cijxij

∀i ∈ P ∑
j∈Q

xij ≤ ai

∀j ∈ Q ∑
i∈P

xij ≥ bj

x ≥ 0,

(1.12)

given in general terms, to its instantiation

min x11 + 2x21

x11 ≤ 2
x21 ≤ 2

x11 + x21 ≥ 1
x11, x21 ≥ 0,

(1.13)

which refers to a given instance of the problem (see Sect. 1.7.3). The
two formulations are different: the former is the generalization
which describes all possible instances of the transportation prob-
lem,36 and the latter corresponds to the specific instance where 36 An instance of the transportation

problem is an assignment of values to
the parameter symbols a, b, c indexed
over sets P, Q of varying size.

P = {1, 2}, Q = {1}, a = (2, 2), b = (1), c = (1, 2). The former
cannot be solved by any software, unless P, Q, a, b, c are initialized
to values; the latter, on the other hand, can be solved numerically
by an appropriate solver.

Figure 1.20: A flat linear MP can be
represented by the sparsity pattern of
the problem matrix (objective in top
row, and RHS in rightmost column).
Here is a random transportation
problem instance.

Formulation (1.12) is as a structured formulation, whereas (1.13)
is a flat formulation (see Fig. 1.20).

1.8.2 AMPL

The syntax of the AMPL [Fourer and Gay, 2002] modelling soft-
ware is very close to a structured formulation such as (1.12), and
which interfaces with many solvers, some of them are free and/or
open source. AMPL itself, however, is a commercial product. It has
a free “demo” version which can deal with instances of up to 300

decision variables and 300 constraints.
The transportation problem can be formulated in AMPL as

follows.37 37 Note how close AMPL is to a
structured form. On the other hand,
AMPL can also take flat forms: see the
encoding of Formulation (1.13) below.

var x11 >= 0;
var x21 >= 0;
minimize cost: x11 + x21;
subject to production1: x11 <= 2;
subject to production2: x21 <= 2;
subject to demand1: x11 + x21 >= 1;

The point is that AMPL can automat-
ically transform a structured form to a
flat form.

transportation.mod

param Pmax integer;

param Qmax integer;

set P := 1..Pmax;

set Q := 1..Qmax;

param a{P};

param b{Q};

param c{P,Q};

var x{P,Q} >= 0;

minimize cost: sum{i in P, j in Q} c[i,j]*x[i,j];

subject to production{i in P}: sum{j in Q} x[i,j] <= a[i];

subject to demand{j in Q}: sum{i in P} x[i,j] >= b[j];

24 mathematical programming

The various entities of a MP (sets, parameters, decision variables,
objective functions, constraints) are introduced by a corresponding
keyword. Every entity is named.38 Every entity can be quantified 38 This is obvious for sets, parameters

and variables, but not for objective
functions and constraints.

over sets, including sets themselves. The cartesian product P× Q
is written {P,Q}. AMPL formulations can be saved in a file with
extension .mod.39 Note that comments are introduced by the # 39 E.g. transportation.mod.

symbol at the beginning of the line.
The instance is introduced in a file with extension .dat.40 40 E.g. transportation.dat

AMPL .dat files have a slightly differ-
ent syntax with respect to .mod or .run
files. For example, you would define a
set using

set := { 1, 2 };

in .mod and .run files, but using

set := 1 2;

in .dat files. Also, there are ways to
bi-dimensional arrays in tabular forms
and transposed tabular forms. Multi-
dimensional arrays can be written as
many bi-dimensional array slices. For
simplicity, I suggest you stick with the
basic syntax.

transportation.dat

param Pmax := 2;

param Qmax := 1;

param a :=

1 2.0

2 2.0

;

param b :=

1 1.0

;

param c :=

1 1 1.0

2 1 2.0

;

Every param line introduces one or more parameters as func-
tions41 from their index sets to the values. 41 The parameter tensor pi1 ,...,ik , where

P is the set of tuples (i1, . . . , ik) is
encoded as the function p : P →
ran(p). Each pair (i1, . . . , ik) 7→ pi1 ,...,ik
is given as a line i1 i2 ... ik

p_value.

In order to actually solve the problem numerically, another file
(bearing the extension .run) is used.42

42 The AMPl .run file functionality can
be much richer than this example, and
implement nontrivial algorithms. The
imperative part of the AMPL language
is however severely limited by the lack
of a function call mechanism.

transportation.run

model transportation.mod;

data transportation.dat;

option solver cplexamp;

solve;

display x, cost;

The transportation.run file is executed in a command line en-
vironment by running43 ampl < transportation.run. The output 43 AMPL actually has an Integrated

Development Environment (IDE). I
prefer using the command line since
it allows me to pipe each command
into the next. For example, in Unix
(including Linux and MacOSX) you
can ask for the optimal value by
running

ampl < transportation.run

| grep optimal

(all on one line).

should look as follows.

CPLEX 12.6.2.0: optimal solution; objective 1

1 dual simplex iterations (0 in phase I)

x :=

1 1 1

2 1 0

;

cost = 1

which corresponds to x11 = 1, x21 = 0 having objective function
value 1.

Figure 1.21: The Python language
namesake.

1.8.3 Python

Python is currently very popular with programmers because of the
large amounts of available libraries: even complex tasks require
very little coding.

imperative and declarative programming 25

Python is a high-level,44 general purpose, imperative interpreted
44 A programming language is high-
level when it is humanly readable (the
opposite, low-level, would be said of
machine code or assembly language).
The opposite of “interpreted” is
“compiled”: in interpreted languages,
the translation to machine code occurs
line by line, and the corresponding
machine code chunks are executed
immediately after translation. In
compiled languages, the program is
completely translated to an executable
file prior to running.

programming language. We assume at least a cursory knowledge of
Python.

The transportation problem can be formulated in Python as
follows. First, we import the PyOMO [Hart et al., 2012] libraries:

define concrete transportation model in pyomo and solve it

from pyomo.environ import *
from pyomo.opt import SolverStatus, TerminationCondition

import pyomo.opt

Next, we define a function which creates an instance of the
transportation problem, over the sets P, Q and the parameters a, b, c
(see Eq. (1.12)).45 45 PyOMO also offers an “abstract”

modelling framework, through which
you can actually read the instance
directly from AMPL .dat files.

def create_transportation_model(P = [], Q = [], a = {}, b = {}, c = {}):

model = ConcreteModel()

model.x = Var(P, Q, within = NonNegativeReals)

def objective_function(model):

return sum(c[i,j] * model.x[i,j] for i in P for j in Q)

model.obj = Objective(rule = objective_function)

def production_constraint(model, i):

return sum(model.x[i,j] for j in Q) <= a[i]

model.production = Constraint(P, rule = production_constraint)

def demand_constraint(model, j):

return sum(model.x[i,j] for i in P) >= b[j]

model.demand = Constraint(Q, rule = demand_constraint)

return model

Finally, we write the “main” procedure,46 i.e. the point of entry

46 What you do with the solution once
you extract it from PyOMO using
solutions.load_from is up to you
(and Python). Since Python offers
considerably more language flexibility
and functionality than the imperative
part of AMPL, the Python interface is
to be preferred whenever solving MPs
is just a step of a more complicated
algorithm.

to the execution of the program.

main

P = [1,2]

Q = [1]

a = {1:2,2:2}

b = {1:1}

c = {(1,1):1, (2,1):2}

instance = create_transportation_model(P,Q,a,b,c)

solver = pyomo.opt.SolverFactory(’cplexamp’, solver_io = ’nl’)

if solver is None:

raise RuntimeError(’solver not found’)

solver.options[’timelimit’] = 60

results = solver.solve(instance, keepfiles = False, tee = True)

if ((results.solver.status == SolverStatus.ok) and

(results.solver.termination_condition == TerminationCondition.optimal)):

feasible and optimal

instance.solutions.load_from(results)

xstar = [instance.x[i,j].value for i in P for j in Q]

print(’solved to optimality’)

print(xstar)

else:

print(’not solved to optimality’)

Note that these three pieces of code have to be saved, in se-
quence, in a file named transportation.py, which can be executed
by running python transportation.py. The output is as follows.

timelimit=60

26 mathematical programming

CPLEX 12.6.2.0: optimal solution; objective 1

1 dual simplex iterations (0 in phase I)

solved to optimality

[1.0, 0.0]

Are you wondering how I produced
Fig. 1.20? Take transportation.py and
modify it as follows: (i) include

import numpy as np

import itertools

import np.random as npr

import matplotlib.pyplot as plt

at the beginning of the code. Then
replace the definition of a, b, c after #
main to

U=10; p=10; q=6

P=range(1,p+1); Q=range(1,q+1)

avals=npr.random_integers(1,U,size=p)

bvals=npr.random_integers(1,U,size=q)

cvals=npr.random_integers(1,U,size=p*q)

a=dict(zip(P,avals))

b=dict(zip(Q,bvals))

c=dict(zip(list(itertools.product(P,Q)),cvals))

M=np.zeros((1+p+q, p*q+1))

for i in P:

for j in Q:

M[0,q*(i-1)+(j-1)]=c[(i,j)]

for i in P:

for j in Q:

M[i,q*(i-1)+(j-1)]=1

M[i,p*q] = a[i]

for j in Q:

for i in P:

M[p+j,p*(j-1)+(i-1)]=1

M[p+j,p*q] = b[j]

plt.matshow(M, cmap = ’bone_r’)

plt.show()

Essentially, I’m sampling random in-
teger dictionaries for a, b, c (note the
use of zip: look it up, it’s an important
function in Python), then I’m construct-
ing the problem matrix M consisting
in the objective function coefficients
(top row), the constraint matrix, and
the right hand side (RHS) vector in the
rightmost column.

1.9 Summary

• Most people are used to imperative programming

• There is also declarative programming, and it is just as powerful

• Mathematical programming is a kind of declarative program-
ming for optimization problems

• Using parameters, decision variables, objectives and constraints,
optimization problems can be “modelled” using MP

• Efficient solution algorithms exist for different classes of MP

• Algorithms are implemented into solvers

• MP interpreted as “modelling, then calling an existing solver”
shifts focus from creating a solution algorithm for a given problem
(perceived as more difficult) to modelling the problem using MP
(perceived as easier)

• MP formulations are created by humans using quantifiers, sets,
and tensors/arrays of variables and constraints (structured form);
solvers require their input to be MP formulation as explicit
sequences of constants, variables, objectives, constraints (flat
form)

• Modelling software is used to turn structured form to flat form,
submit the flat form to a solver, then retrieve the solution from
the solver and structure it back to the original form

• We look at two modelling environments: AMPL and Python.

2
Systematics and solution methods

Figure 2.1: This picture, showing
a polyhedron (for LP), a nonlinear
function (for NLP) and an integer
lattice (for MILP), is the logo of
another modeling environment for MP,
namely JuliaOpt (www.juliaopt.org).
You are very welcome to try it!

MP formulations can belong to different classes. We list some
of the most important in this chapter, together with a few notes
about solution methodologies, software packages, and applications.
Although all objective function directions have been cast to mini-
mization, this bears no loss of generality. As already remarked in
Sect. 1.7.5, max f can be replaced by −min(− f).

2.1 Linear programming

Linear Programming (LP) [Dantzig et al., 1955] is the minimiza-
tion of a linear form on a polyhedron. The standard form is1 1 LP can also be formulated in canonical

form as min{c>x | Ax ≤ b}. The
associated feasibility problem Ax ≤ b
was first tackled by Fourier in 1827.
Kantorovich and Koopmans won the
Nobel prize in Economics in 1975 for
their seminal work on formulating
and solving economics problems
as LPs. Hitchcock formulated the
transportation problem (see Sect. 1.7.1)
as an LP. Dantzig formulated many
operation planning problems as LPs,
and in 1947 he proposed the celebrated
simplex method for solving LPs.

min c>x
Ax = b

x ≥ 0,

 (2.1)

where c ∈ Rn, b ∈ Rm, A an m× n matrix are the parameters. LP is
the most fundamental problem in MP.

LP is arguably the most fundamental problem in MP. It can be
solved in polynomial time by the ellipsoid algorithm [Khachiyan,
1980] and by the interior point algorithm [Karmarkar, 1984], and is
therefore in the computational complexity class2 P. By continually 2 Its associated decision problem

turns out to be P-complete under
log-space reductions, a useful fact in
the complexity analysis of parallel
algorithms.

improving and tuning the simplex and interior point methods,
modern solver technology3 can efficiently solve (sparse) LPs with

3 See e.g. IBM-ILOG CPLEX [IBM,
2010] and GLPK [Makhorin, 2003] for
the state of the art in commercial and
open-source LP solvers.

millions of nonzeros in their constraint matrix.
LP often occurs as a subproblem of higher-level algorithms. In

the Branch-and-Bound (BB) algorithm for solving MILPs, for exam-
ple, every node of the BB search tree either gives rise to subnodes,
or is pruned, according to the feasibility or integrality of the LP
relaxation of the MILP.

Classical applications of LP are: modelling points of equilibrium
in economic behaviour, determining optimal blending recipes for
composite food or chemical products, the already mentioned trans-
portation, assignment, flow problems, planning production over
time, finding sparse solutions to under-determined linear systems
[Candès, 2014] and approximate solutions to over-determined lin-
ear systems, finding upper bounds to sphere packing problems,
and many more. Several references exist on LP; [Vanderbei, 2001,

www.juliaopt.org

28 mathematical programming

Matoušek and Gärtner, 2007] are among my favorites; the latter, in
particular, contains a very interesting chapter on the application of
LP to upper bounds for error correcting codes and sphere packing
problems [Delsarte, 1972].

2.2 Mixed-integer linear programming

Mixed-Integer Linear Programming
4 (MILP) consists in the 4 The first exact method for solving

MILPs was proposed by Ralph Go-
mory [Gomory, 1958]. After joining
IBM Research, he exploited integer pro-
gramming to formulate some cutting
problem for a client, and derived much
of the existing theory behind cutting
planes from the empirical observation
of apparently periodic data in endless
tabulations of computational results.

minimization of a linear form on a polyhedron, restricted to a non-
negative integer lattice cartesian product the non-negative orthant.
The standard form is

min c>x
Ax = b

x ≥ 0
∀j ∈ Z xj ∈ Z+,

 (2.2)

where c, b, A are as in the LP case, and Z ⊆ {1, . . . , n}.
This is another fundamental problem in MP. It is NP-hard5; 5 A problem P is NP-hard when any

other problem in the class NP can
be reduced to it in polynomial time:
from this follows the statement that
an NP-hard problem must be at least
as hard to solve (asymptotically, in the
worst case) as the hardest problem of
the class NP (see Sect. 1.7.3).

many problems can be cast as MILPs — its combination of contin-
uous and integer variables give MILP a considerable expressive
power as a modelling language. It includes ILP (integer variables
only, see below), BLP (binary variables only, see below) and LP as
special cases. MILPs can either be solved heuristically [Fischetti and
Lodi, 2005, Fischetti et al., 2005] or exactly, by BB6 6 The state of the art BB implementa-

tion for MILP is given by IBM-ILOG
CPLEX [IBM, 2010]; the SCIP solver
[Berthold et al., 2012], also very ad-
vanced, is free for academics. Other
advanced commercial solvers are
XPress-MP and GuRoBi.

Here is an example of a problem which can be formulated as a
MILP.

∗
types

ofpow
er

plants

Power Generation Problem. There are Kmax types
∗

of power
generation facilities, and, for each k ≤ Kmax, nk facilities of type
k, each capable of producing wk megawatts. Switching on or off a
facility of type k ≤ Kmax has a fixed cost fk and a unit time cost
ck. This set of power generation facilities has to meet demands
dt for each time period t ≤ Tmax, where Tmax is the time horizon.
The unmet demand has to be purchased externally, at a cost C
per megawatt. Formulate a minimum cost plan for operating the
facilities.

Some of the decision variables7 are defined as the number of fa- 7 Try and formulate this problem as
a MILP — use variables xkt ∈ Z+ to
mean the number of facilities of type
k generating at period t, y1

kt ∈ Z+ to
mean the number of facilities of type
k that are switched on at time t, y0

kt
switched off, and zt ∈ R+ to mean the
quantity of power purchased externally
at period t.

cilities of a certain type used at a given period (these are integer
variables). And yet other decision variables will be the quantity of
power which needs to be purchased externally (these are continu-
ous variables). Every relation between variables is linear, as well as
the expression for the costs.

Another example is the following problem, which has its roots in
[Euler, 1736] (see Fig. 2.2).

Traveling Salesman Problem
8 (TSP) [Flood, 1956]. Consider a 8 There is an enormous amount of

literature about the TSP — it appears
to be the most studied problem in
combinatorial optimization! Entire
books have been written about it
[Applegate et al., 2007, Gutin and
Punnen, 2002].

traveling salesman who has to visit n + 1 cities 0, 1, . . . , n spending the
minimum amount of money on car fuel. Consumption is assumed
to be proportional to inter-city distances cij for each pair of cities
i < j ≤ n. Determine the optimal order of the cities to be visited.

systematics and solution methods 29

Figure 2.2: Euler, and TSP art.

We define binary decision variables xij ∈ {0, 1} to mean that the
order visits city i immediately before city j if and only if xij = 1.
We also introduce continuous decision variables u0, . . . , un ∈ R.
Consider the following MILP formulation:

min
x,u

n

∑
i 6=j

cijxij (2.3)

∀i ≤ n
n

∑
j=0

xij = 1 (2.4)

∀j ≤ n
n

∑
i=0

xij = 1 (2.5)

∀i 6= j 6= 0 ui − uj + nxij ≤ n− 1 (2.6)

∀i, j ≤ n xij ∈ {0, 1}. (2.7)

The objective function Eq. (2.3) aims at minimizing the total cost
of the selected legs of the traveling salesman tour. By Eq. (2.4)-
(2.5),9 we know that the feasible region consists of permutations of 9 Constraints (2.4)-(2.5) define the

assignment constraints, which define
an incredibly important substructure
in MP formulation — these crop up
in scheduling, logistics, resource
allocation, and many other types of
problems. Assignment constraints
define a bijection on the set of their
indices.

{0, . . . , n}: if, by contradiction, there were two integers j, ` such that
xij = xi` = 1, then this would violate Eq. (2.4); and, conversely, if
there were two integers i, ` such that xij = x`j = 1, then this would
violate Eq. (2.5). Therefore all ordered pairs (i, j) with xij = 1 define
a bijection {0, . . . , n} → {0, . . . , n}, in other words a permutation.
Permutations can be decomposed in products of disjoint cycles.
This, however, would not yield a tour but many subtours. We have
to show that having more than one tour would violate Eq. (2.6).
Suppose, to get a contradiction, that there are at least two tours.
Then one cannot contain city 0 (since the tours have to be disjoint
by definition of bijection): suppose this is the tour i1, . . . , ih. Then
from Eq. (2.6), by setting the x variables to one along the relevant
legs, for each ` < h we obtain ui` − ui`+1

+ n ≤ n − 1 as well
as uih − ui1 + n ≤ n − 1. Now we sum all these inequalities and
observe that all of the u variables cancel out, since they all occur
with changed sign in exactly two inequalities. Thus we obtain
n ≤ n− 1, a contradiction.10 Therefore the above is a valid MILP 10 At least one tour (namely the one

containing city 0) is safe, since we
quantify Eq. (2.6) over i, j both non-
zero.

formulation for the TSP.
Eq. (2.6) is not the only possible way to eliminate the subtours.

Consider for example the exponentially large family of inequalities

∀∅ 6= S ({0, . . . , n} ∑
i∈S
j 6∈S

xij ≥ 1. (2.8)

These subtour elimination inequalities state that for every nontrivial
subset S of the cities, there must be a leg in the tour which exits
S. Since it would be too time-consuming to generate the whole
family of constraints (2.8), one usually proceeds iteratively: solve
the formulation, and hope the resulting solution is a single tour. If
not, identify a constraint which is violated by the current subtour
solution, add it to the formulation, and repeat. This algorithm is
called row generation.11 11 Note, however, that Eq. (2.8) are

only defined on the binary variables x
rather than the continuous ones u; so
the formulation actually belongs to the
BLP class (see Sect. 2.4).

30 mathematical programming

2.3 Integer linear programming

Integer Linear Programming (ILP) consists in the minimization
of a linear form on a polyhedron, restricted to the non-negative
integer lattice. The standard form is

min c>x
Ax = b

x ∈ Zn
+,

 (2.9)

where c, b, A are as in the LP case. ILP is just like MILP but without
continuous variables. Consider the following problem.

Figure 2.3: In scheduling, solutions
are often represented on a plane, with
processors on a discretized vertical
axis, and time on the horizontal axis
(from www.femto-st.fr).

Scheduling. There are n tasks to be executed on m processors. Task
i ≤ n takes τi units of processor time, where τ ∈ [0, T]n and T ∈ N

is a time horizon. There is a precedence relation digraph G = (V, A)

where V = {1, . . . , n} and (i, j) ∈ A if the execution of task i must
end before the execution of task j begins. Determine the execution
plan which ensures that all tasks are executed exactly once, and
which minimizes the total time.

Scheduling problems12 are a vast area of combinatorial optimiza- 12 Scheduling problems usually have
two intertwined decisions: a temporal
(partial) order, and an assignment.
In this case the order is encoded by
the < relation on the values of the
xi variables and the assignment is
encoded by the yik variables. The
optimal value of these variables must
depend on each other, since if two
tasks i, j are assigned to the same
processor, then necessarily one must
end before the other can begin. Can
you write these constraints? You
might need other binary variables to
determine a precedence for (i, j) 6∈ A.

tion, business planning and, in general, of all practical life! We can
solve them using ILP by using the following decision variables:
xi ∈ Z+ indicates the starting time for task i ≤ n, and yik ∈ {0, 1}
for each i ≤ n, k ≤ m indicates that task i is executed by processor k
if and only if yik = 1.

2.4 Binary linear programming

Binary Linear Programming (BLP) consists in the minimization
of a linear form on a polyhedron, restricted to the hypercube. The
standard form is

min c>x
Ax = b

x ∈ {0, 1}n,

 (2.10)

where c, b, A are as in the LP case. BLP is usually employed for
purely combinatorial problems.

Figure 2.4: Image recognition appli-
cation of linear assignment (from
pages.cs.wisc.edu/~pachauri).

2.4.1 Linear assignment

Find the assignment of minimum cost [Burkard et al., 2009]
(Fig. 2.4).

Linear Assignment Problem (LAP)13 Given a set V = {1, . . . , n}

13 The LAP can be solved in poly-
nomial time: it is the same as the
weighted perfect matching problem
in a bipartite graph, which is known
to be in P (also see Sect. 4.3.2 and its
sidenotes).

and a cost matrix cij for 1 ≤ i, j ≤ n, find the permutation π of V
such that ∑i≤n ciπ(i) is minimum.

Since we are looking for a permutation, we can exploit some of the
constraints of the MILP formulation for the TSP, namely Eq. (2.4)-

www.femto-st.fr
pages.cs.wisc.edu/~pachauri

systematics and solution methods 31

(2.5):
min ∑

i,j≤n
cijxij

∀i ≤ n ∑
j≤n

xij = 1

∀j ≤ n ∑
i≤n

xij = 1

∀i, j ≤ n xij ∈ {0, 1}.

(2.11)

Figure 2.5: Vertex cover: location
of communication towers (from
www.bluetronix.net).

2.4.2 Vertex cover

Find the smallest set of vertices such that ever edge is adjacent to a
vertex in the set14 (see Fig. 2.5).

14 In other words, the edge is covered by
the vertex.Vertex Cover.15 Given a simple undirected graph G = (V, E), find
15 This is an NP-hard problem [Karp,
1972].the smallest subset S ⊆ V such that, for each {i, j} ∈ E, either i or j is

in S.

Since we have to decide a subset S ⊆ V, we can represent S by its
indicator vector16 x = (x1, . . . , xn), where n = |V|, xi ∈ {0, 1} for all 16 In combinatorial problems, subsets

are very often represented by indi-
cator vectors. This allows a natural
formalization by MP.

i ≤ n, and xi = 1 if and only if i ∈ S.

min ∑
i≤n

xi

∀{i, j} ∈ E xi + xj ≥ 1
∀i ≤ n xi ∈ {0, 1}.

 (2.12)

The generalization of Vertex Cover to hypergraphs17 is the 17 In a hypergraph, hyperedges are
arbitrary sets of vertices instead of just
being pairs of vertices.Minimum Hypergraph Cover. Given a set V and a family E =

{E1, . . . , Ek} of subsets of V, find the smallest subset S ⊆ V such that
every set in E has at least one element in S.

Figure 2.6: A minimum hypergraph
cover is useful to choose the smallest
numbers of optimally placed sites from
a set (from support.sas.com).

Generalizing from Vertex Cover, every edge e ∈ E has been
replaced by a set E` in the family E . We now have to generalize the
cover constraint xi + xj ≥ 1 to a set.

min ∑
i≤n

xi

∀` ≤ k ∑
i∈E`

xi ≥ 1

∀i ≤ n xi ∈ {0, 1}.

 (2.13)

2.4.3 Set covering

Given a family E of k subsets of V, we want to find the smallest
subset of E the union of which contains V (see Fig. 2.7 for an appli-
cation).

Set Covering. Given a set V and a family E = {E1, . . . , Ek} of
subsets of V, find the smallest subset S ⊆ {1, . . . , k} s.t.

⋃
`∈S

E` = V.

Figure 2.7: In airline crew rostering, V
are flight segments (or legs), E contains
tours (or rosters), to which are assigned
crews (since they eventually have to
get back to where they started from) —
the optimal crew roster is given by a
minimum set cover.

The formulation is deceptively similar to Eq. (2.13):

min ∑
`≤k

x`

∀v ∈ V ∑
`≤k

v∈E`

x` ≥ 1 (covering constraint)

∀` ≤ k x` ∈ {0, 1}.

 (2.14)

www.bluetronix.net
support.sas.com

32 mathematical programming

The covering constraints state that every v ∈ V must belong to at
least one set E`. Set Covering is NP-hard.

2.4.4 Set packing

In the same setting as Set Covering, we now want to find the
largest disjoint subset of E .

Figure 2.8: What is the largest number
of most diverse (E` ∩ Eh = ∅) recipes
(from your cookbook E) that you can
make with the ingredients V you have
at home?

Set Packing. Given a set V and a family E = {E1, . . . , Ek} of subsets
of V, find the largest subset S ⊆ {1, . . . , k} such that E` ∩ Eh = ∅ for
all ` 6= h in S.

We simply invert objective function direction and inequality sign:

max ∑
`≤k

x`

∀v ∈ V ∑
`≤k

v∈E`

x` ≤ 1 (packing constraint)

∀` ≤ k x` ∈ {0, 1}.

 (2.15)

The packing constraints state that every v ∈ V must belong to at
most one set E`. In general, Set Packing is NP-hard.

If V is the set of vertices of a graph, and E consists of the set
of its edges, then Set Packing is equal to the Matching problem,
i.e. find a subset M of non-incident edges such that each vertex is
adjacent to at most an edge in M. This particular version of the
problem can be solved in polytime [Edmonds, 1965].

2.4.5 Set partitioning

Putting covering and packing together, we get partitioning.

Figure 2.9: Set partitioning is some-
times useful as a modelling tool in
clustering, specifically when one has
an exhaustive list of all the possible
clusters as part of the input (from
scikit-learn.sourceforge.net).

Set Partitioning. Given a set V and a family E = {E1, . . . , Ek} of
subsets of V, find a set S ⊆ {1, . . . , k} such that (i)

⋃
`∈S

E` = V and (ii)

∀` 6= h ∈ S (E` ∩ Eh = ∅).

This is a pure feasibility problem which can be formulated as
follows.

∀v ∈ V ∑
`≤k

v∈E`

x` = 1 (partitioning constraint)

∀` ≤ k x` ∈ {0, 1}.

 (2.16)

Figure 2.10: Political districting in
NY state (from andrewgelman.com).
Given a set E of potential (overlapping)
districts, choose the partition of the
state which minimizes the maximum
deviation from the average.

The partitioning constraints state that every v ∈ V must belong
to exactly one set E`. Set Partitioning is NP-hard.

Eq. (2.16) becomes an optimization problem whenever we can
assign a cost c` to each set E` (` ≤ k), for example we could have
c` = |E`|. Other types of objective functions yield applications such
as that of Fig. 2.10.

2.4.6 Stables and cliques

A stable set in a graph G = (V, E) is a subset I ⊆ V such that
{u, v} 6∈ E for any pair u 6= v ∈ I.

scikit-learn.sourceforge.net
andrewgelman.com

systematics and solution methods 33

Given a set X and a family E of k subsets of V, consider the
graph G having E as its vertex set, and such that {E`, Eh} is an edge
of G if and only if E` ∩ Eh 6= ∅. Then18 S is a set packing of (X, E) if 18 Prove it.

and only if S is a stable set of G.

Figure 2.11: A clique and a stable set
in a graph.

The relevant problem is to find a stable set of maximum size:

Max Stable Set. Given a simple undirected graph G = (V, E), find a
stable set S ⊆ V of having maximum cardinality.

If we now look at the complement graph,19 a stable set becomes 19 This is the graph obtained by negat-
ing each edge; i.e., if {i, j} ∈ E in
the given graph, {i, j} 6∈ E in the
complement, and vice versa.

a clique20 The corresponding Max Clique problem is finding the

20 A set of vertices pairwise linked by
edges.

clique S ⊆ V of G having maximum cardinality.21 Both Max Stable

21 Write the BLP formulations of Max

Stable Set and Max Clique.

Set and Max Clique are NP-hard.22

22 Prove this.

2.4.7 Other combinatorial optimization problems

There cannot be an exhaustive list of BLP formulations for all
combinatorial problems on graphs and hypergraphs. Those we
mentioned here are supposed to give some indication of the most
basic modelling techniques using BLP.

Figure 2.12: Let A1, . . . , An ∈ Rm

be vectors representing a small set
of high-dimensional images from a
live feed (e.g. a security camera), and
b ∈ Rm be a vector representing a
target image (e.g. a thief). Can we
approximately express b as a linear
combination of A1, . . . , Am (in other
words, can we detect the thief)? Since
m > n, there will of course be an error
‖Ax− b‖2, where A is the m× n matrix
consisting of the columns Ai (i ≤ n),
and x ∈ Rn are the coefficients we
want to find. Depending on how small
we can make ‖Ax − b‖2, we might
convict the thief or let her walk. The
problem min ‖Ax− b‖2 is a cNLP.

2.5 Convex nonlinear programming

convex Nonlinear Programming (cNLP) consists in the mini-
mization of a convex function on a convex set. The standard form is

min f (x)
g(x) ≤ 0,

}
(2.17)

where f : Rn → R and g : Rn → Rm are convex functions.
cNLPs can be solved efficiently using local NLP solvers such

as IPOPT or SNOPT, which are designed to find a local optimum
on (general, possibly nonconvex) NLPs (see Sect. 2.6 below). Since
every local optimum of a cNLP is also global (by convexity of f , g),
local solvers find global optima in this setting.

cNLPs can in fact be solved in polynomial time. Strictly speak-
ing, however, we cannot state the cNLP is in P, since solutions
of cNLPs could be irrational and even transcendental — and our
computational model based on TMs does not allow us to write
all23 irrational and transcendental numbers precisely. So we have 23 Here’s an interesting question: how

about being able to write just one
optimum precisely? E.g., given a
problem instance, couldn’t we simply
denote the optimum of interest by a
simple symbol, e.g. ω?

to speak about ε error tolerances: With this caveat, we can state
that we can find arbitrary close approximations of cNLP optima in
polynomial time.24

24 In general, these results are implied
by showing that some algorithm runs
in O(p(|I|, 1

ε)) where |I| is the size of
the instance and p(·, ·) is a polynomial.

Similarly to LP, which is used within other algorithms such as
BB, cNLP is also used in the nonlinear version of the BB algorithm.

Applicationwise, many problems can be cast as cNLPs (see [Boyd
and Vandenberghe, 2004]). For example, given a point p ∈ Rn and
a convex feasible set F = {x ∈ Rn | ∀i ≤ m gi(x) ≤ 0}, finding the
point y ∈ F closest to p is a cNLP:25 25 Linear regression generalizes pro-

jection and is possibly one of the
practically most useful (and used)
tools in all of mathematics. It can be
cast as the following cNLP, which is
in fact a cQP (see Sect. 2.9.1 below):
min ‖Ax − b‖2, where A is an m× n
matrix, b ∈ Rm, and m > n.

min ‖x− p‖`
∀i ≤ m gi(x) ≤ 0.

}
(2.18)

34 mathematical programming

Since ` norms are convex functions and the constraints are con-
vex, Eq. (2.18) is a cNLP. It is routinely used with the Euclidean
norm (` = 2) to project points onto convex sets, such as cones and
subspaces.

Surprisingly, the problem of interpolating an arbitrary set of
points in the plane26 by means of a given class of functions can be 26 Generalize this to Rn.

cast as a cNLP. Let P be a finite set of k points (pi, qi) in R2, and
consider the parametrized function:

Figure 2.13: Nonlinear function
interpolation [Boyd and Vandenberghe,
2004].

fu(x) = u0 + u1x + u2x2 + · · ·+ umxm.

The problem is that of looking for the values u0, . . . , um minimizing
the norm of the error vector F(u) = (fu(pi)− qi | i ≤ k), e.g.:

min
u
‖F(u)‖`

for some positive integer `. The point is that fu is nonlinear in x but
linear in u, which are the actual decision variables.

2.6 Nonlinear programming

Nonlinear Programming (NLP) consists in the minimization
of any nonlinear function on any nonlinearly defined set. The
standard form is

min f (x)
g(x) ≤ 0,

}
(2.19)

where f : Rn → R and g : Rn → Rm are any nonlinear functions.
Adding nonconvex functions to NLP makes it much more expres-

sive than cNLP. For example, NLP can model circle packing [Costa
et al., 2013] (see Fig. 2.14).

Packing Equal Circles in a Square (PECS). Given an integer n,
find the largest radius r such that n circles of radius r can be drawn
in a unit square in such a way that they intersect pairwise in at most
one point.

Figure 2.14: Some configurations
for circle packing in a square (from
www.packomania.com).

The formulation27 is as follows:

27 Write a formulation for the variant of
this problem where r is fixed and you
maximize n.

max r
∀i < j ≤ n (xi − xj)

2 + (yi − yj)
2 ≥ (2r)2

∀i ≤ n r ≤ xi ≤ 1− r
∀i ≤ n r ≤ yi ≤ 1− r.

 (2.20)

Solving circle packing problems is hard in practice (see the www.

packomania.com website). However, no-one ever established
whether the PECS is actually NP-hard.28 This is the case for many 28 It is unlikely that the PECS will

actually be in NP, since a certificate of
optimality is a solution ((xj, yj) | i ≤ n)
which might have irrational compo-
nents — and it might be impossible
to represent them with a number of
bits which is at most polynomial in the
size of the input; which, in this case, is
the memory necessary to store the two
scalars r, n.

problems having small instance sizes, e.g. for the decision version
of the PECS, where r is given as part of the input instead of being
maximized, an instance is the pair (r, n), and the number of bits
required to store them is |n|+ |r|, where

∀y =
p
q
∈ Q |y| = dlog2 pe+ dlog2 qe

www.packomania.com
www.packomania.com
www.packomania.com

systematics and solution methods 35

is the number of bits of memory required to store the floating point
number y. By contrast, the size of an LP min{cx | Ax ≤ b} where A

is m× n is
m
∑

i=1

n
∑

j=1
|aij|+

m
∑

i=1
|bi|+

n
∑

j=1
|cj|. Even taking the storage for

components A, b, c to be as low as possible (1 bit), this amounts to
m + n + mn, against |n|+ |r| which is of order log2 n.

The issue with having a problem Q with small instance size29 is 29 NP reductions have to be performed
in time bounded by a polynomial of
the instance size of P, and have map
YES (respectively, NO) instances of P
to YES (respectively, NO) instances of
Q. Inever had any promising intuition
for encoding O(n) bits of information
in O(log2 n) in such a way as to
preserve YES and NO answers.

that NP-hardness is usually established by reduction (see Sect. 1.7.3)
from a problem P which is already known to be NP-hard. All
NP-hard problems we know have sizes at least proportional to an
integer n, rather than its logarithm.

A related decision problem is the following.

feasibility Kissing Number Problem (fKNP).30 Given two integers 30 This problem in K = 3 was originally
discussed between Isaac Newton and
one of his ex students, David Gregory
[Liberti, 2012].

n, K, can we fit n unit balls B1, . . . , Bn around the unit ball B0 cen-
tered at the origin of RK , so that |B0 ∩ Bi| = 1 for all i ≤ n but the
interiors of all the balls are pairwise disjoint?31

31 Formulate the fKNP as a nonconvex
NLP.Like the PECS, the fKNP is very hard in practice [Kucherenko et al.,

2007] but we do not know whether it is NP-hard or not, for much
the same reasons as the PECS.

Figure 2.15: A 12-sphere packing: is
there space for a 13th ball?

Another problem which can be formulated as an NLP is the
following.

Euclidean Distance Geometry Problem (EDGP). Given a positive
integer K and a simple undirected graph G = (V, E) with a distance
function d : E → R+ on the edges, determine whether there is a
realization32 x : V → RK such that:

32 A realization is a function satisfying
Eq. (2.21).

∀{u, v} ∈ E ‖xu − xv‖2 = duv, (2.21)

where ∀v ∈ V xv ∈ RK .

If K = 2 the EDGP essentially asks to draw a given graph on the
plane such that edge segments have lengths consistent with the
edge function d. The EDGP has many applications in engineering
and other fields [Liberti et al., 2014].

Figure 2.16: Two applications of EDGP:
localization of sensor networks, and
protein conformation from Nuclear
Magnetic Resonance (NMR) data.

Nonconvex NLPs may have many local optima which are not
global. There are therefore two categories of solvers which one
can use to solve NLPs: local solvers (for finding local optima) and
global solvers (for finding global optima).

We mentioned local NLP solvers (such as IPOPT or SNOPT)
in connection with solving cNLP globally in Sect. 2.5 above. Un-
fortunately, any guarantee of global optimality disappears when
deploying such solvers on nonconvex NLPs. The actual situation is
even worse: most local NLP solvers are designed to simply finding
the closest local optimum from a given feasible point.

In general, local NLP algorithms are iterative, and identify a
sequence xk ∈ Rn (for k ∈ N) which starts from a given feasible
point x0 and by finding a feasible improving direction vector dk by
means of solving an auxiliary (but easier) optimization subproblem,
they then set

xk+1 = xk + dk.

36 mathematical programming

Termination is achieved whenever ‖xk+1 − xk‖ ≤ ε, where ε > 0 is a
given approximation error tolerance. The auxiliary subproblem usu-
ally aims at satisfying first, and possibly second order33 optimality 33 For example, Sequential Quadratic

Programming (SQP) is a class of
methods which is based on solving the
following auxiliary subproblem:

min
d∈Rn

f (xk) + [∇x f (xk)]
>d+

+ 1
2 d>∇xxL(xk , λk)d

∀i ≤ m gi(xk) + [∇x gi(xk)]
>d ≤ 0

where L(x, λ) = f (x) + λg(x) is the
Lagrangian of the NLP, and λ is the
vector of Lagrange coefficients. The
solution to this problem yields dk at
each step k (λk are also updated at
each step).

conditions.
These conditions, however, are not valid everywhere: further as-

sumptions called constraint qualifications must be met. Unfortunately,
whether these assumptions are valid depends on the instance rather
than the problem. Moreover, from a worst-case complexity point of
view, finding a feasible point in a nonconvex NLP is just as hard as
finding an optimal point,34 so the assumption that a feasible point

34 Why?

is given is also unrealistic.35 On the other hand, if all the assump-

35 These methods are often used
to improve existing business or
production processes, where a feasible
solution can be derived from the
real-world setting.

tions are verified and a feasible point exists, local NLP methods can
find the closest local optimum rather efficiently.

Nonconvex NLPs can be solved globally to a given ε > 0 toler-
ance (on the optimal objective function value) by means of a BB
variant called spatial Branch-and-Bound (sBB) [Liberti, 2006, Belotti
et al., 2009].36 The best-known sBB implementation is BARON

36 BB type algorithms are used to
handle nonconvexity. In MILP, the inte-
grality constraints are the only source
of nonconvexity, and, accordingly, BB
branches on variables which take a
fractional value when solving the LP
relaxation at each node. In nonconvex
NLP, objective and constraints are
nonconvex. Instead of branching on
variables taking fractional values,
we branch on variables contributing
a discrepancy between an objective
function value of the original problem
and of the convex relaxation solved at
each sBB node.

[Sahinidis and Tawarmalani, 2005], which is a commercial solver.
Recent versions of SCIP [Berthold et al., 2012] can also solve MINLP
(see Sect. 2.8) and hence, in principle, NLPs as well. The only open
source sBB implementation worthy of note is Couenne [Belotti,
2011].

2.7 Convex mixed-integer nonlinear programming

convex Mixed-Integer Nonlinear Programming (cMINLP)
consists in the minimization of a convex function on a convex
set, restricted to the cartesian product of an integer lattice and a
Euclidean space. The standard form is

Figure 2.17: Optimization of water
networks: deciding diameters for all
pipes and water flow given water
at each node over a time horizon
[Bragalli et al., 2012]. Although this is
actually a nonconvex cMINLP methods
are used heuristically to solve it.

min f (x)
g(x) ≤ 0

∀j ∈ Z xj ∈ Z,

 (2.22)

where f : Rn → R and g : Rn → Rm are convex functions, and
Z ⊆ {1, . . . , n}.

A typical cMINLP application is mean-variance portfolio selec-
tion with cardinality constraints:

Cardinality Constrained Mean-Variance Portfolio Selection

(CCMVPS).37 Decide how to partition a unit budget into an invest-

37 This is a cardinality constrained
variant of the celebrated Markowitz’
portfolio selection problem [Konno
and Wijayanayake, 2001]. Markowitz
won the Nobel prize in Economics
for his contributions on the portfolio
problem.

ment portfolio which maximizes the expected return (given the
return coefficient vector ρ) subject to a given bound r on the variance
(given the covariance matrix Q) and to a maximum of k different
investments out of a possible K.38

38 Formulate the CCPS as a cMINLP.

Insofar as cMINLPs are a generalization of cNLP to integer
variables, all of the applications mentioned in Sect. 2.5 are relevant
to this section, too. For example, the integral point x∗ ∈ Zn inside
a given convex set {x ∈ Rn | ∀i ≤ m gi(x) ≤ 0} which is closest
(using euclidean distances) to a given point p ∈ Rn can be obtained
by solving a variant of Eq. (2.18) where x ∈ Zn and ` = 2.

systematics and solution methods 37

Also, most nonconvex functions are convex in some subdomain.
This means that cMINLP algorithms can also be deployed on non-
convex MINLP (see Sect. 2.8 below) forsaking the global optimality
guarantee (i.e. they will act as heuristics and may find local op-
tima).

Currently, the best solver for cMINLP is the open-source BON-
MIN [Bonami and Lee, 2007].

2.8 Mixed-integer nonlinear programming

Mixed-Integer Nonlinear Programming (MINLP) consists in the
minimization of any nonlinear function on any nonlinear defined
set, restricted to an integer lattice cartesian product a Euclidean
space. The standard form is

min f (x)
g(x) ≤ 0

∀j ∈ Z xj ∈ Zn,

 (2.23)

where f : Rn → R and g : Rn → Rm are any nonlinear functions,
and Z ⊆ {1, . . . , n}.

Figure 2.18: The maximization for-
mulation of the KNP [Maculan et al.,
1996].

MINLP is possibly the most general class of MPs. It contains
all of the other classes listed in this chapter with the exception
of SDP (see below). The kissing number problem (optimization
version) can be formulated as a MINLP [Maculan et al., 1996]. Most
industrial processes can be formulated as MINLP [Liberti, 2015]. Its
expressive power is remarkable: it can encode any TM, including
universal ones, such as Minsky’s RM [Liberti and Marinelli, 2014],
which means that every problem can be formulated as a MINLP
(albeit one with an infinite number of variables and constraints),39 39 In fact we only require a finite

number of polynomial functions in
finitely many variables for a MINLP to
be able to formulate any problem, see
Hilbert’s 10th problem [Matiyasevich,
1993].

even unsolvable ones such as the halting problem. In other words,
MINLP is Turing-complete40 as a programming language. Since MP

40 A programming language is Turing-
complete when it can describe a UTM.

contains MINLP as a sub-class, MP is also Turing-complete.
MINLPs can be approximated to a given ε > 0 tolerance us-

ing the sBB algorithm (implemented in e.g. BARON, SCIP and
Couenne). See [D’Ambrosio and Lodi, 2011] for more details.

2.9 Quadratic programming formulations

Quadratic programming is the easiest type of nonlinear program-
ming. With respect to linear programming it allows a lot more
flexibility in expressive power whilst keeping a lot of structure,
which allows us to give stronger theoretical guarantees to formula-
tion properties and solution algorithms.

2.9.1 Convex quadratic programming

convex Quadratic Programming (cQP) consists in the minimiza-
tion of a semi-definite quadratic form subject to a polyhedron. The

38 mathematical programming

standard form is

min x>Qx + c>x
Ax ≤ b,

}
(2.24)

where c ∈ Rn, Q is an n× n semi-definite matrix, b ∈ Rm and A is
an m× n matrix.

Figure 2.19: Harry Markowitz (from
www.ifa.com).

One of the best known application in this class Markowitz’
mean-variance portfolio selection problem [Markowitz, 1952],
which we already discussed in its cardinality constrained variant
CCMVPS (see Sect. 2.7). Given a unit budget, decide the fractions
of budget to invest in n possible stakes with returns ρ1, . . . , ρn, so
as to minimize the risk (given the covariance matrix Q of the n
investments) and subject to making at least a given mean return µ.

min x>Qx
n
∑

i=1
ρixi ≥ µ

n
∑

i=1
x1 = 1

x ∈ [0, 1]n.

(2.25)

Since covariance matrices are positive semidefinite41 (PSD),42 41 A square symmetric matrix Q is
positive semidefinite (denoted Q � 0) if
∀x x>Qx ≥ 0; or, equivalently, if all of
its eigenvalues are non-negative.
42 Prove that all covariance matrices are
PSD, but the converse does not hold.

Eq. (2.25) is a cQP.
Another well known application of cQP is:

restricted Linear Regression (rLR). Given m points p1, . . . , pm ∈
Rn arranged as rows of an m × n matrix P, find the hyperplane
a>y = a0 (where (a0, a) = (a0, a1, . . . , an) is restricted to lie in a set
X ⊆ Rn+1 described by linear inequalities) which minimizes43 the 43 The rLR formulation is

min
a0 ,a
{‖Pa− a0‖2 | (a0, a) ∈ X}.error

‖Pa− a0‖2.

Like all convex programs, the cQP may also arise as a convex
relaxation of a nonconvex NLP or QP, used at every node of a sBB
algorithm.

2.9.2 Quadratic programming

Figure 2.20: Quadratic programming
(from support.sas.com).

Quadratic Programming (QP) consists in the minimization of any
quadratic form subject to a polyhedron. The standard form is

min x>Qx + c>x
Ax ≤ b,

}
(2.26)

where c ∈ Rn, Q is an n × n matrix, b ∈ Rm and A is an m × n
matrix.

If Q � 0 then Q is positive semidefinite the QP is actually a cQP
(see Sect. 2.9.1 above). If Q only has strictly positive eigenvalues, we
write Q � 0 and call Q positive definite. If Q � 0 (corresponding to
−Q � 0), Q is called negative semidefinite, and if Q ≺ 0 then Q is
negative definite. The remaining case, of Q having both positive and
negative eigenvalues is called indefinite. Figure 2.21: Positive/negative definite,

semidefinite, and indefinite matrices
(from J. Kim’s slides Solving Poisson
equation using conjugate gradient
method).

www.ifa.com
support.sas.com

systematics and solution methods 39

As an application of indefinite QP, we introduce a QP formu-
lation of the Max Clique problem (see Sect. 2.4.6) on a graph
G = (V, E), usually formulated as a BLP as:

max ∑
i∈V

xi

∀{i, j} 6∈ E xi + xj ≤ 1
x ∈ {0, 1}n

 (2.27)

The reformulation below, to a continuous QP, is also valid:44 44 This is known as the Motzkin-Straus
theorem, see [Vavasis, 1991, p. 82-83]
for a proof that a global optimum x∗

has the form 1/k, where k is the size of
a maximum clique. Vavasis proceeds
by induction on n = |V|: start the
induction at |V| = n = 2, then handle
three cases: (i) that ∃i ≤ n x∗i = 0, and
argue you can remove vertex i then use
induction; (ii) that G is not complete
but x∗ > 0, and argue that from a
missing edge {i, j} you can make
x∗i = 0 at the expense of x∗j , thereby
moving back to case (i); (iii) that G is
complete, in which case x∗ = 1/n.

max 1
2 x>AGx

n
∑

i=1
xi = 1

x ≥ 0,

 (2.28)

where AG is the adjacency matrix45 of G.

45 The adjacency matrix of a graph is a
binary square symmetric matrix which
has a 1 in entry (i, j) if and only if
{i, j} ∈ E. The feasible set

{x ∈ Rn | 1>x = 1∧ x ≥ 0}

is known as the standard unit simplex
and denoted by 4n−1.

By adding a penalty term to the objective function of Eq. (2.28), a
bijection was obtained [Bomze et al., 1998, Thm. 2.6] between solu-
tions of max

x∈4n−1
x>(AG + I)x and the scaled characteristic vectors46 of

46 The characteristic vector of a subset
S ⊆ V is a vector x in {0, 1}|V| with
xi = 1 if and only if i ∈ S. The scaled
characteristic vector is 1

|S| x.

all the cliques in G. More precisely, the following statements hold:47

47 This theorem, proved in [Bomze,
1997], extends the Motzkin-Straus
result [Motzkin and Straus, 1965].

1. S is a maximal clique of G if and only if xS is a local optimum of
Eq. (2.28);

2. S is a maximum clique of G if and only if xS is a global optimum
of Eq. (2.28).

From this it also follows48 that all local (and hence global) optima

48 Why does this follow? Prove it.

of Eq. (2.28) are strict and have the form xS for some maximal
clique S ⊆ V.

Negative semidefinite and indefinite QPs can be solved49 to local

49 Whenever solutions can be irrational,
such as in this case, we really mean
“approximated to arbitrary accuracy”.

optimality using any local NLP solver, such as IPOPT or SNOPT,
and to global optimality using an sBB algorithm implementation
such as BARON or Couenne.

2.9.3 Binary quadratic programming

Binary Quadratic Programming (BQP) consists in the minimiza-
tion of any quadratic form subject to a polyhedron. The standard
form is

min x>Qx + c>x
Ax ≤ b

x ∈ {0, 1}n

 (2.29)

where c ∈ Rn, Q is an n × n matrix, b ∈ Rm and A is an m × n
matrix.

The following is a classic application of BQP.

Max Cut. Given a simple undirected graph G = (V, E) find a subset
S ⊆ V (called a cut) yielding the maximum number of edges {u, v}
with u ∈ S and v 6∈ S.

The Max Cut problem arises in electrical circuit layout, as well as
in statistical physics.50 It has the following formulation (also see 50 See Ch. 5 and search for the terms

“VLSI” and “Ising model” in connec-
tion with “Max Cut” on Google.

40 mathematical programming

Sect. 5.3):
max 1

2 ∑
i<j≤n

(1 − xixj)

x ∈ {−1, 1}n,

 (2.30)

Figure 2.22: D-Wave’s claimed “quan-
tum computer” (from dwavesys.com),
above. I sat at a few meetings where
IBM researchers de-bunked D-Wave’s
claims, by solving Ising Model BQPs
(see Ch. 5) defined on chimera graphs
(below) on standard laptops faster
than on D-Wave’s massive hardware.
Read Scott Aaronson’s blog entry
scottaaronson.com/blog/?p=1400 (it
is written in inverse chronological
order, so start at the bottom). By the
way, I find Prof. Aaronson’s insight,
writing and teaching style absolutely
wonderful and highly entertaining, so
I encourage you to read anything he
writes.

where n = |V|. We assign a decision variable xi to each vertex
i ∈ V, and we let xi = 1 if i ∈ S, and xi = −1 if i 6∈ S. If {i, j} is an
edge such that i, j ∈ S, then xixj = 1 and the corresponding term on
the objective function is zero. Likewise, if i, j 6∈ S, then xixj = 1 and,
again, the objective term is zero. The only positive contribution to
the objective function arises if xixj = −1, which happens when
i ∈ S, j 6∈ S or vice versa, in which case the contribution of the
term is 2 (hence we divide the objective by 2 to count the number
of edges in the cut). Formulation (2.30) is not quite a BQP yet, since
the BQP prescribes x ∈ {0, 1}n. However, an affine transformation
takes care of this detail.51

51 Write down the affine transformation
and the transformed formulation.

BQPs are usually linearized52 before solving them. Specifically,

52 This means that each term xixj is
replaced by an additional variable yij;
usually, additional linear constraints
are also added to the formulation to
link y and x variables in a meaningful
way.

they are transformed to (larger) BLPs, and a MILP solver (such as
CPLEX) is then employed [Liberti, 2007].

2.9.4 Quadratically constrained quadratic programming

Quadratically Constrained Quadratic Programming (QCQP)
consists in the minimization of any quadratic form subject to a set
of quadratic constraints. The standard form is

min x>Q0x + c0x
∀i ≤ m x>Qix + cix ≤ b,

}
(2.31)

where c0, . . . , cm are row vectors in ∈ Rn, Q0, . . . , Qm are n × n
matrices, and b ∈ Rm.

The EDGP (see Sect. 2.6) can be written as a feasibility QCQP
by simply squaring both sides of Eq. (2.21).53 Solving this QCQP,

53 The standard form can be achieved
by replacing each quadratic equation
by two inequalities of opposite sign.

however, is empirically very hard:54 there are better formulations

54 Try solving some small EDGP
instances using Couenne. What kind
of size can you achieve?

for the EDGP.55

55 Write and test some formulations for
the EDGP.

Convex QCQPs can be solved to global optimality by local NLP
solvers such as IPOPT and SNOPT. For nonconvex QCQPs, global
solutions can be approximated to desired accuracy using the sBB
algorithm (e.g. BARON or Couenne).

2.10 Semidefinite programming

Semidefinite Programming (SDP) consists in the minimization of
a linear form subject to a semidefinite cone. The standard form is

min C • X
∀i ≤ m Ai • X = bi

X � 0,

 (2.32)

where C and Ai (for i ≤ m) are n× n symmetric matrices, X is an
n× n matrix of decision variables, bi ∈ R for all i ≤ m, and for two
n× n matrices L = (λij), M = (µij) we have L •M = ∑

i,j≤n
λijµij.

dwavesys.com
scottaaronson.com/blog/?p=1400

systematics and solution methods 41

To make Eq. (2.32) clearer, write out the componentwise product
• of the matrices C = (cjh), Ai = (ai

jh) and X = (xjh):

Figure 2.23: This picture of an SDP
cone was borrowed from one of
the most fascinating books I know
[Dattorro, 2015]. This book has been
growing since the early 2000s (and
counting): part book and part encyclo-
pedia, if you are looking for something
in convex optimization or Euclidean
geometry, this is almost sure to have it!

min ∑
j,h≤n

cjhxjh

∀i ≤ m ∑
j,h≤n

ai
jhxjh = bi.

This is just an LP subject to a semidefinite constraint X � 0.
What does X � 0 really mean? By the definition of PSD matrices,

this is the same as requiring the decision variables xjh to take values
such that, when they are arranged in a square n × n array, the
resulting matrix has non-negative eigenvalues.56

56 See the lecture notes [Laurent and
Vallentin, 2012] for more information
about SDP.

A basic result in linear algebra states that PSD matrices have
(real) factorizations,57 namely if X � 0 then X = Y>Y for some k× n

57 Equivalently: any PSD matrix is the
Gram matrix of a k × n matrix Y (the
converse also holds).

where k ≤ n. Now suppose we had a quadratic form f (y) = y>Qy
for some vector y = (y1, . . . , yn). Then

f (y) = ∑
j,h≤n

qjhyjyh,

where Q = (qjh), and suppose f (x) appeared in some QP. We could
then linearize the products yjyh by replacing them with additional
variables xjh, and end up with the linear form

f (X) = ∑
j,h≤n

qjhxjh = Q • X,

where X = (xjh), and try to solve an easier LP resulting by replac-
ing f (y) with f (X).

Figure 2.24: Another picture of the
same cone as in Fig. 2.23 (from L. Van-
denberghe’s slides on Convex optimiza-
tion).

However, not all solutions X to this LP might have the property
that there exists a vector y such that y>y = X, which we would
need to retrieve a solution y to the original QP. On the other hand,
if X � 0 and rk X = 1, then the existence of such a y would surely
follow by the existence of the factorization X = Y>Y, since rk X = 1
also implies rk Y = 1, i.e. Y is a one-dimensional vector y.

Figure 2.25: An EDGP instance (named
tiny) from protein conformation:
given some inter-atomic distances,
find the positions of the atoms. Above:
color map of distance matrix; below:
the actual shape of the molecule.

In summary, provided we were able to find X having rank one,
then the PSD constraint X � 0 would automatically guarantee that
for any solution of f (X) we could retrieve y such that f (y) = f (X).
This does not really help in practice, since the rank constraint rk X =

1 is hard to handle. But it does suggest that PSD constraints might
be useful in relaxing QPs to LPs subject to X � 0. Or, in other
words, that y might be a k× n matrix instead of a vector (i.e. a 1× n
matrix).

The above discussion suggests we consider MPs with quadratic
forms where the decision variables are naturally arranged in a K× n
array, such as for example the EDGP (see Sect. 2.6 and Sect. 2.9.4): a
realization consists on vectors y1, . . . , yn in RK, which we arrange as
columns of a K× n matrix Y. We rewrite Eq. (2.21) as follows:

∀{u, v} ∈ E y>u yu − 2y>u yv + y>v yv = d2
uv, (2.33)

42 mathematical programming

where G = (V, E) is a simple undirected graph, and d : E →
R+. Consider a square n × n symmetric matrix X = (Xuv): we
linearize Eq. (2.33) by replacing y>u yv by Xuv, and obtain the linear
constraints

∀{u, v} ∈ E Xuu − 2Xuv + Xvv = d2
uv (2.34)

in X.
We would now like to get as close as possible to state that there

exists a K× n matrix Y such that X−Y>Y = 0. One possible way to
get “as close as possible” is to replace X−Y>Y = 0 by X−Y>Y � 0,
which can also be trivially re-written as X − Y> I−1

n Y � 0. The left
hand side in this equation is known as the Schur complement of X in
the matrix

Figure 2.26: A solution to the instance
in Fig. 2.25 obtained by the SDP solver
MOSEK [mosek7], next to the actual
shape: as you can see, they are very
close, which means that the relaxation
is almost precise.

S =

(
In Y

Y> X

)
,

and X−Y> I−1
n Y � 0 is equivalent to setting S � 0. We thus derived

the SDP relaxation of the EDGP system Eq. (2.33):

∀{u, v} ∈ E Xuu − 2Xuv + Xvv = d2
uv(

In Y
Y> X

)
� 0.

 (2.35)

Many variants of this SDP relaxation for the EDGP were proposed
in the literature, see e.g. [Man-Cho So and Ye, 2007, Alfakih et al.,
1999].

SDPs are solved in polynomial time (to desired accuracy) by
means of interior point methods (IPM). There are both commercial
and free SDP solvers, see e.g. MOSEK [mosek7] and SeDuMi.
Natively, they require a lot of work to interface to. Their most
convenient interfaces are Python and the YALMIP [Löfberg, 2004]
MATLAB [matlab] package. The observed complexity of most
SDP solvers appears to be around O(n3), so SDP solver technology
cannot yet scale to very large problem sizes. For many problems,
however, SDP relaxations seem to be very tight, and help find
approximate solutions which are “close to being feasible” in the
original problem.

2.10.1 Second-order cone programming

Figure 2.27: A picture of the SOCP

cone y3 ≥
√

y2
1 + y2

2, also known as
ice cream cone, from L. Vandenberghe’s
slides on Convex optimization.

Second-Order Cone Programming (SOCP) consists in the mini-
mization of a linear form subject to a second-order conic set. The
standard form is

min ∑
i≤r

cixi

∑
i≤r

Aixi = b

∀i ≤ r xi
0 ≥

√
ni
∑

j=1
(xi

j)
2,

(2.36)

systematics and solution methods 43

where, for each i ≤ r, ci is a row vector in Rni , Ai is an m× ni matrix,
b ∈ Rm, n1, . . . , nr ∈ N, and the decision variable vector x ∈ R∑i ni

is partitioned into r blocks, each of size ni (for i ≤ r).
SOCP is a special case of SDP for which there exist more special-

ized solvers. Many58 convex problems can be cast in this form after 58 For example, a convex quadratic
constraint x>Ax + 2b>x + c ≤ 0 can be
transformed to

‖L>x + L−1b‖2 ≤
√

b>A−1b− c

after factoring A = LL> (why?). Also,
the apparently nonconvex constraints
x>x ≤ yz with y, z ≥ 0 is actually
convex, as it can be re-written as the
SOCP constraint

y + z ≥
√

4x2 + (y− z)2

(why?).

suitable (and often non-trivial) transformations are applied. See
[Alizadeh and Goldfarb, 2003] for more information.

2.11 Multi-objective programming

Multi-Objective Programming (MOP) consists in the identi-
fication of the Pareto59 region (see Fig. 2.28) of many objective

59 A Pareto optimum is a solution x∗ to
Eq. (2.37) such that no other solution
x′ exists which can improve one
objective without worsening another.
The Pareto set (or Pareto region) is the
set of Pareto optima.

functions subject to a feasible set. The standard form is

min f1(x)
...

...
min fq(x)

g(x) ≤ 0
x ∈ X,

(2.37)

where f1, . . . , fq : Rn → R, g : Rn → Rm, and there is an integer
0 ≤ q ≤ n such that X ⊆ Zq ×Rn−q.

Figure 2.28: The objective function
values of three Pareto sets of a MILP
(based on varying one of the param-
eters) for deciding what products
should be discontinued (or “killed”).
Both killing off products and selling
products can yield monetary returns
(the former through cutting costs),
but at the expense of each other
[Giakoumakis et al., 2012].

The motivation for studying MOPs is that many social or busi-
ness problems have to do with some human decision maker who
can authoritatively decide, after seeing the cost of an optimal solu-
tion, to accept to relax some constraints in order to further decrease
the cost. In particular, decision makers often want to see what is the
trade-off between a cost and some other goal.

Any constrained problem can be turned to a MOP: take e.g.

min{ f (x) | g(x) ≤ 0, }

replace the zero in the right hand side by a scalar λ, and then solve

min{(f (x), λ) | g(x) ≤ λ}.

Conversely, many practical solution techniques for MOP are
based on replacing all but the i-th objective (min fp(x) | p 6= i)
by constraints fp(x) ≤ λp for p 6= i, then fixing (λp | p 6= i)
at some iteratively decreasing λ′. For each given λ′, one solves a
single-objective problem

min{ fi(x) | ∀p 6= i fp(x) ≤ λp ∧ g(x) ≤ 0∧ x ∈ X} (?)

in order to find minimal values for λ′ as (?) goes from feasible to
infeasible. For bi-objective problems, plotting the pairs (fi(x∗), λ′)

yields an approximation of the Pareto set (see Fig. 2.28).
No general-purpose established solvers currently exist for MOPs:

in a certain sense, the problem is too difficult for general-purpose
approaches, since the solution is not actually one point, as in single-
objective problems, but a possibly infinite or even uncountable
Pareto set. See [Ehrgott, 2005] for more information.

44 mathematical programming

2.11.1 Maximum flow with minimum capacity

We model the following problem:

an oil company intends to maximize the flow of oil on their distribu-
tion network G = (V, A) from the production node s to the customer
node t, whilst minimizing the total cost of installing pipe capacities
Cij for each arc (i, j) ∈ A.

We suppose that arc capacities have a unit cost, i.e. the total cost of
installing arc capacities is

∑
(i,j)∈A

Cij. (2.38)

If we had not been told to minimize the total installed capacity, this
would be a standard Max Flow problem (see Sect. 1.7.2):

max
x≥0

∑
(s,j)∈A

xsj

∑
(i,s)∈A

xis = 0

∀i ∈ V r {s, t} ∑
(i,j)∈A

xij = ∑
(j,i)∈A

xji

∀(i, j) ∈ A xij ≤ Cij.

Now all we need to do is to consider the symbols C as decision
variables instead of parameters, and minimize Eq. (2.38) as a second
objective.

max ∑
(s,j)∈A

xsj

min ∑
(i,j)∈A

Cij

∑
(i,s)∈A

xis = 0

∀i ∈ V r {s, t} ∑
(i,j)∈A

xij = ∑
(j,i)∈A

xji

∀(i, j) ∈ A xij ≤ Cij

∀(i, j) ∈ A xij ≥ 0
∀(i, j) ∈ A Cij ≥ 0.

(2.39)

flow

cost

Figure 2.29: Objective values of the
Pareto set of the bi-objective network
flow problem. The straight line arises
by the fact that the two objective
functions force the constraint xij ≤ Cij
to be active on all arcs (s, j), thereby
making xij = Cij on those arcs.

In order to find the Pareto set of this problem, we must change
one of the two objectives, e.g. the total capacity installation cost
Eq. (2.38), into a constraint:

∑
(i,j)∈A

Cij ≤ λ,

where λ ranges over a given interval, e.g. [0, M|A|] (where M is the
maximum capacity any arc can have installed).

2.12 Bilevel programming

Bilevel Programming (BLevP) consists in the optimization60 of an 60 Called the upper-level problem.

objective function subject to some decision variables representing
the optimum of another MP formulation.61 The standard form is: 61 Called the lower-level problem.

systematics and solution methods 45

min
x,y

f (x, y)

g(x, y) ≤ 0
y ∈ arg min{φx(y) | γx(y) ≤ 0∧ y ∈ ζ}
x ∈ X,

 (2.40)

where x is a sequence of n decision variables, y is a sequence of p
decision variables, f : Rn+p → R, g : Rn+p → Rm, φx : Rq → R,
γx : Rq → R`, and there are integers 0 ≤ s ≤ n and 0 ≤ t ≤ p
such that ζ ⊆ Zt ×Rp−t and X ⊆ Zs ×Rn−s. Note that φx, γx are
functions which are parametrized by the decision variables x of the
upper-level problem.

The motivation62 for bilevel programs comes from studying how 62 Typical application: a firm wants to
plan operations (upper-level) subject to
a certain unit revenue based on prices
which are decided (lower-level) by
negotiations with customers.

optimization is carried out when multiple stakeholders, ordered
hierarchically, make decisions to optimize different goals. As in the
case of MOP, solutions in bilevel programming are not necessarily
well defined, as they may depend on whether lower-level decision
makers take decisions favorably (the case of a division of a larger
firm) or adversarially (competing entities ordered hierarchically).
Accordingly, there are no general-purpose solvers — some assump-
tions must be made on the structure of the problem.63 See [Colson 63 A promising solution approach, in

the case the lower-level problem is a
MILP, consists in approximating the
lower level problem by means of a
polytope where each face is generated
dynamically and added as a constraint
to the upper-level problem.

et al., 2005] for more information.

2.12.1 Lower-level LP

Certain bilevel formulations can be transformed to single-level.
Assume that:

• the objective f (x, y) is only a function of x;

• among the constraints g(x, y) ≤ 0 only one is actually a function
of both x and y, specifically

min
y

c(x) · y ≥ α,

where c(x) is an n-vector of functions of x and α is a parameter;

• the lower-level problem has the form:

min
y≥0

c(x) · y

A(x) · y = b(x),

 (2.41)

where A(x) is an m× n matrix having components in function of
x, and b is an m-vector of functions of x.

Remark that, when x is fixed, Eq. (2.41) is an LP.
Under these conditions, Eq. (2.40) can be formulated as a single-

level problem by replacing the lower-level LP with its dual. For x
fixed, the dual of Eq. (2.41) is:

max
λ

λ · b(x)

λ · A(x) ≤ c(x),

}
(2.42)

46 mathematical programming

By LP duality we can replace Eq. (2.41) by Eq. (2.42), and obtain:

max
λ

λ · b(x) ≥ α. (2.43)

Now stop and consider Eq. (2.43) within the context of the
upper-level problem: it is telling us that the maximum of a certain
function must be at least α. So if we find any λ which satisfies
λ · b(x) ≥ α, the maximum will certainly also be ≥ α. This means we
can forget the maxλ. The problem can therefore be written as:

min
x,λ

f (x)

g(x) ≤ 0
λ · b(x) ≥ α

λ · A(x) ≤ c(x)
x ∈ X,

(2.44)

which is a single-level MP.

2.12.2 Minimum capacity maximum flow

Let us re-examine the example in Sect. (2.11.1) from the following
bilevel point of view: the higher-level stakeholders (say, the Chief
Financial Officer)64 aims at reducing costs over all operations while 64 Why the heck do CFOs always aim

at making the shareholders richer?
How about providing good service
to the individual customer? How
about making employees happier (and
hence more productive)? Capitalism
took a very nasty turn in the last,
say twenty years from this point of
view (from many other points of
view the world is a better place
now than in the 1960s-1980s). For
this and other rants of mine, read
kafkatoday.wordpress.com.

making sure that each client receives a share of the flow by upper-
bounding it by a threshold α, whereas a specific client manager
wants to keep his/her own client happy and maximize the flow to
that client.

The formulation is as follows:65

65 Can this formulation be made single-
level? If so, use AMPL or Python to
solve it. If not, explain why.

min
C≥0

∑
(i,j)∈A

Cij

F(C) ≤ α

F(C) = max
x≥0

∑
(s,j)∈A

xsj

∑
(i,s)∈A

xis = 0

∀i ∈ V r {s, t} ∑
(i,j)∈A

xij = ∑
(j,i)∈A

xji

∀(i, j) ∈ A xij ≤ Cij.

2.13 Semi-infinite programming

Semi-Infinite Programming (SIP) consists in the minimization of
an objective function subject to an infinite number of constraints.
The standard form is

min f (x)
∀σ ∈ S gσ(x) ≤ 0
∀β ∈ T xβ ∈ Xβ,

 (2.45)

where f : Rn → R, for all α ∈ S we have gσ : Rn → R, for all β ∈ T,
Xβ is either Z or R, and either S or T is an infinite or uncountable
set of indices.

kafkatoday.wordpress.com

systematics and solution methods 47

SIPs are mostly studied in the context of optimal control prob-
lems, where T is uncountable, as well as in robust optimization,
where S is infinite or uncountable. See [López and Still, 2007] for
more details.

Optimal control problems have both decision variables and state
variables. One can interpret the decision variables66 as parameters 66 Also known as control variables in this

setting.to a simulation based on the ODE/PDE constraints, which are
themselves expressed in terms of decision and state variables, of
which there are usually uncountably many. These problems are usu-
ally cast in terms of minimizing an integral (which might express
the length of a path, or the total amount of energy consumed by a
process) subject to differential equation constraints. Optimal control
problems are rarely so simple that they can be solved analytically.
Numerical solution methods usually call for differential equations
to be replaced by finite differences equations, and for integrals to be
replaced by sums. See [Evans, v. 0.2] for more information.

Figure 2.30: Typical application of
optimal control: balancing a robot
whilst it walks [Majumdar et al., 2014].
Honestly, at first sight the robot looks
like it’s falling. I blame the middle
author (shown below the picture) ,.

Robust optimization is a set of techniques for making sure the
solutions of a MP will hold for uniform uncertainty in certain
parameters. Suppose a MP formulation has the constraint g(p, x) ≤
0 where p is a parameter vector and x a decision variable vector. A
robust counterpart to this constraint is:

∀p ∈ [pL, pU] g(p, x) ≤ 0,

where p is uniformly distributed in [pL, pU]. This type of problems
can rarely be solved in general form. For certain type of constraints,
however, ingenious solution techniques have been devised. If g
is a monotonic function, for example, it suffices to impose the
constraint at the interval endpoints, which reduces the uncountable
set [pL, pU] to the finite set {pL, pU}. Possibly the best known paper
in this field is [Bertsimas and Sim, 2004].

2.13.1 LP under uncertainty

Consider the MP

sup
x
{c>x | ∀aj ∈ Kj ∑

j≤n
ajxj ≤ b}, (2.46)

where x ∈ Rn is an n-vector of decision variables, K = (Kj | j ≤ n)
is a sequence of convex subsets of Rm, and b ∈ Rm, c ∈ Rn are
parameter vectors. Note that the convex sets Kj need to be encoded
in a finite way (e.g., if each Kj is a polytope, as a list of vertices or
facets). Note that for each j ≤ n, Kj might be uncountable. So this is
a SIP with uncountably many constraints.

Consider now the LP
max
Ax≤b
x≥0

c>x,

where A is an m× n matrix having aj as its j-th column. Eq. (2.46)
is a good representation of this LP whenever aj are subject to
uncertainty in the convex set Kj. It is shown in [Soyster, 1973] that

48 mathematical programming

Eq. (2.46) is equivalent to the LP

max{c>x | Āx ≤ b ∧ x ≥ 0}, (2.47)

where Ā = (āij) is an m× n matrix such that:

∀j ≤ n, i ≤ m āij = sup{aij | aj ∈ Kj}. (2.48)

Hence, in order to solve Eq. (2.46), it suffices to solve the mn con-
vex problems in Eq. (2.48), then construct the matrix Ā with their
solutions, and finally solve Eq. (2.47).

The proof establishes an equivalence between feasible solutions
of Eq. (2.47) and Eq. (2.46). Consider first x feasible in Eq. (2.47),
i.e. Āx ≤ b. By construction of Ā, we have A ≤ Ā for all A ∈
∏j≤n Kj, implying Ax ≤ Āx ≤ b for each x ≥ 0 and hence Ax ≤ b,
meaning x is also feasible in Eq. (2.46). Conversely, if x is a solution
to Eq. (2.46), ∑

j≤n
ajxj ≤ b holds for any aj ∈ Kj, which means it also

holds for the supremum, implying Āx ≤ b, as claimed. Now, since
the feasible regions are the same, and the objective function is the
same, the optima are also the same.

2.14 Summary

Figure 2.31: A convincing picture
showing a higher profit solution
traded off with a more robust but
lower profit one (from www.eyeon.nl).

This chapter is a systematic study of some important MP formula-
tion classes, with some of their properties, applications, solution
methods and software packages.

• Linear Programming (LP), methods, some applications

• Mixed-Integer Linear Programming (MILP), complexity
and some solution methods; some applications, the Power

Generation problem, the Traveling Salesman Problem (TSP)

• Integer Linear Programming (ILP), the Scheduling problem

• Binary Linear Programming (BLP), applications: assignment,
vertex cover, set covering, set packing, set partitioning, stables
and cliques, other combinatorial optimization problems

• convex Nonlinear Programming (cNLP), complexity and
some solution methods; applications: linear regression, function
interpolation

• Nonlinear Programming (NLP), circle packing, kissing num-
ber problem, local and global solution methods

• convex Mixed-Integer Nonlinear Programming (cMINLP),
cardinality constrained portfolio selection, some methods

• Mixed-Integer Nonlinear Programming (MINLP), universal-
ity and some methods

www.eyeon.nl

systematics and solution methods 49

• Quadratic formulations: convex Quadratic Programming

(cQP) and restricted linear regression, (nonconvex) Quadratic

Programming (QP) and definite/indefinite matrices, Motzkin-
Straus’ clique formulation, Binary Quadratic Programming

(BQP) and the Max Cut problem, Quadratically Constrained

Quadratic Programming (QCQP) and Euclidean distance
geometry

• Semidefinite Programming (SDP), QP/QCQP relaxations,
matrix factorization, some methods

• Second-Order Cone Programming (SOCP)

• Multi-Objective Programming (MOP) and trade-offs; some
solution methods

• Bilevel Programming (BLevP) and hierarchical optimization

• Semi-Infinite Programming (SIP) and control problems.

3
Reformulations

Figure 3.1: The preface of the special
issue 157 of Discrete Applied Mathe-
matics dedicated to Reformulations in
Mathematical Programming [Liberti
and Maculan, 2009].

Reformulations are symbolic transformations in MP. We usually
assume these transformations can be carried out in polynomial
time. In Ch. 2 we listed many different types of MP. Some are easier
to solve than others; specifically, some are motivated by a real-
life application, and others by the existence of an efficient solver.
Usually, real-life problems naturally yield MP classes which are
NP-hard, while we are interested in defining the largest MP class
solvable by each efficient (i.e. polytime) solver we have. Ideally,
we would like to reformulate1 a given formulation belonging to a 1 I do not mean that any NP-hard

problem can just be reformulated
in polytime to a problem in P, and
no-one knows yet if this is possible or
not: the P 6= NP is the most important
open problem in computer science.

“hard” class to an equivalent one in an “easy” class.
Hard problems will remain hard,2 but certain formulations be-

2 This is because if P is NP-hard and
Q is obtained from P by means of a
polynomial time reformulation, then
by definition Q is also NP-hard.

long to a hard class simply because we did not formulate them in
the best possible way.3 This chapter is about transforming MPs into

3 More precisely, NP-hard problems
contain infinite subclasses of instances
which constitute a problem in P,
e.g. the class of all complete graphs
is clearly a trivially easy subclass of
Clique.

other MPs with desirable properties, or features. Such transforma-
tions are called reformulations. In this chapter, we list a few useful
and elementary reformulations.

Informally speaking, a reformulation of a MP P is another MP
Q, such that Q can be obtained from P in a shorter time than is
needed to solve P, and such that the solution of Q is in some way
useful to solving P. We list four main types of reformulation: exact,
narrowing, relaxation, approximation. More information can be
found in [Liberti, 2009, Liberti et al., 2009a].

Figure 3.2: Exact reformulation.

3.0.1 Definition
• A reformulation is exact if there is an efficiently computable surjective4

4 We require φ to be surjective so that
we can retrieve all optima of P from
the optima of Q.

map φ : G(Q) → G(P). Sometimes we require that φ also extends to
local optima (L(Q) → L(P)), or feasible solutions (F (Q) → F (P)),
or both.

• A reformulation is a narrowing if φ maps G(Q) to a nontrivial5 subset

5 In narrowings, we are allowed to
lose some optima of the original
problem P; narrowings are mostly
used in symmetric MPs, where we are
only interested in one representative
optimum per symmetric orbit.

of G(P). Again, we might want to extend φ to local optima or feasible
solutions.

• A reformulation is a relaxation if the objective function value at the
global optima of Q provides a bound to the objective function value at
the global optima of P in the optimization direction.

• A reformulation is an approximation6 if Q is a formulation of a se- 6 Note that, aside from the asymptotic
behaviour, there may be no relation
between Q and P; in other words,
solving Q really only provides a
heuristic method for solving P.

52 mathematical programming

quence Q1, Q2, . . . such that lim
t→∞
G(Qt) is an exact or narrowing

reformulation of P.

3.1 Elementary reformulations
max f

−min− f

min− f

Figure 3.3: Objective function direc-
tion.

3.1.1 Objective function direction and constraint sense

We list this for completeness, but we already mentioned that
any problem in the form maxx f (x) can be written as −minx(− f (x)),
and vice versa.7 For the same reasons, any constraint in the form 7 I often forget to take the negative of

the optimal value after the optimiza-
tion process. Pay attention!

g(x) ≤ 0 can be written as −g(x) ≥ 0 (and vice versa.

3.1.2 Liftings, restrictions and projections

We define here three important classes of auxiliary problems:
liftings, restrictions and projections.

• A lifting adds auxiliary variables to the original problem.

• A restriction replaces some of the variables by parameters.8 8 In other words, some of the variables
are fixed.

• A projection Q eliminates some variables from the original prob-
lem P in such a way that F (Q) is a projection9 of F (P) on the 9 This means that there is a mapping

π : F (P) → F (Q) such that ∀y ∈
F (Q) there is x ∈ F (P) with π(x) = y.

subspace spanned by the variables of Q.

3.1.3 Equations to inequalities

Any equality constraint g(x) = 0 can be replaced by pairs of
inequalities10 of opposite sign: 10 This can be done to conform to some

problem form. For example, an LP in
standard form can be reformulated to
an LP in canonical form by applying
this reformulation, and then by
turning each constraint of the form
g(x) ≥ 0 to −g(x) ≤ 0.

g(x) ≤ 0

g(x) ≥ 0.

3.1.4 Inequalities to equations

An inequality g(x) ≤ 0 in a problem P can be transformed to an
equation by means of a lifting: we add an auxiliary variable to Q,
called a slack variable11 s ≥ 0, constrained to be non-negative, and 11 Or surplus variable, depending on its

sign restriction.write g(x) + s = 0.

3.1.5 Absolute value terms

Consider a problem P with an absolute value term |α(x)|. We can
re-write P to a problem Q without the | · | operator as follows:

• add two12 variables t+ ≥ 0, t− ≥ 0 12 If there are m absolute values in
the MP, you have to carry out this
reformulation m times, i.e. you have to
add 2m additional variables.

• replace |α(x)| by the linear term t+ + t−

reformulations 53

• add the constraint t+ − t− = α(x)

• add the constraint t+t− = 0.

The last constraint ensures that only one in t+, t− can be nonzero
at any time, which means that if α(x) < 0 then t− = α(x) and if
α(x) > 0 then t+ = α(x), and consequently that t+ + t− has the
same value as |α(x)|.

3.1.6 Product of exponential terms

We can replace a product of exponential terms13 ∏i e fi(x) by an 13 Exponential terms like these are not
so common in applications, but they
may occasionally happen, e.g. when
expressing probability of chains of
events.

additional variable w ≥ 0 and the constraint ln(w) = ∑i fi(x).

3.1.7 Binary to continuous variables

We can replace any binary variable x ∈ {0, 1} to a continuous
variable by removing the integrality constraints and adding the
quadratic constraint14 x2 = x, a quadratic equation which only has 14 This constraint is sometimes also

written as x(x− 1) ≥ 0 ∧ x ≤ 1 [Sutou
and Dai, 2002].

0, 1 as solutions.
In principle, this would reduce all binary MPs to QCQPs. How-

ever, most NLP solvers do not handle the constraint x2 = x well,
empirically speaking.15 In practice, it is much better to deal with 15 Many researchers have used this re-

formulation, but mostly for theoretical
rather than practical reasons.

the binary constraint and use branching. One notable exception
arises when the resulting QCQP is used to derive an SDP relaxation
of the original BLP.

3.1.8 Discrete to binary variables

A discrete variable x ∈ {p1, . . . , pk} can be reformulated
by relaxing it to a continuous variable,16 then adding a vector 16 Essentially, this reformulation pro-

vides an assignment of the allowable
values to the relaxed variable by means
of assignment constraints.

y = (y1, . . . , yk) of k binary variables, as well as the constraints:

∑
h≤k

yh = 1

∑
h≤k

phyh = x

to the original problem.

3.1.9 Integer to binary variables

If p1 , . . . , pk are consecutive integers {L, L + 1, . . . , L + k − 1},
then we can write x by means of a binary encoding.17 Let b be the 17 Many researchers have used this, see

e.g. [Boulle, 2004, Vielma, 2015].smallest integer such that k ≤ 2b. Then add a vector z = (z1, . . . , zb)

of b binary variables, relax x to a continuous variable, and add the
constraints:

x = L +
b−1

∑
h=0

zh2h

to the original problem.

54 mathematical programming

3.1.10 Feasibility to optimization problems

Figure 3.4: Feasibility to optimization:
the feasible region gi(x) ≤ 0 (i ≤ 3) is
shown in dark, and the level sets for
the slack variables y1, y2, y3 are shown
for values 1, 2.

We can reformulate a feasibility problem

P ≡ {x ∈ Rn | ∀i ≤ m g(x) ≤ 0}

to the following optimization problem:18

18 Why would anyone want to do this?
Well, it so happens that most local
NLP solvers are good at improving
solutions which are already feasible,
but terrible at finding a feasible
solution from scratch. This is a way to
make your solver’s life easier.

min ∑
i≤m

yi

∀i ≤ m g(x) ≤ yi

y ≥ 0,

 (3.1)

where y1, . . . , ym are additional variables.

3.1.11 Minimization of the maximum of finitely many functions

An objective function of the form19

19 Note that the first min operator is
with respect to the decision variables x,
but the second max is with respect to
the finite set of functions { f1, . . . , fn}.
This is a necessary condition for
applying this reformulation: if the
inner optimization operator is also
with respect to some decision variables,
this reformulation cannot be applied.

min max
i≤n

fi(x)

can be reformulated to

min t

∀i ≤ n t ≥ fi(x),

where t is an added (continuous) variable. The maximization of the
minimum of finitely many functions can treated in a similar way.20

20 How can you reformulate the min-
imization of the minimum of finitely
many functions, or the maximization
of the maximum of finitely many
functions?

3.2 Exact linearizations

These are reformulations transforming various nonlinear
terms to linear forms, which may involve additional mixed-integer
variables.

3.2.1 Product of binary variables

Consider a product term xixj occurring in a MP P (for some
variable indices i, j), where xi, xj ∈ {0, 1}. We can linearize this
product exactly as follows:

• replace21 xixj by an additional variable yij ∈ [0, 1]; 21 This symbolic replacement is actually
known as “linearization”. More
generally, a linearization replaces a
whole nonlinear term by means of a
single additional variable.

• add the following constraints:

yij ≤ xi (3.2)

yij ≤ xj (3.3)

yij ≥ xi + xj − 1. (3.4)

Constraints (3.2)-(3.4) are called Fortet’s constraints [Fortet, 1960].
We have the following result.22 22 Prove this proposition (hint: Fig. 3.5).

reformulations 55

3.2.1 Proposition
For any i, j with

Sij = {(xi, xj, yij) ∈ {0, 1}2 × [0, 1] | yij = xixj}
Tij = {(xi, xj, yij) ∈ {0, 1}2 × [0, 1] | Eq. (3.2)-(3.4)}

we have Sij = Tij.

Figure 3.5: The reason why Fortet’s
reformulation works: the constraints
form the convex envelope of the set
{(xi , xj, yij) | yij = xixj ∧ xi , xj ∈ {0, 1}},
i.e. the smallest convex set containing
the given set.

This technique can be extended to terms of the form yI = ∏i∈I xi

where xi ∈ {0, 1} for each i ∈ I. The linearization constraints are:23

23 Formulate and prove the general-
ization of Prop. 3.2.1 in the case of |I|
binary variables.

∀i ≤ I yI ≤ xi (3.5)

yI ≥ ∑
i∈I

xi − |I|+ 1. (3.6)

3.2.2 Product of a binary variable by a bounded continuous variable

We tackle terms of the form xy where x ∈ {0, 1}, y ∈ [L, U],
and L ≤ U are given scalar parameters. It suffices to replace the
term xy by an additional variable z, and then add the following
linearization constraints:24 24 Prove their correctness.

z ≥ Lx (3.7)

z ≤ Ux (3.8)

z ≥ y−max(|L|, |U|)(1− x) (3.9)

z ≤ y + max(|L|, |U|)(1− x). (3.10)

3.2.3 Linear complementarity

A linear complementarity constraint25 has the form x>y = 0, where 25 Linear complementarity constraints
are at the basis of a standard MP
formulation called Linear Comple-
mentarity Problem (LCP), consisting
in an LP subject to a linear complemen-
tarity constraint. LCPs are NP-hard,
since they can encode binary variables
and hence SAT, but local optima can
be obtained by means of local NLP
solvers. If the LCP is a reformulation
of a MILP, local optima may be feasible
MILP solutions.

x, y ∈ [0, M]n are two distinct vectors in Rn. Since x, y ≥ 0 every
term xjyj in

∑
j≤n

xjyj = 0

must be zero, i.e. the linear complementarity constraint is equiva-
lent to xjyj = 0 for each j ≤ n. This constraint actually expresses
a combinatorial property, i.e. that at most one between xj and yj is
nonzero. We can model this using binary variables zj ∈ {0, 1} for
each j ≤ n, and adding the following constraints:26 26 Prove their correctness.

xj ≤ Mzj (3.11)

yj ≤ M(1− zj). (3.12)

Note that this reformulation provides an exact linearization for the
reformulation in Sect. 3.1.5.27 27 Why?

3.2.4 Minimization of absolute values

Suppose the objective function of P is the minimization of a sum

f (x) = · · ·+ |h(x)|+ · · ·

56 mathematical programming

This can be reformulated as in Sect. 3.1.5, and will result in

f (x) = · · ·+ (t+ + t−) + · · ·

subject to the constraint t+ − t− = h(x).
Since we are minimizing f , at least one of the global optima will

have either t+ = 0 or t− = 0 even without the complementarity
constraint t+t− = 0. Whether this optimum will be found by the
solver28 really depends on how the solver works. For example, if 28 It would be more desirable to assert

properties which hold for any solver,
so as not to depend on the nature of
the solver, which may vary greatly.
On the other hand, getting rid of the
problematic product term t+t− is a
great benefit.

the problem reformulation is a MILP, and solutions at every node of
the BB are obtained using the simplex method, which finds optima
at vertices of the feasible polyhedron, this is going to be the case.29

29 Prove this.

We can also consider t− as a surplus variable of t+ ≥ h(x), and
t+ as a slack variable of t− ≤ h(x), and re-write the above as

f (x) = · · ·+ t+ + t− + · · ·

subject to
t− ≤ h(x) ≤ t+.

Finally, since −|h(x)| ≤ h(x) ≤ |h(x)|, we can simply replace
t− by −t+ in the constraints (and rename t+ as t for simplicity), to
obtain

f (x) = · · ·+ t + · · · (3.13)

−t ≤ h(x) ≤ t (3.14)

t ≥ 0, (3.15)

which reduces the number of added variables by half. Note that t
here represents |h(x)|, so we only need to sum it once on the ob-
jective function, i.e. we do not want to replace t− in the objective,
otherwise we would end up with 2t, which would count |h(x)|
twice, and is therefore wrong. Note also that Eq. (3.13)-(3.15) can
also be used when |h(x)| appears in terms other than just the objec-
tive function: consider for example the case of diagonal dominance
of an n× n matrix A = (aij) (see Sect. 6.6.2)

∀i ≤ n aii ≥ ∑
j 6=i
|aij|.

We can reformulate this to:

∀i ≤ n aii ≥ ∑
j 6=i

tij (3.16)

∀i, j ≤ n − tij ≤ aij ≤ tij (3.17)

∀i, j ≤ n tij ≥ 0. (3.18)

Suppose (a, t) are feasible in the reformulation ((3.16)-(3.18)): then
we have

aii ≥ ∑
j 6=i

tij ≥ ∑
j 6=i
|aij|

as claimed, where the first inequality is Eq. (3.16), the second
follows because Eq. (3.17) implies tij ≥ |aij|.

reformulations 57

3.2.5 Linear fractional terms

Consider a problem P where one of the terms is

τ =
a>x + b
c>x + d

,

where a ∈ Rn, b, d ∈ R are parameters and x is a vector of n
continuous decision variables which might otherwise only appear
as Ax = q elsewhere in the problem.

Figure 3.6: A small Linear Fractional
Programming (LFP) instance. A
typical application is to maximize
efficiency: if a production line uses
xi units of product i and spends
C(x) = c0 + ∑i cixi in order to make
a profit P(x) = p0 + ∑i pixi , then the
objective function is maxx P(x)/C(x).

We linearize the linear fractional term by adding n variables αj

which play the role of
xj

c>x+d and a further variable β which plays

the role of 1
c>x+d .

Then τ can be replaced by a>α + βb, the system Ax = q can be
replaced by Aα = βq, and a new constraint

c>α + βd = 1

can be added to the formulation.30
30 Prove that, if the feasible set is
bounded on the x variable and does
not contain any x such that c>x = −d,
then this reformulation is exact. Give
examples of formulations where this
reformulation is not exact.

3.3 Advanced examples

Let us see two advanced examples where we apply the reformula-
tions given above.

3.3.1 The Hyperplane Clustering Problem

Consider the

Hyperplane Clustering Problem (HCP) [Dhyani, 2007, Caporossi
et al., 2004]. Given a set of points p = {pi | 1 ≤ i ≤ m} in Rd,
determine a set of n hyperplanes w = {wj1χ1 + . . . + wjdχd = w0

j | 1 ≤
j ≤ n} in Rd and an assignment of points to hyperplanes such that
the sum of the distances from the hyperplanes to their assigned
points are minimized.

Figure 3.7: Hyperplane clustering
[Dhyani, 2009].

The problem can be modelled as follows:

• Parameters. The set of parameters is given by: p ∈ Rm×d, and m,
n, d ∈N.

• Variables. We consider the hyperplane coefficient variables w ∈
Rn×d, the hyperplane constants w0 ∈ Rn, and the 0-1 assignment
variables x ∈ {0, 1}m×n.

• Objective function. We minimize the total distance, weighted by
the assignment variable:

min ∑
i≤m

∑
j≤n
|wj pi − w0

j |xij.

58 mathematical programming

• Constraints. We consider assignment constraints: each point must
be assigned to exactly one hyperplane:

∀i ≤ m ∑
j≤n

xij = 1,

and the hyperplanes must be nontrivial:

∀j ≤ n ∑
k≤d
|wjk| = 1

(since, otherwise, the trivial solution with w = 0, w0 = 0 would
be optimal).

Figure 3.8: A HCP instance solved
with two and three hyperplanar
clusters [Amaldi et al., 2013].

This is a MINLP formulation because of the presence of the nonlin-
ear terms (absolute values and products in the objective function)
and of the binary assignment variables. We shall now apply several
of the elementary reformulations presented in this chapter to obtain
a MILP reformulation.

1. Because x is nonnegative and because we are going to solve the
reformulated MILP to global optimality, we can linearize the
minimization of absolute values as in Sect. 3.2.4:

min ∑
i≤m
j≤n

(t+ij xij + t−ij xij)

∀i ≤ m ∑
j≤n

xij = 1

∀j ≤ n |wj|1 = 1

∀i ≤ m, j ≤ n t+ij − t−ij = wj pi − w0
j ,

where, for all i ≤ m and j ≤ n, t+ij , t−ij ∈ [0, M] are continuous
additional variables bounded above by a large enough constant
M.31 31 The upper bound M is enforced

without loss of generality because
w, w0 can be scaled arbitrarily.2. Reformulate the products t+ij xij and t−ij xij according to Sect. 3.2.2:

min ∑
i≤m
j≤n

(y+ij + y−ij)

∀i ≤ m ∑
j≤n

xij = 1

∀j |wj|1 = 1

∀i ≤ m, j ≤ n t+ij − t−ij = wj pi − w0
j

∀i ≤ m, j ≤ n y+ij ≤ min(Mxij, t+ij)

∀i ≤ m, j ≤ n y+ij ≥ Mxij + t+ij −M

∀i ≤ m, j ≤ n y−ij ≤ min(Mxij, t−ij)

∀i ≤ m, j ≤ n y−ij ≥ Mxij + t−ij −M,

Figure 3.9: HCP with slabs of varying
width [Dhyani, 2009].

where y+ij , y−ij ∈ [0, M] are continuous additional variables.

reformulations 59

3. Reformulate each term |wjk| (for 1 ≤ k ≤ d) according to
Sect. 3.1.5:

min ∑
i≤m
j≤n

(y+ij + y−ij)

∀i ≤ m ∑
j≤n

xij = 1

∀i ≤ m, j ≤ n t+ij − t−ij = wj pi − w0
j

∀i ≤ m, j ≤ n y+ij ≤ min(Mxij, t+ij)

∀i ≤ m, j ≤ n y+ij ≥ Mxij + t+ij −M

∀i ≤ m, j ≤ n y−ij ≤ min(Mxij, t−ij)

∀i ≤ m, j ≤ n y−ij ≥ Mxij + t−ij −M

∀j ≤ n ∑
k≤d

(u+
jk + u−jk) = 1

∀j ≤ n, k ≤ d u+
jk − u−jk = wjk

∀j ≤ n, k ≤ d u+
jku−jk = 0,

where u+
jk , u−jk ∈ [0, M] are continuous variables for all j and

k ≤ d.32 32 Again, the upper bound M does not
lose generality.

4. The last constraints above are complementarity constraints,33

33 They can be collectively written as
∑
j≤n
k≤d

u+
jku−jk = 0. Why?which we can reformulate according to Sect. 3.2.3:

min ∑
i≤m
j≤n

(y+ij + y−ij)

∀i ≤ m ∑
j≤n

xij = 1

∀i ≤ m, j ≤ n t+ij − t−ij = wj pi − w0
j

∀i ≤ m, j ≤ n y+ij ≤ min(Mxij, t+ij)

∀i ≤ m, j ≤ n y+ij ≥ Mxij + t+ij −M

∀i ≤ m, j ≤ n y−ij ≤ min(Mxij, t−ij)

∀i ≤ m, j ≤ n y−ij ≥ Mxij + t−ij −M

∀j ≤ n ∑
k≤d

(u+
jk + u−jk) = 1

∀j ≤ n, k ≤ d u+
jk − u−jk = wjk

∀j ≤ n, k ≤ d u+
jk ≤ Mzjk

∀j ≤ n, k ≤ d u−jk ≤ M(1− zjk),

where zjk ∈ {0, 1} are binary variables for all j ≤ n and k ≤ d.

This reformulation allows us to solve P by using a MILP solver —
these have desirable properties with respect to MINLP solvers, such
as numerical stability, scalability and an optimality guarantee.

The AMPL .mod file for the MILP reformulation of the HCP is as
follows.

parameters

param m integer, > 0;

60 mathematical programming

param n integer, > 0;

param dim integer, > 0;

set N := 1..n; # planes

set M := 1..m; # points

set D:=1..dim; # spatial dimensions

param p{M,D}; # the points

param P{d in D} := (max{i in M} p[i,d]) - (min{i in M} p[i,d]); # ranges

used for approximate linearization

param small default 1e-6;

param big default 1e3;

w (hyperplane coefficients) variable bounds

param wL := -1; #-big;

param w0L := -big;

param wU := 1; #big;

param w0U := big;

variables

var w0{N} <= w0U, >= w0L;

var w{N,D} <= wU, >= wL;

var x{M,N} binary;

var tplus{M,N} >= 0, <= big;

var tminus{M,N} >= 0, <= big;

var yplus{M,N} >= 0, <= big;

var yminus{M,N} >= 0, <= big;

var uplus{N,D} >= 0, <= big;

var uminus{N,D} >= 0, <= big;

var z{N,D} binary;

objective function

minimize fitting_error: sum{i in M, j in N} (yplus[i,j] + yminus[i,j]);

constraints

subject to assignment {i in M} : sum{j in N} x[i,j] = 1;

subject to minabs_ref {i in M, j in N} :

tplus[i,j] - tminus[i,j] = sum{k in D} w[j,k] * p[i,k] - w0[j];

subject to yplus_lin1 {i in M, j in N} : yplus[i,j] <= big * x[i,j];

subject to yplus_lin2 {i in M, j in N} : yplus[i,j] <= tplus[i,j];

subject to yplus_lin3 {i in M, j in N} :

yplus[i,j] >= big * x[i,j] + tplus[i,j] - big;

subject to yminus_lin1 {i in M, j in N} : yminus[i,j] <= big * x[i,j];

subject to yminus_lin2 {i in M, j in N} : yminus[i,j] <= tminus[i,j];

subject to yminus_lin3 {i in M, j in N} :

yminus[i,j] >= big * x[i,j] + tminus[i,j] - big;

subject to one_norm1_ref{j in N}: sum{k in D} (uplus[j,k] + uminus[j,k]) = 1;

subject to one_norm2_ref{j in N, k in D}: uplus[j,k] - uminus[j,k] = w[j,k];

subject to one_norm3_ref{j in N, k in D}: uplus[j,k] <= big*z[j,k];

subject to one_norm4_ref{j in N, k in D}: uminus[j,k] <= big*(1 - z[j,k]);

A small instance consisting of 8 points and 2 planes in R2, with
p = {(1, 7), (1, 1), (2, 2), (4, 3), (4, 5), (8, 3), (10, 1), (10, 5)} is solved
to optimality by the ILOG CPLEX solver [IBM, 2014] to produce the
following output:

Assignment of points to hyperplanar clusters:

cluster 1 = { 2 3 4 8 }

cluster 2 = { 1 5 6 7 }

The hyperplane clusters

reformulations 61

1: (-0.272727) x_1 + (0.727273) x_2 + (-0.909091) = 0

2: (0.4) x_1 + (0.6) x_2 + (-4.6) = 0

3.3.2 Selection of software components

Figure 3.10: Developing software
modules or selecting them off-the-
shelf? (From vogella.com).

Large software systems consist of a complex architecture of
interdependent, modular software components. These may either
be built or bought off-the-shelf. The decision of whether to build
or buy software components influences the cost, delivery time and
reliability of the whole system, and should therefore be taken in an
optimal way [Cortellessa et al., 2006].

Consider a software architecture with n component slots. Let Ii

be the set of off-the-shelf components and Ji the set of purpose-built
components that can be plugged in the i-th component slot, and
assume Ii ∩ Ji = ∅. Let T be the maximum assembly time and R
be the minimum reliability level. We want to select a sequence of
n off-the-shelf or purpose-built components compatible with the
software architecture requirements that minimize the total cost,
whilst satisfying delivery time and reliability constraints.

This problem can be modelled as follows.

• Parameters:

1. Let N ∈N;

2. for all i ≤ n, si is the expected number of calls to the i-th
component;

3. for all i ≤ n, j ∈ Ii, cij is the cost, dij is the delivery time, and
µij the probability of failure on demand of the j-th off-the-
shelf component for slot i;

4. for all i ≤ n, j ∈ Ji, c̄ij is the cost, tij is the estimated devel-
opment time, τij the average time required to perform a test
case, pij is the probability that the instance is faulty, and bij the
testability of the j-th purpose-built component for slot i.

IWF

2

distance

value

3

indicator

value

4

CLS
5

OWF
6

�
�
�

�
�
�

9

15

�
�
�

�
�
�1

CE 7

CSE 8

�
�
�
�

10

CLDB

14

HRDB

13

TDB

12

11

CDB

Figure 3.11: MP can be used to ratio-
nalize interfaces in software architec-
tures, modelled as a graph, directed or
undirected. After some years of devel-
opment, a complex software package
may start to display a “spaghetti”-like
architecture such as the one shown
above. This can be simplified by insert-
ing interface modules whose purpose
is that of dispatching to the correct
module. If we identify a subgraph H
which is fully connected, we can add
an interface ι and replace the clique
with a star centered at ι and connected
to all of the nodes of H (see Fig. 3.12).

• Variables:

1. Let xij = 1 if component j ∈ Ii ∪ Ji is chosen for slot i ≤ n, and
0 otherwise;

2. Let Nij ∈ Z be the (non-negative) number of tests to be
performed on the purpose-built component j ∈ Ji for i ≤ n: we
assume Nij ∈ {0, . . . ,N}.

• Objective function. We minimize the total cost, i.e. the cost of the
off-the-shelf components cij and the cost of the purpose-built
components c̄ij(tij + τijNij):

min ∑
i≤n

(
∑
j∈Ii

cijxij + ∑
jinJi

c̄ij(tij + τijNij)xij

)
.

vogella.com

62 mathematical programming

• Constraints:

1. assignment constraints: each component slot in the architec-
ture must be filled by exactly one software component

∀i ≤ n ∑
j∈Ii∪Ji

xij = 1;

2. delivery time constraints: the delivery time for an off-the-
shelf component is simply dij, whereas for purpose-built
components it is tij + τijNij

∀i ≤ n ∑
j∈Ii

dijxij + ∑
j∈Ji

(tij + τijNij)xij ≤ T;

3. reliability constraints: the probability of failure on demand
of off-the shelf components is µij, whereas for purpose-built
components it is given by

ϑij =
pijbij(1− bij)

(1−bij)Nij

(1− pij) + pij(1− bij)
(1−bij)Nij

,

so the probability that no failure occurs during the execution
of the i-th component is

ϕi = e
si

(
∑

j∈Ii
µijxij+ ∑

j∈Ji
ϑijxij

)
,

whence the constraint is

∏
i≤n

ϕi ≥ R;

notice we have three classes of reliability constraints involving
two sets of additional variables ϑ, ϕ.

IWF

2

distance

value

3

indicator

value

4

CLS
5

OWF
6

�
�
�

�
�
�

9

15

�
�
�

�
�
�1

CE 7

CSE 8

�
�
�
�

10

TDB

1211

CDB

HRDB

13

CLDB

14

16

DBI

Figure 3.12: Given a software archi-
tecture (directed) graph G = (V, A),
we suppose that arcs are colored by a
coloring function µ : A → {1, . . . , K}.
These colors may denote any given
type of semantic relationship between
the modules: they provide a way for
the software architect to define rele-
vant subgraphs which can actually
be replaced by an interface. What
we can do automatically with MP
is to identify the densest subgraphs
H = (U, F), which we define as
subgraphs where |F| − |U| is maxi-
mum, where all the arcs are colored
by a given k. To achieve this, for any
given color k we solve the following
BQP: max

x∈{0,1}|V|
∑

(u,v)∈A
xuxv − ∑

v∈V
xv

subject to ∀ (u, v) ∈ A xuxv ≤
min(max(0, µuv − k + 1), max(0, k −
µuv + 1)). The set of vertices U of the
densest subgraph having color k is
defined by the indicator vector x: if
|U| < |F| we replace F by the arcs
{(ι, u) | u ∈ U}. We can solve this BQP
for every color k ≤ K.

This problem is a MINLP P with no continuous variables. Next,
we reformulate P to a MILP.

1. Consider the term g = ∏i≤n ϕi and apply the reformulation in
Sect. 3.1.6 to P, to obtain the formulation P1 as follows:

min ∑
i≤n

(
∑
j∈Ii

cijxij + ∑
j∈Ji

c̄ij(tij + τijNij)xij

)
∀i ≤ n ∑

j∈Ii∪Ji

xij = 1

∀i ≤ n ∑
j∈Ii

dijxij + ∑
j∈Ji

(tij + τijNij)xij ≤ T

pijbij(1− bij)
(1−bij)Nij

(1− pij) + pij(1− bij)
(1−bij)Nij

= ϑij

w ≥ R

∑
i≤n

si

(
∑
j∈Ii

µijxij + ∑
j∈Ji

ϑijxij

)
= ln(w),

reformulations 63

and observe that w ≥ R implies ln(w) ≥ ln(R) because the ln
function is monotonically increasing, so the last two constraints
can be grouped into a simpler one not involving logarithms of
problem variables:

∑
i≤n

si

(
∑
j∈Ii

µijxij + ∑
j∈Ji

ϑijxij

)
≥ ln(R).

2. We now make use of the fact that Nij is an integer variable
for all i ≤ n, j ∈ Ji, and reformulate the integer variables to
binary variables as per Sect. 3.1.8. For k ∈ {0, . . . , N} we add
assignment variables νk

ij so that νk
ij = 1 if Nij = k and 0 otherwise.

Now for all k ∈ {0, . . . , N} we compute the constants ϑk =

pijbij(1−bij)
(1−bij)k

(1−pij)+pij(1−bij)
(1−bij)k

, which we add to the problem parameters.

We remove the constraints defining ϑij in function of Nij: since
the following constraints are valid:

∀i ≤ n, j ∈ Ji ∑
k≤N

νk
ij = 1 (3.19)

∀i ≤ n, j ∈ Ji ∑
k≤N

kνk
ij = Nij (3.20)

∀i ≤ n, j ∈ Ji ∑
k≤N

ϑkνk
ij = ϑij, (3.21)

the constraints in Eq. (3.20) are used to replace Nij, and those in
Eq. (3.21) to replace ϑij.34 We obtain: 34 Constraints (3.19) are simply added

to the formulation.

min ∑
i≤n

(
∑
j∈Ii

cijxij + ∑
j∈Ji

c̄ij(tij + τij ∑
k≤N

kνk
ij)xij

)
∀i ≤ n ∑

j∈Ii∪Ji

xij = 1

∀i ≤ n ∑
j∈Ii

dijxij + ∑
j∈Ji

(tij + τij ∑
k≤N

kνk
ij)xij ≤ T

∑
i≤n

si

(
∑
j∈Ii

µijxij + ∑
j∈Ji

xij ∑
k≤N

ϑkνk
ij

)
≥ ln(R)

∀i ≤ n, j ∈ Ji ∑
k≤N

νk
ij = 1.

IWF

2

distance

value

3

indicator

value

4

CLS
5

OWF
6

�
�
�

�
�
�

9

CE 7

CSE 8

�
�
�
�

10

TDB

1211

CDB

HRDB

13

CLDB

14

��
��
��

��
��
��1

15

16

DBI

C1 C2

Figure 3.13: After interfacing, we can
solve a graph partitioning problem
on G = (V, A) so as to identify
semantically related clusters, for
which there might conceivably exist an
off-the-shelf solution.

3. We distribute products over sums in the formulation to obtain
the binary product sets {xijν

k
ij | k ≤ N} for all i ≤ n, j ∈ Ji: by

repeatedly applying the reformulation in Sect. 3.2.1 to all binary
products of binary variables, we get a MILP reformulation Q of
P where all the variables are binary.

We remark that Q derived above has many more variables and
constraints than P. More compact reformulations are applicable
in Step 3 because of the presence of the assignment constraints
[Liberti, 2007].

Reformulation Q essentially rests on linearization variables wk
ij

which replace the quadratic terms xijν
k
ij throughout the formulation.

64 mathematical programming

A semantic interpretation of step 3 is as follows. We notice that for
i ≤ n, j ∈ Ji, if xij = 1, then xij = ∑k νk

ij (because only one value k

will be selected), and if xij = 0, then xij = ∑k νk
ij (because no value k

will be selected). This means that

∀i ≤ n, j ∈ Ji xij = ∑
k≤N

νk
ij (3.22)

is a valid problem constraint. We use it to replace xij everywhere
in the formulation where it appears with j ∈ Ii, obtaining a opt-
reformulation with xij for j ∈ Ii and quadratic terms νk

ijν
h
lp. Now,

because of (3.19), these are zero when (i, j) 6= (l, p) or k 6= h and
are equal to νk

ij when (i, j) = (l, p) and k = h, so they can be

linearized exactly by replacing them by either 0 or νk
ij according

to their indices. What this really means is that the reformulation
Q, obtained through a series of automatic reformulation steps, is a
semantically different formulation defined in terms of the following
decision variables:

∀i ≤ n, j ∈ Ii xij =

{
1 if j ∈ Ii is assigned to i
0 otherwise.

∀i ≤ n, j ∈ Ji, k ≤ N νk
ij =

1 if j ∈ Ji is assigned to i and there

are k tests to be performed
0 otherwise.

This is an important hint to the importance of automatic reformula-
tion in problem analysis: it is a syntactical operation, the result of
which, when interpreted, can suggest a new meaning.

3.4 Summary

This chapter is about reformulations as a means to change a for-
mulation so it can be solved using a given solver, so that some
optimality properties are preserved.

• Motivation and main definitions

• Elementary reformulations: changing objective direction and
constraint sense, lifting – restrictions – projections, turning equa-
tions into inequalities and vice versa, absolute values, product
of exponentials, turning binary variables to continuous, turning
discrete variables to binary, turning integer variables to binary,
turning feasibility to optimization problems, minimization of a
maximum

• Exact linearizations: product of binary variables, product of a
binary variable by a continuous one, linear complementarity,
minimization of absolute values, linear fractional terms

• Applying reformulations to turn the hyperplane clustering
problem from MINLP to MILP.

Part II

In-depth topics

4
Constraint programming

Figure 4.1: A 4× 4 eternity board [Dürr,
2011].

Constraint Programming (CP) is a declarative programming lan-
guage for describing feasibility problems, such as e.g. finding the
solution of a given sudoku game, or of a crossword puzzle, or of
a game of eternity (see Fig. 4.1), or a neutral arrangement of nine
queens on a chessboard.1

1 For some reason which completely
escapes me, constraint programmers
are very fond of games and puzzles, to
the point that it is relatively hard to
find any real application of CP, aside
from scheduling that is.

The CP language consists of sets, parameters, decision variables
and constraints: like MP but without objective functions. Although
today decision variables in CP can be both discrete and continuous,
“native” CP only offered discrete decision variables.2

2 In fact, CP was originally only used
with explicitly bounded decision
variables, which prevents the language
from being Turing-complete. Even
with bounded variables, CP can still
describe NP-hard problems, though:
try reducing SAT to CP.

Let p be the parameter vector, which defines the input of the
problem being solved. Let D1, . . . , Dn be the domains of the deci-
sion variables x1, . . . , xn. Let Cp

1 (x), . . . , Cp
m(x) be the constraints,

expressed as logical statements which can evaluate to YES or NO.
Denote as x′ = C (p) a solution of the CP formulation, with x′ = ∅
if C (p) is infeasible.

x1

x2 x3

x4

x5

x6

Cp
1

Cp
2

Cp
3Cp

4

Figure 4.2: The constraint/variable
incidence structure of the CP for-
mulation can be represented as a
hypergraph.

Although a constraint Cp
i (for i ≤ m) is commonly written in

a humanly readable form, such as AllDifferent(xi1 , . . . , xik) mean-
ing “xi1 , . . . , xik must be assigned different values”, Cp

i is formally
defined as a k-ary relation Ri ⊆ Di1 × · · · × Dik .

4.1 The dual CP

We remark that Cp
i need not be explicitly cast in function of all the

decision variables. In fact, it turns out that every CP formulation
C (p) can be reduced to one which has at most unary and binary
constraints, by reduction to the dual CP, denoted C ∗(p). For each
i ≤ m, consider the subset Si ⊆ {1, . . . , n} of variable indices that Cp

i
depends on.

The dual CP has m dual variables y1, . . . , ym with domains
R1, . . . , Rm and the dual constraints:

∀i < j ≤ m yi[Si ∩ Sj] = yj[Si ∩ Sj]. (4.1)

Note that each dual variable yi takes values from the relation Ri,
which is itself a subset of a cartesian product of the Di’s. Hence you
should think of each dual variable as a vector or a list, which means
that y = (y1, . . . , ym) is a jagged array.3 The meaning of Eq. (4.1) is 3 A jagged array is a basic data struc-

ture: it consists of a list of lists of
different sizes.

68 mathematical programming

that, for each pair of constraints Cp
i , Cp

j , we want the corresponding
dual variables yi, yj to take on values from Ri and Rj which agree
on Si ∩ Sj. Note that formally each dual constraint is binary, since it
only involves two dual variables. Note also that when Si ∩ Sj = ∅,
the constraint is empty, which means it is always satisfied and we
can formally remove it from the dual CP. Thus, Eq. (4.1) contains
O(m2) constraints in the worst case, but in practice there could be
fewer than that.

y1 y2

y3y4

{2, 3}

{3
}{3}

Figure 4.3: A graph representation
of the constraint/variable incidence
structure of the dual formulation to
the CP of Fig. 4.2. Since all constraints
are binary, the hyperedges are all
simple edges, labeled with Si ∩ Sj.
Note that the unary constraint Cp

4
in the original CP becomes a unary
constraint in the dual, which simply
specifies the action of Cp

4 on x6 as the
restriction of R4 so that D6 becomes
Cp

4 (D6) (the restriction of D6 induced
by Cp

4).

4.1.1 Proposition
C ∗(p) is an exact reformulation of C (p) and vice versa.

Proof. Let x′ = C (p) be a feasible solution of the original CP for-
mulation. This means that, for all i ≤ m, Cp

i (x′i1 , . . . , x′ik) evaluates
to YES. Define y′i = (x′i1 , . . . , x′ik). We claim y′ = (y′1, . . . , y′m) sat-
isfies all constraints Eq. (4.1). Consider two constraints i < j with
Si ∩ Sj 6= ∅. For each h ∈ Si ∩ Sj, y′ih = x′h = y′jh, which proves
the claim. Conversely, let y′ = C ∗(p) be a feasible solution for the
dual CP, and aim at constructing a solution x′ of C (p). Pick any
h ≤ n: if there are no i < j such that h ∈ Si ∩ Sj, then set x′h to any
element of Dh compatible with Cp

i . Otherwise, for any i < j such
that h ∈ Si ∩ Sj, feasibility of y′ with respect to the dual constraints
ensure that y′ih = y′jh, so set x′h = y′ih. Now consider any constraint

Cp
i (x) of the original CP, for some i ≤ m, and aim to show that

Cp
i (x′) evaluates to YES: if h ∈ Si and h 6∈ Sj for any j 6= i, then x′h is,

by construction, part of a satisfying solution for Cp
i ; if h ∈ Si ∩ Sj for

some j 6= i, then xh = y′ih = y′jh is in the projection of both Ri and Rj

to the h-th coordinate. Hence they are also part of a satisfying solu-
tion for Cp

i . Having constructed a bijection between solutions of the
two CP formulations, we can use it to define the map φ mentioned
in Defn. 3.0.1. 2

4.2 CP and MP

Figure 4.4: The CPAIOR 2011 confer-
ence poster, see www.andrew.cmu.edu/

user/vanhoeve/cpaior.

CP relates to computer science as MP relates to applied mathemat-
ics. Both CP and MP are Turing complete declarative programming
languages as long as their decision variables are not explicitly
bounded. Both contain NP-hard subclasses of formulations, and
hence are NP-hard when seen as formal decision problems. MP
was born out of mathematics, whereas CP stems from the develop-
ment of logic into computer science. The academic communities
around CP and MP are still different, although their intersection
is growing, insofar as solution methods from CP and MP can be
successfully mixed.

Differently from MP, sets in CP are used both for indexing vari-
able symbols in structured formulations and for defining domains
where the decision variables can range. Also differently from MP,
constraints in CP are put together from a richer set of operators
than the one usually employed in MP. In fact, much of the research

www.andrew.cmu.edu/user/vanhoeve/cpaior
www.andrew.cmu.edu/user/vanhoeve/cpaior

constraint programming 69

in CP focuses on creating new operators which can be efficiently
dealt with in the typical CP solution algorithm.

Another important difference between CP and MP is that,
whereas in MP we have many different solvers for different MP
subclasses, in CP there is essentially one solution approach: a
search based on branching and backtracking.

4.3 The CP solution method

At its most essential, branching and backtracking is limited to work
on bounded variable domains, and looks like the algorithm in
Fig. 4.6.

Figure 4.5: Branching/backtracking on
the 4 queens problem (from ktiml.mff.

cuni.cz).

This algorithm generates a search tree where each node has
as many child nodes as the number of elements in the domain of
the branching variable. The algorithm can be refined by means of
several per-node procedures. The most important ones are domain
reduction and pruning. The former consists in various heuristic
procedures for attempting to remove as many elements as possible
from the variable domains without losing any part of the feasible
region. As for the latter, when every element can be removed from
a domain, the current search node is pruned.

4.3.1 Domain reduction and consistency

function CPsolve(J, x′)
// J = indices of unfixed vars
// x′ = vector of fixed var. values
if J = ∅ then

return x′

end if
choose branching var. index j ∈ J
for v ∈ Dj do

fix x′j ← v
if some constraint evaluates to
NO then

return ∅
else

return CPsolve(J ∪ {j}, x′)
end if

end for
Figure 4.6: CPsolve(J, x′)

A set of k domains Di1 , . . . , Dik is k-consistent with respect to a
constraint Cp

i (xi1 , . . . , xik) if for each (k− 1)-tuple

(ai1 , . . . , aij−1, aij+1, . . . , aik) ∈ Di1 × · · · × Dij−1, Dij+1 × · · · × Dik−1

there is aij ∈ Dij such that Cp
i (ai1 , . . . , aik) evaluates to YES. A CP

instance is k-consistent if all of its cartesian domain k-products
are k-consistent with respect to each k-ary constraint. The cases of
k ∈ {1, 2} are the most important: the case k = 1 because it can
be dealt through pre-processing, and the case k = 2 because every
CP can be reduced (by means of duality, see Sect. 4.1) to the case of
binary constraints.

Figure 4.7: Patrick Winston ex-
plaining 1-consistency (from
MITOpenCourseWare).

Consider for example a domain D1 = {2, 3, 5, 6, 9} for the vari-
able x1, and the unary constraint Cp

1 ≡ [L ≤ x1 ≤ U], where L ≤ U
are parameters which are given as part of the input p. Suppose for
some given p = p′ we have L = 4 and U = 7. Then D1 is consis-

tent with respect to Cp′
1 if D1 is reduced to {5, 6}, namely only the

values which satisfy 4 ≤ x1 ≤ 7.
Consistency with respect to unary constraints is also known as

1-consistency or node-consistency. As mentioned above, it can be
carried out as a pre-processing step to the solution process: since
unary constraints cannot encode relations between variables, once
the domain becomes consistent w.r.t. a unary constraint, it must
necessarily keep being node-consistent throughout the solution
process. Suppose, to get a contradiction, that Dj is node-consistent
with respect to the unary constraint Cp

i (xj), but that, due to some

ktiml.mff.cuni.cz
ktiml.mff.cuni.cz
MITOpenCourseWare

70 mathematical programming

other constraint Cp
` involving xj, Dj becomes node-inconsistent

w.r.t. Cp
i . Since constraints can never add values to domains, the

effect of Cp
` on Dj must yield a domain D′j ⊆ Dj. Of course, if D′j is

node-inconsistent w.r.t Cp
i , any superset of D′j must also be node-

inconsistent, which means that Dj is, against the initial assumption.
Consistency with respect to binary constraints of the form

Cp
i (xj, xh) is also known as 2-consistency or arc-consistency. The do-

mains Dj, Dh are 2-consistent with respect to Cp
i if for each aj ∈ Dj

there is ah ∈ Dh such that Cp
i (aj, ah) evaluates to YES. Consider

for example the domain D2 = {1, 2, 3, 4} for x2 and the constraint
x1 < x2: then D1, D2 are arc-consistent with respect to x1 < x2 if D1

is reduced to {2, 3} and D2 to {3, 4}.

Figure 4.8: Branching in CP (from
www.info.ucl.ac.be/~pschaus).

Domain reduction through consistency is usually performed be-
fore choosing the branching variable index in the search algorithm
(Fig. 4.6).

4.3.2 Pruning and solving

After a certain amount of branching and domain reduction, there
might4 be leaf nodes of the search tree where the domain product 4 If all the domains have a finite

number of values, then you can replace
“might” by “will”.

D = D1 × Dn is either empty, or consists of exactly one element
a = (a1, . . . , an). In the former case, the leaf node is pruned, i.e. no
child nodes are further appended to the pruned node. In the latter
case, the solution x = a is returned to the user, and the algorithm
terminates.

Next, we illustrate how the AllDifferent constraint impacts pruning
and finding solutions in CP. Suppose D1 = . . . ,= Dn = D such that
|D| = n, and x1, . . . , xn ∈ D. By stating

AllDifferent(x1, . . . , xn)

we are really saying that x1, . . . , xn encode a permutation of D.
We know from Sect. 2.2 and 2.4 that permutations correspond to
linear assignments, which are special cases of matchings.5 Finding 5 A matching M in a graph G =

(V, E) is a set of edges which are
pairwise non-incident. The relevant
optimization problem is to find
matchings of maximum size. A linear
assignment is a maximum perfect
matching in a bipartite graph (also see
Sidenote 13 in Ch. 2).

matchings in graphs can be done in polytime [Edmonds, 1965]
∗

,
which implies that we can efficiently test search tree nodes for
pruning or finding candidate solutions.

More specifically, the matching arising from an AllDifferent con-
straint is defined on a bipartite graph (x, D, E) between the n-
variable vector x and the n-valued domain D; E denotes the set
of variable/value assignments which are feasible with respect to
the current node of the search tree. At this point we invoke Hall’s
theorem6 6 Also known as stable marriage theo-

rem. You can look at [Dürr, 2011] for a
short proof.4.3.1 Theorem ([Hall, 1935])

There exists a perfect matching7 in a bipartite graph (U, V, E) if and only 7 A matching is perfect if every vertex
is adjacent to exactly one edge in
the matching. Referred to a bipartite
graph (U, V, E) the existence of a
perfect matching obviously implies
that |U| = |V|.

if
∀S ⊆ U |S| ≤ |Γ(S)|, (4.2)

where Γ(S) ⊆ V is the set of vertices in V adjacent to the vertices in S.

www.info.ucl.ac.be/~pschaus

constraint programming 71

By Thm. 4.3.1, there is no perfect matching if the contrapositive of
Eq. (4.2) is true, namely

∃S ⊆ U |S| > |Γ(S)|,

and it turns out that the certificate S can be found in polytime.
This offers the perfect tool for pruning a node using the AllDiffer-

ent constraint: at some level of the search tree, nodes will be created
where the edge set E is sparse enough (edges having been removed
at prior nodes) so as not to allow perfect matchings, with this
condition being efficiently verifiable. Conversely, since maximum
matchings can also be found in polytime, the AllDifferent constraint
offers an efficient way to find candidate solutions to the CP.

Figure 4.9: An unforeseen glitch in
Hall’s stable marriage theorem (from
snipview.com).

4.4 Objective functions in CP

CP formulations do not natively have objective functions f (x) to
optimize, but there are at least two approaches in order to handle
them.

A simple approach consists in enforcing a new constraint
f (x) ≤ d, and then update the value of d with the objective function
value of the best solution found so far during the solution process
(Sect. 4.3). Since a complete search tree exploration lists all of the
feasible solutions, the best optimum at the end of the exploration is
the global optimum.

In the case of discrete bounded variable domains another ap-
proach consists in using bisection, which we explain in more detail.
Let C (p) be a CP formulation, with p a parameter vector represent-
ing the instance; and let x′ = C (p), with x′ = ∅ if p is an infeasible
instance.

while L < U do
d← (L + U)/2
x̄ ← C̄ (p, d)
if x̄ = ∅ then

L← d
else

U ← d
end if

end while
return x̄

Figure 4.10: The bisection algorithm
(see Fig. 1.16).

Given some lower bound fL and upper bound fU such that
fL ≤ minx f (x) ≤ fU , we select the midpoint d = fL+ fU

2 and
consider the formulation C̄ (p, d) consisting of all the constraints of
C (p) together with the additional constraint f (x) ≤ d. We compute
x̄ = C̄ (p, d): if x̄ = ∅ we update fL ← d, otherwise fU ← d,
finally we update the midpoint and repeat. This process terminates
whenever fL = fU , in which case x̄ is a feasible point in C (p) which
minimizes f (x).

Bisection may fail to terminate unless fL, fU can only take finitely
many values (e.g. fL, fU ∈ N).8 Since CP formulations are mostly 8 We remark that fL can only increase

and fU can only decrease during the
bisection algorithm, hence if both are
integer they can only range between
their initial values.

defined over integer or discrete decision variables, this requirement
is often satisfied.

The complexity of bisection is O(t log2(|U − L|)) where t is the
complexity of calling C̄ (p, d), which makes it attractive in case
C̄ (p, d) can be solved efficiently.

4.5 Some surprising constraints in CP

Modelingwise, we already mentioned that CP offers a lot more
variety than MP in the constraints it can deal with.

snipview.com

72 mathematical programming

Name Constraint Why is it unusual for MP?

AllDifferent(x) ∀i < j ≤ n (xi 6= xj)
The 6= relation is not admitted in MP. It can be modelled using ≤,≥
and additional binary variables.

Implies(x, g, i, j) gi(x) ≤ 0⇒ gj(x) ≤ 0

Logical connectives are not always admitted in MP (in particular,
the implication is not). They can modelled using additional binary
variables, linked to the truth value of each logical statement by means
of “big M”s and cardinality constraints.

Disjunction(x, g)
∨

i≤m
(gi(x) ≤ 0)

Constraint disjunctions is not admitted in MP. It can nonetheless be
modelled using additional binary variables yi , additional constraints
gi(x) ≤ M(1− yi), and one more additional constraint ∑i yi ≥ 1.

Exactly(x, I, k, g)

AtLeast(x, I, k, g)

AtMost(x, I, k, g)

|{i ∈ I | gi(x) ≤ 0}| = k
|{i ∈ I | gi(x) ≤ 0}| ≥ k
|{i ∈ I | gi(x) ≤ 0}| ≤ k

Cardinality constraints on the number of satisfied constraints in a set
are not admitted in MP. They can be modelled using additional slack
variables gi(x) ≤ Myi and imposing the cardinality constraint on ∑i yi .

Element(x, L, i, j) Lxi = xj

Decision variables can never be used for indexing in MP. This
situation can be modelled using additional variables y`v = 1 if
and only if L` = v ∧ xi = ` ∧ xj = v.

4.6 Sudoku

As a toy example, we propose a CP formulation for solving a
Sudoku puzzle. This is seen as the following decision problem.

Sudoku. Given n ∈ N such that
√

n ∈N, and a partially defined n× n
array M = (mij) where, for some given pairs (i, j) ∈ S, mij specifies
an integer in N = {1, . . . , n}, is there an n × n fully defined array
X = (xij) such that:

• ∀(i, j) ∈ S xij = mij

• every integer in N appears in each column of X

• every integer in N appears in each row of X

• every integer in N appears in each
√

n ×
√

n sub-matrix of X
whose upper-left element has indices (k

√
n, `
√

n) for some inte-
gers k, ` ∈ R = {0, . . . ,

√
n− 1}?

Figure 4.11: A “hard” Sudoku instance
(from theguardian.com).

We introduce integer parameters n, r ←
√

n, sets N = {1, . . . , n}
and R = {0, . . . , r− 1}, and a partially defined square array mij for
i, j ∈ . The constraints are:

∀i ∈ N, j ∈ N xij = mij

∀i ∈ N AllDifferent(xi1, . . . , xin)

∀j ∈ N AllDifferent(x1j, . . . , xnj)

∀k ∈ R, ` ∈ R AllDifferent(xij | kr + 1 ≤ i ≤ kr + r ∧ `r + 1 ≤ c ≤ `r + r).

4.6.1 AMPL code

The CP formulation is encoded by means of the following AMPL
sudoku_cp.mod file.

param n integer, >0;

param r integer, := sqrt(n);

set N := 1..n;

set R := 0..r-1;

param m{N,N} integer, default 0;

var x{N,N} integer, >= 1, <= n;

subject to completeM{i in N, j in N : m[i,j] > 0}: x[i,j] = m[i,j];

subject to rows{i in N}: alldiff{j in N} x[i,j];

subject to cols{j in N}: alldiff{i in N} x[i,j];

theguardian.com

constraint programming 73

subject to squares{k in R, l in R}:

alldiff{i in k*r+1..k*r+r, j in l*r+1..l*r+r} x[i,j];

We can specify an instance by means of the following sudoku_cp.dat
file.

param n := 9;

param m: 1 2 3 4 5 6 7 8 9 :=

1 2 . 4 5 .

2 . 9 . . . 8 . . .

3 8 . . 1 . . . 2 .

4 . . 7 3 6 . . 8 .

5 . . 8 . . . 2 . .

6 . 3 . . 2 1 7 . .

7 . 8 . . . 3 . . 4

8 . . . 5 . . . 6 .

9 . 4 8 . 5

;

Finally, the following sudoku_cp.run file calls the solver and
displays the solution.

model sudoku_cp.mod;

data sudoku_cp.dat;

option solver ilogcp;

option ilogcp_options "logverbosity=terse";

solve;

printf "x:\n";

for{i in N} {

for{j in N} {

printf "%2d ", x[i,j];

}

printf "\n";

}

printf "\n";

Figure 4.12: A weird Sudoku variant
(from saxi753.deviantart.com).
Change the CP formulation in this
section to handle this instance, and
find a solution.

The resulting solution is:

x:

2 7 4 9 3 6 1 5 8

6 9 1 2 5 8 4 3 7

8 5 3 1 4 7 6 2 9

4 2 7 3 6 9 5 8 1

1 6 8 4 7 5 2 9 3

9 3 5 8 2 1 7 4 6

5 8 2 6 1 3 9 7 4

7 1 9 5 8 4 3 6 2

3 4 6 7 9 2 8 1 5

4.7 Summary

This chapter is about constraint programming, which is a different
modeling paradigm than MP, focusing on feasibility rather than
optimality, on discrete rather than continuous variables, and on a
single solver parametrized on constraint structures instead of many
solvers, each for a different standard form.

saxi753.deviantart.com

5
Maximum cut

The problem which names this chapter is one of the best known
problems in combinatorial optimization: finding the cutset of
maximum weight in a weighted undirected graph.1 It has two main 1 We already mentioned the un-

weighted variant in Sect. 2.9.3.motivating applications: finding the minimum energy magnetic
spin values of the atoms in a given crystal, and knowing where
to drill holes in electrical circuits so that wires that must intersect
do so in different board layers. The first application is commonly
known as Ising model of spin glasses, and the second as Very Large
Scale Integration (VLSI).2 2 Lately, another “application” came

about, namely benchmarking D-Wave’s
claimed quantum computer, see
Fig. 2.22 in Ch. 2.

1

2

3

4

5

6

Figure 5.1: A graph with unit edge
weights and its maximum cut. The
corresponding cutset is the set of edges
intersected by the curved perimeter.

First thing first: the formal definition of this problem is the
following.

Max Cut. Given a weighted undirected graph G = (V, E, w) with
w : E→ R, find S ⊆ V such that ∑

i∈S
j 6∈S

wij is maximum.

In graph theoretical terminology, a subset S of vertices is known
as a cut, whereas the set of edges with one incident vertex in S and
the other in V r S is a cutset. So the Max Cut problem calls for the
cutset of maximum weight (see Fig. 5.1).

Max Cut is one of the original problems which R. Karp proved
NP-hard [Karp, 1972], which is one of the main reasons for its
importance. The reduction proof is from a problem called Max-
2-Sat, which aims at determining the maximum number of a
conjunction of satisfiable clauses involving a disjunction of two
literals each.3 3 A literal is a boolean variable x or

its complement x̄. A logical formula in
conjunctive normal form is a boolean
expression in the form C1 ∧ . . . ∧ Cm,
for some integer m, where each clause
Ci is a disjunction L1 ∨ . . . ∨ Lni of
literals (i.e. each Lj is either a boolean
variable or its complement), for each
i ≤ m. In Max-2-Sat we require that
ni = 2 for each i ≤ m.

Another reason why Max Cut is so famous is that it is naturally
modelled as a MIQP rather than a MILP, whereas most of the
other “classic” combinatorial optimization problems are naturally
modelled as MILP.

Most importantly, however, I believe that Max Cut is very fa-
mous because of the algorithm that Goemans and Williamson
published in 1994. Theirs was the first SDP-based randomized ap-
proximation algorithm for a combinatorial optimization problem.
The so-called “GW algorithm” became an instant success, and has
had a deep impact in theoretical computer science for various rea-
sons. Aside from its theoretical importance, the GW algorithm is
one of the few approximation algorithms which actually works in
practice!

76 mathematical programming

5.1 Approximation algorithms

In order to understand this mysterious business of algorithms
which “surprisingly work4 in practice”, let us see what an approx- 4 The literature is full of approximation

algorithms which prove a theoretical
approximation property, but have
never been tested in practice. Every
time I can, I ask presenting authors
of new approximation algorithms
whether they have tested their algo-
rithms computationally: more often
than not, the answer is “why? what is
the point in that?”.

imation algorithm is. Suppose we are trying to solve an instance I
of a minimization problem P ≡ min

x∈X
f (I , x) having minimum ob-

jective function value f ∗. We design an algorithm A, but we cannot
prove it will find an exact global optimum,5 so it finds a feasible

5 In other words, the algorithm is not
exact.

point x′ ∈ X with objective function value f ′ > f ∗. If we can prove
that A yields a ratio f ′

f ∗ which is bounded above by a quantity φ for
all instances of P, then A is a φ-approximation algorithm for P.

Now let I be an instance of a maximization6 problem P ≡
6 Since Max Cut is a maximization
problem, this is the relevant point of
view.

max
x∈X

f (I , x) with optimal objective function value f ∗. As before, we

have an algorithm A which is not exact, so it finds a feasible point
x′ ∈ X with value7 f ′ < f ∗. If we can prove that A yields a ratio f ′

f ∗
7 Note the inequality sense has
changed, since we are maximizing.which is bounded below by a quantity φ for all instances of P, then

A is a φ-approximation algorithm for P.

5.1.1 Approximation schemes

The quantity φ is a function φ(|I|) of the size taken to store the
instance I . The best case occurs when φ is a constant, the closer to
1 the better. Among the constant approximation algorithms, those
giving the best solutions are those which, for any given ε > 0,
provide an approximation ratio 1 + ε (for minimization) and 1− ε

(for maximization) in polynomial time. Such algorithms are called
polynomial-time approximation schemes (PTAS).

In general, we only consider approximation algorithms which
terminate in polynomial time. The reason is that simple, brute-force
exponential time exact algorithms exist to solve any NP-complete
problems and many interesting NP-hard problems. Forsaking an
exactness guarantee is customarily considered acceptable if, in
exchange, we can find an approximate solution in polynomial time.

PTAS, specifically, can take as much as φ(|I|1/ε) time to termi-
nate, where φ is a polynomial. Obviously, as ε becomes smaller, 1/ε

can become very large. Those PTAS which run in polynomial time
of both |I| and 1/ε are called fully polynomial time approximation
schemes, or FPTAS.

5.2 Randomized algorithms

A randomized algorithm employs a source of randomness as part
of its input. We are interested in Monte Carlo randomized algo-
rithms, which may output a wrong result with bounded probability.

In order to make this statement more precise, consider a decision
problem P, and an algorithm R which, when presented with a
NO instance of P, outputs NO with certainty, but when presented
with a YES instance, only outputs YES with probability pR >
1
2 . The class of all such problems is called RP (which stands for

maximum cut 77

“randomized polynomial time”).
How can R help solve an instance I of a problem P? You simply

run R many times. For example, suppose you run it m times on I .
If you get m NO answers, the probability that the answer is YES is
the same probability p̄ that R gets the answer wrong m times. Since
the probability of R(I) being wrong is 1− pR < 1

2 , we have

p̄ <
1

2m ,

which can be driven down to zero as closely as we want.8 By con- 8 Note that we could replace 1
2 with

any other δ < 1, and still get lim
m→∞

δm.

In this sense, taking δ = 0.5 is arbi-
trary.

trast, if R(I) = YES on at least one run, then I must be necessarily
a YES instance, for if it were NO, then R would output NO with
certainty.

5.2.1 Randomized approximation algorithms

However, in this chapter we discuss Max Cut, which is a maxi-
mization problem rather than a decision problem. A randomized
algorithm R in this setting would simply yield an optimum with a
certain probability pR > 0. Unfortunately, the above argument no
longer works: since, in general, we do not know the optimal objec-
tive function value, we cannot tell whether the solution provided
by R is an optimum or not. Even if we go through m independent
runs of R and take the largest value, we cannot say much about
global optimality guarantees.

Figure 5.2: Karger’s randomized
algorithm for Min Cut contracts edges
at random until only one edge remains
— which corresponds to a cut in the
original graph. This extremely simple
algorithm returns a minimum cut
with probability 2/(n(n− 1)) (where
n = |V|), which is much better than
the one obtained by sampling a cut at
random (from Wikipedia). Unlike Max

Cut, however, a polytime algorithm
for Min Cut is known (Which one?)
— this goes to show that randomized
algorithms can sometimes also be
useful for problems which we can
solve “efficiently” (it all depends how
one defines this term!). Write a Python
code to evaluate whether the Karger’s
algorithm is better or worse than a
deterministic Min Cut algorithm, on a
significant test set.

We can, however, exploit an upper bound U to the optimal ob-
jective function value f ∗: if we can prove that R yields an average
objective function value f̄ = δU (for some 0 < δ ≤ 1), then, because
U ≥ f ∗, it follows that

f̄ ≥ δ f ∗.

This means that, on average, R performs at least as well as a δ-
approximation algorithm.

For minimization problems we can exploit a lower bound L to f ∗,
and prove that the average objective function value of R is f̄ = ∆L
with ∆ ≥ 1. By L ≤ f ∗ it follows that f̄ ≤ ∆ f ∗, which means
that R performs, on average, at least as well as a ∆-approximation
algorithm.

Finally, a randomized optimization algorithm which performs
at least as well as a given approximation algorithm on average is a
randomized approximation algorithm.

5.2.1 Example
Consider the following (trivial9) randomized approximation algorithm R

9 This algorithm is trivial because it
does not even look at the edges of the
graph, which actually determine the
maximum cutset.

for the unweighted10 version of Max Cut: for each i ∈ V(G), let i ∈ S

10 I.e. Max Cut where all weights are
one.

with probability 0.5. Let R(G) denote the cutset size corresponding to the
cut S determined by R, and Opt(G) be the size of the maximum cutset.
We show that

E(R(G)) ≥ 1
2

Opt(G),

78 mathematical programming

where E is the expectation of R(G) over an infinite number of runs:

E(R(G)) = ∑
{i,j}∈E(G)

Prob((i ∈ S ∧ j 6∈ S) ∨ (i 6∈ S ∧ j ∈ S))

= ∑
{i,j}∈E(G)

1
2

=
1
2
|E| ≥ 1

2
Opt(G),

where the second line follows from the first because the only other possibil-
ities for i, j are (i ∈ S ∧ j ∈ S) ∨ (i 6∈ S ∧ j 6∈ S), and they are equally
likely, and the third line follows because no cutset can have size larger than
the total number of edges. 2

5.3 MP formulations

Let us see a few MP formulations for the Max Cut problem. Figure 5.3: You should be all familiar
with the Max Flow = Min Cut theo-
rem, which states that the maximum
flow (see Sect. 1.7.2) in a directed
graph with given arc capacities is the
same as the capacity of a minimum
cut. Explain why we cannot solve Max

Cut on an undirected graph by simply
replacing each edge by two antipar-
allel arcs with capacities equal to the
negative weights, and then solving a
Max Flow LP to find the minimum
cut. (Picture from faculty.ycp.edu).

5.3.1 A natural formulation

We start with a “natural” formulation, based on two sets of decision
variables, both for cut and cutset.

• Let V be the vertex set and E the edge set.

• Let w : E→ R+ be the edge weight parameters.

• For each {i, j} ∈ E let zij = 1 if {i, j} is in the maximum cutset,
and 0 otherwise (decision variables).

• For each i ∈ V, let yi = 1 if i ∈ S, and 0 otherwise (decision
variables).

• The objective function is

max
s,z∈{0,1}

∑
{i,j}∈E

wijzij,

which maximizes the size of the cutset relative to S.

• The constraints link the meaning of z and s variables:

∀{i, j} ∈ E zij = yi(1− yj) + (1− yi)yj.

Note that the RHS can only be zero or one. If i, j are both in
S or not in S, we have yi = yj = 1 or yi = yj = 0, so the
RHS evaluates to zero, which implies that the edge {i, j} is not
counted in the maximum cutset. If i ∈ S and j 6∈ S, then the first
term of the RHS is equal to 1, and the second is equal to 0, so the
RHS is equal to 1, which implies that the edge {i, j} is counted.
Similarly for the remaining case i 6∈ S and j ∈ S.

This is a Binary Quadratically Constrained Program (BQCP), which
we have not really considered in past chapters. Expanding the RHS
of the constraints yields

yi − yiyj + yj − yiyj = yi + yj − 2yiyj,

faculty.ycp.edu

maximum cut 79

which implies that the quadratic part only arises because of a
product between two binary variables, which we can linearize
exactly by Sect. 3.2.1. So we can write this BQCP as a BLP and solve
it using CPLEX.

5.3.2 A BQP formulation

In the formulation of Sect. 5.3.1 we can simply replace the occur-
rence of zij in the objective function by the RHS yi + yj − 2yiyj, and
obtain:

max
y∈{0,1}n ∑

{i,j}∈E
wij(yi + yj − 2yiyj), (5.1)

where n = |V|, which is a BQP.

5.3.3 Another quadratic formulation

Figure 5.4: The Ising model of a
spin glass (from http://www3.nd.

edu/~mcbg). There are n magnetic
impurities (atoms, represented by
graph vertices V) in an external
magnetic field, represented by a
dummy vertex in V. For each i < j
in V the magnetic interaction is Jij.
The model dictates that the spin
xi ∈ {−1, 1} of each atom i is such
that the energy of the system, given
by −∑i<j Jijxixj, is minimum. A few
further steps transform this to a Max

Cut problem.

We are going to exploit the following equation:

∀y ∈ {0, 1}n 2(yi + yj − 2yiyj) = 1− (2yi − 1)(2yj − 1),

which allows us to rewrite Eq. (5.1) as

max
y∈{0,1}n

1
2 ∑
{i,j}∈E

wij(1− (2yi − 1)(2yj − 1)).

Now, if yi ∈ {0, 1} for any i ∈ V, then xi = 2yi − 1 is a variable
which ranges in {−1, 1}, since xi = 1 if yi = 1 and xi = −1 if yi = 0.
Thus, we can formulate the Max Cut problem as:

max
x∈{−1,1}n

1
2 ∑
{i,j}∈E

wij(1− xixj). (5.2)

Note that Eq. (5.2) is also a natural formulation (see Fig. 5.4): for
each i ∈ V, let xi = 1 if i ∈ S and xi = −1 if i ∈ V rS. Then, for each
{i, j} ∈ E, xixj = −1 if and only if {i, j} is in the maximum cutset,
and the weight of the corresponding edge is 1

2 wij(1− (−1)) = wij.

5.3.4 An SDP relaxation

In this section we derive a well-known SDP relaxation of the Max

Cut problem. The strategy is as follows: we reformulate the prob-
lem exactly to a matrix problem with a rank constraint, which we
then relax.

First, we slightly change the input of the problem: instead of a
simple, undirected, edge-weighted graph G = (V, E), we consider
a complete simple directed graph Ḡ = (V, A), where wij = wji = 0
for each {i, j} 6∈ E. Since we are adding the weight wij twice (every
edge {i, j} ∈ E is replaced by two antiparallel arcs (i, j) and (j, i) in
A), we have to multiply the objective function by another factor 1

2 .
This means we can write another quadratic Max Cut formulation
as follows:

max
x∈{−1,1}n

1
4 ∑

i,j∈V
wij(1− xixj). (5.3)

http://www3.nd.edu/~mcbg
http://www3.nd.edu/~mcbg

80 mathematical programming

We now carry out a reformulation which we have never seen
before, and which might appear very weird: we replace each scalar
decision variable xi (for i ∈ V) by a vector of decision variables
vi ∈ Sn−1, i.e. vi ∈ Rn and ‖vi‖2 = 1. Every product xixj is replaced
by the scalar product vi · vj, thereby obtaining:

Figure 5.5: Replacing a scalar variable
with a vector variable gives more de-
grees of freedom, so the feasible region
is enlarged. In other words, it is a re-
laxation of the original problem (from
some lecture notes of R. O’Donnell).

max
v∈Sn−1

1
4 ∑

i,j∈V
wij(1− vi · vj). (5.4)

Note that any solution to Eq. (5.4) is an n× n real symmetric matrix
V having vi as its i-th column. It should be easy to see that this
is not an exact reformulation. We can make it exact, however, by
enforcing the condition that, for any solution V, there exists a
column vector u, with each component in S0, such that uu> = VV>.
If this is the case, then for each i 6= j we have v>i vj = vi · vj = uiuj,
and since S0 = {−1, 1}, we have recovered Eq. (5.4).

By Prop. 5.3.1, it suffices that rank V = 1.

5.3.1 Proposition
For any n× n real symmetric matrix V, rank V = 1 if and only if there
exists a vector u ∈ Rn such that uu> = VV>.

Proof. Suppose V has rank 1. This happens if and only if every
column is a scalar multiple of a single column, i.e. we can write V
as (u1t u2t · · · unt) for some column vector t ∈ Rn which we can
choose as having unit Euclidean norm without loss of generality.11 11 Why is there no loss of generality in

assuming ‖t‖2 = 1?In turn, this is equivalent to stating that the (i, j)-th component of
VV> is uiuj‖t‖2

2 = uiuj, which happens if and only if VV> = uu>.
The converse direction is trivial.12 2 12 Why? Prove it!

We now consider the Gram matrix of V (see Sect. 2.10), denoted
Gram(V), i.e. the n × n matrix having vi · vj as its (i, j)-th compo-
nent. The Gram matrix has two remarkable properties, given in
Prop. 5.3.2 below.

5.3.2 Proposition
For any real n× n symmetric matrix V, we have: (i) Gram(V) � 0; (ii)
rank Gram(V) = rank V.

Proof. First, we remark that Gram(V) = V>V = VV>.
(i) For any x ∈ Rn, we have

x>Gram(V)x = x>V>Vx = (Vx)>Vx = ‖Vx‖2 ≥ 0,

implying Gram(V) � 0, i.e. the Gram matrix is PSD.13 13 The converse also holds: any PSD
matrix is the Gram matrix of some
other matrix. Prove it.

(ii) For any matrices A, B we know that the columns of AB
are linear combinations of the columns of A, and the rows of AB
are linear combinations of the rows of A: hence, the columns of
Gram(V) = V>V are a linear combination of the columns of V>,
i.e. the rows of V, and the rows of Gram(V) are a linear combina-
tion of the rows of V. Since the row rank and column rank of any
matrix coincide, Gram(V) has the same rank as V, as claimed. 2

maximum cut 81

5.3.3 Corollary
If X = (Xij) = Gram(V) and rank X = 1, then there exists a vector u
such that Xij = uiuj.

Proof. Since rank X = 1 and X is the Gram matrix of V, then
rank V = 1 by Prop. 5.3.2, which, by Prop. 5.3.1 implies the existence
of u such that uu> = VV> = Gram(V) = X. 2

By Cor. 5.3.3, we can reformulate Eq. (5.4) as:

max 1
4 ∑

i,j∈V
wij(1− Xij)

Diag(X) = I
X � 0

rank X = 1,

 (5.5)

where Diag(X) is the matrix consisting of the diagonal entries of X,
and I is the identity matrix.

Lastly, we look at the objective function of Eq. (5.5) more closely:

∑
i,j∈V

wij(1− Xij)

= ∑
i,j∈V

wij1− ∑
i,j∈V

wijXij

Diag(X) = 1
⇒ ∀i ∈ V Xii = 1 = ∑

i,j∈V
wijXii − ∑

i,j∈V
wijXij

= ∑
i∈V

(
∑
j∈V

wij

)
Xii − A • X

= D • X− A • X

= (D− A) • X,

where A = (wij) is the weighted adjacency matrix of the input
digraph Ḡ, and D is the matrix having ∑

j∈V
wij on the i-th diagonal

element, and 0 elsewhere. Note that the matrix L = D − A is
commonly known as the weighted Laplacian of the graph14 G. 14 Why is the weighted Laplacian

defined on undirected graphs, yet we
refer it to an input which is a directed
graph?

Our matrix formulation of the Max Cut is therefore:

max 1
4 L • X

Diag(X) = I
X � 0

rank X = 1.

 (5.6)

An SDP relaxation of Eq. (5.6) can now be easily derived by drop-
ping the constraint rank X = 1:

max 1
4 L • X

Diag(X) = I
X � 0.

 (5.7)

As mentioned in Sect. 2.10, SDPs can be solved in polynomial time
to any desired ε accuracy by means of IPM.

82 mathematical programming

5.4 The Goemans-Williamson algorithm

Since SDPs can be solved in polytime to any desired accuracy,15 one 15 We remark that there exists an
IPM for SDP which converges in
O(|I|3.5 log(1/ε)) [Boyd and Van-
denberghe, 2004], where |I| is the
size of the SDP instance. Does this
make IPM an FPTAS? It would ap-
pear so, but no-one mentions it in
the literature. As far as I can tell, it
is because the ε tolerance is not only
applicable to optimality, but also to
feasibility, i.e. IPMs for SDP might
yield a solution with eigenvalues ≥ −ε,
or satisfying the constraints with a ε
error. The definition of FPTAS applies
the approximation to the objective
function, but requires strict feasibility.

could dream of an ideal world where one can just efficiently solve
the SDP relaxation of any instance I of Max Cut, and the solution
X∗ simply happens to have rank 1: then we can just pick the correct
vector x: since, as remarked, ‖xi‖2 = 1 reduces to xi ∈ {−1, 1} for
each i ≤ n, we can simply read the maximum cutset off the SDP
solution. We live, alas, in an imperfect world where relaxations
are often inexact, however. The main innovation of the Goemans-
Williamson algorithm (GW) is a randomized algorithm for finding
a decently-sized cutset from X∗. This algorithm is often called
“randomized rounding”, since some X∗ij might well be fractional in
Eq. (5.7), whereas we would need it to be either 1 or −1 in order for
X∗ to represent a valid solution of Eq. (5.2).

In summary, the GW is as follows:

1. Solve the SDP in Eq. (5.7) to find X∗

2. Perform “randomized rounding” to find x′ ∈ {−1, 1}n represent-
ing a “good” cut.

By “good”, the GW algorithm means that, on average, the random-
ized rounding algorithm will yield a cutset having size α Opt(I),
where α > 0.878. Since 0.878 is quite close to 1, the GW is, at least
theoretically, a pretty good randomized approximation algorithm.

5.4.1 Randomized rounding

Consider the SDP relaxation solution X∗: since it is a symmetric
matrix, it has a real factorization P>ΛP, where Λ has all of the
eigenvalues of X∗ on the diagonal (and zero elsewhere), and P
is the unitary matrix formed by the corresponding eigenvectors,
arranged column-wise. Since X∗ is PSD, Λ ≥ 0, which means that
the square root matrix

√
Λ is real. So

X∗ = P>ΛP = P>
√

Λ
>√

ΛP = (
√

ΛP)
>√

ΛP = V>V,

where V =
√

ΛP, with vi being the i-th column of V.

Figure 5.6: Factorizing the SDP
solution yields a bunch of vectors
on the spherical surface (from some
lecture notes of R. O’Donnell).

Note that, since X∗ satisfies Diag(X∗) = 1 (i.e. X∗ii = 1 for each
i ≤ n), we have X∗ii = vi · vi = ‖vi‖2 = 1, which implies that the
vectors vi are on Sn−1. Our job would be over if we could “wisely”
choose a hyperplane H, passing through the origin, which sepa-
rates the vectors vi into two parts: on the one side, say whenever
i ∈ S′, we set all i’s such that x′i = 1, and on the other side we put
the rest, namely i’s with x′i = −1. By “wisely”, we mean of course
that this magical hyperplane should yield a Max Cut solution x′

which is at least as good as α times the maximum cutset.
Geometrically, let r be the (unit) normal vector to the magical

hyperplane: then those vectors vi which form an angle ξ between
−90 and 90 degrees with H will be in S′, and those which form an
angle ξ between 90 and 270 degrees with H will not be in S′. The

maximum cut 83

algebraic connection between an angle and two vectors is the scalar
product: specifically,

∀i ≤ n r · vi = ‖r‖2‖vi‖2 cos(ξ) = cos(ξ),

since r and all of the vi’s are unit vectors. Thus, i ∈ S′ if and only if
r · vi ≥ 0, which implies that we can define

x′ = sgn(r>V),

with the convention that sgn(0) = 1.

Figure 5.7: For every pair of vec-
tors, we can look at the situation
in 2D (from some lecture notes of
R. O’Donnell).

Now, the average value of the cutset size obtained by random-
ized rounding is:

E

∑
i∈S′
j 6∈S′

wij

 = ∑
i<j

wijProb(x′i 6= x′j). (5.8)

So we need to evaluate the probability that, given a vector r picked
uniformly at random on Sn−1, its orthogonal hyperplane H forms
angles as specified above with two given vectors vi and vj.

Since we are only talking about two vectors, we can focus on the
plane η spanned by those two vectors. Obviously, the projection of
Sn−1 on η is a circle C centered at the origin. We look at the line λ

on η (through the origin) spanned by r. The question, much simpler
to behold now that it is in 2D, becomes: what is the probability that a
line crossing a circle separates two given radii vi, vj?

This question really belongs to elementary geometry (see
Fig. 5.7). In order to separate vi, vj, the radius defined by λ has to
belong to the smaller slice of circle delimited by vi and vj. The prob-
ability of this happening is the same as the extent of the (smaller)
angle between vi and vj divided by 2π. Only, λ really identifies a di-
ameter, so we could turn λ around by π and get “the other side” of
λ to define another radius. So we have to multiply this probability
by a factor of two:

∀i < j Prob(x′i 6= x′j) =
arccos(vi · vj)

π
. (5.9)

Figure 5.8: When rounding is worse
than SDP: how much worse? (From
some lecture notes of R. O’Donnell)

Since we do not know Opt(I), in order to evaluate the approxi-
mation ratio of the GW we can only compare the objective function
value of the rounding x′ with the SDP relaxation value, which, as
an upper bound to Opt(I), is such that

1
2 ∑

i<j
wij(1− x′i x

′
j) ≤ Opt(I) ≤ 1

2 ∑
i<j

wij(1− vi · vj). (5.10)

By Eq. (5.8)-(5.9), the average value of 1
2 (1− x′i x

′
j) over all i < j is

1
π (arccos(vi · vj)). Now we look at Eq. (5.10) term-wise: how much
worse can arccos(vi · vj)/π be with respect to (1− vi · vj)/2?

Let us look at vi · vj as a quantity ρ, and plot16 the two functions 16 See Fig. 5.8.

1
π

arccos ρ and
1
2
(1− ρ),

84 mathematical programming

for ρ ∈ [−1, 1]. Note that for ρ ≥ 0, 1
π arccos ρ ≥ 1

2 (1− ρ), which
implies that randomized rounding performs better than the SDP
solution. For ρ < 0 this is no longer the case. How bad can random-
ized rounding perform with respect to SDP? The minimum of the
gap between the two functions has value:

α = min
ρ∈[−1,1]

(arccos ρ)/π

(1/2)(1− ρ)
≈ 0.87854.

This means that, on each pair i, j ∈ V, randomized rounding can
do no worse that α times the solution of the SDP. Hence:

1
4

E

(
∑

i,j∈V
wij(1− x′i x

′
j)

)
≥ α

4 ∑
i,j∈V

wij(1− X∗ij) ≥ α Opt(I), (5.11)

as claimed.

Figure 5.9: Most “wild guess methods”
for uniformly sampling on a sphere
turn out to be incorrect (above) or,
if correct (below), inefficient (from
www.bogotobogo.com).

5.4.2 Sampling a uniform random vector from Sn−1

It only remains to discuss a method for sampling uniform random
vectors from the surface of a unit sphere in Rn. A very well known
method consists in sampling n independent values r′1, . . . , r′n from a
standard normal distribution N(0, 1), then letting r′ = (r′1, . . . , r′n)

>

and r = r′
‖r′‖2

. By the lemma below, r is uniformly distributed on

Sn−1.

5.4.1 Lemma
The vector r is uniformly distributed on Sn−1.

Proof. Since r′1, . . . , r′n are independently sampled, their joint proba-
bility distribution function is simply the product of each individual
distribution function:

∏
i≤n

1√
2π

e(r
′
i)

2/2 =
1

(2π)n/2 e−‖r
′‖2/2.

The probability that r′ is in some measurable set A is:

pA =
1

(2π)n/2

∫
A

e−‖r
′‖2/2dr′.

Now consider any rotation matrix U (such that U>U = I) applied
to A. The probability that r′ is in U>A is:

pUA =
1

(2π)n/2

∫
U>A

e−‖r
′‖2/2dr′

=
1

(2π)n/2

∫
A

e−‖U
>r′‖2/2dr′

=
1

(2π)n/2

∫
A

e−‖U
>U‖2‖r′‖2/2dr′

=
1

(2π)n/2

∫
A

e−‖I‖2‖r′‖2/2dr′

=
1

(2π)n/2

∫
A

e−‖r
′‖2/2dr′ = pA.

www.bogotobogo.com

maximum cut 85

Thus, if s 6= t are points in Sn−1, the probability that r′ = s is the
same as the probability that r′ = t. Hence r, the normalized version
of r′, is uniformly distributed on the unit sphere, as claimed. 2

5.4.3 What can go wrong in practice?

We said at the beginning of this chapter that GW is an approxima-
tion algorithm which actually works in practice. We shall see this in
Sect. 5.5. One word of caution, however: as mentioned in Sidenote
15, it is possible that SDP solvers would find slightly infeasible
solutions, due to their error tolerance, which is in turn due to float-
ing point computations. So X∗ might have some slightly negative
eigenvalues, or not satisfy Diag(X∗) = 1 exactly. This has to be dealt
with at the implementation level, rather than algorithmically.

For example, the closest PSD matrix A to a given symmetric
matrix B can be obtained by factorization: let B = P>ΛP, where Λ
is a diagonal matrix with the eigenvalues (ordered from largest to
smallest) on the diagonal, and the columns of P are the correspond-
ing eigenvectors. If Λii ≥ 0 for all i ≤ n, we have a certificate that
B is PSD. However, if there is ` ≤ n such that Λ` < 0 (even though
perhaps |Λ`| is tiny), then we define Λ+ as Λ, with all eigenvalues
from the `-th to the n-th replaced by zeros. We then compute17 17 Note that, since this computation

also involves floating point operations,
some error might make some eigen-
value of A slightly negative: this is
a game of hide-and-seek, where you
have to artfully tune the number of
very small eigenvalues which you zero
in Λ+.

A = P>Λ+P.
Since GW really only relies in the factorization of X∗ into V>V,

you can also address these issues by designing a factorization
algorithm which is robust to slightly negative eigenvalues in X∗.
Most implementations (e.g. in NumPy or Matlab) are not robust in
this sense.

5.5 Python implementation

We now present and discuss a Python program which solves:

• the MIQP formulation in Eq. (5.1), using Pyomo calling CPLEX18; 18 Note that the objective function in
Eq. (5.1) is quadratic: even though
CPLEX excels at solving MILPs, it
can solve convex MIQPs quite well
(including those with convex nonlinear
constraints). I know, I know: the
objective of Eq. (5.1) is not even
convex! Ever since version 12.6, CPLEX
has been able to solve also nonconvex
MIQPs with nonconvex objective
functions (the constrains have to be
convex quadratic, however), by means
of a special-purpose sBB-type solver.

• the MILP formulation derived from applying the binary variable
product reformulation (Sect. 3.2.1) to Eq. (5.1), using Pyomo
calling CPLEX;

• the SDP relaxation in Eq. (5.7) using the alternative19 Picos MP

19 We need an alternative because
Pyomo currently does not interface to
SDP solvers.

modelling environment in Python, which interfaces to SDP
solvers (through the Python library CvxOpt);

• the Max Cut problem using our own implementation of the GW
algorithm.

5.5.1 Preamble

We import the following libraries:

import time

import sys

86 mathematical programming

import math

import numpy as np

from pyomo.environ import *
from pyomo.opt import SolverStatus, TerminationCondition

import pyomo.opt

import cvxopt as cvx

import cvxopt.lapack

import picos as pic

import networkx as nx

We first discuss the standard libraries. We use the time library to
collect CPU timings in order to perform an empirical comparison of
the different solution approaches. The sys library allows us to pass
a command line argument to our Python program. The math library
gives direct access to functions such as sqrt, which computes the
square root of its argument. The numpy library is necessary for
many floating point computations, including linear algebra; note
we import numpy as the shortened string np, which makes our code
somewhat neater.

We also import some specific MP-related libraries. We already
saw the import sequence for Pyomo. We then import the cvxopt

library and its cvxopt.lapack linear algebra module. We do not use
these libraries explicitly, but they are used by picos, the MP python
modelling environment which is specifically suitable for convex
optimization, and can interface with SDP and SOCP solvers. Finally,
we store and manipulate graphs using the networkx library, which
we import as the shortened string nx.

We rely on a few globally defined variables:

GWitn = 10000

MyEpsilon = 1e-6

cplexTimeLimit = 100

GWitn is the maximum number of iterations of the randomized
rounding phase of the GW algorithm. MyEpsilon is used as a float-
ing point error tolerance. cplexTimeLimit is the maximum number
of seconds of user20 CPU that CPLEX is allowed to run for. Note 20 CPU timings in most operating

systems (OS) nowadays are reported
as either user, system or total. The
former is the actual amount of seconds
that the CPU devotes to running the
specific given task being monitored,
whereas the latter is user+system.
Usually, people are mostly interested
in user CPU time, since the time the
computer spends doing something
else is not relevant to code efficiency —
one might consider devoting a whole
computer to running the relevant
task in single-user mode. With the
advent of multi-core computers, these
time statistics have become fuzzier:
is the time taken to transfer control
or register data from one core to
another classified as system or user?
After all the parallelized code would
not work without these control and
data transfers. I believe different
OSes employ different definitions of
user and system times in multi-core
computers.

that CPLEX, as well as many other MP solvers, does not check the
system clock very often, probably in an attempt to devote every
single CPU cycle to finding the solution efficiently. As a result, even
if you set a time limit of 100 seconds, CPLEX might well go on
crunching numbers for considerably more time.

5.5.2 Functions

Next, we briefly introduce the functions we use. In create_maxcut_miqp
we take an undirected graph G (in the form of a networkx object)
and use the Pyomo library to model a MIQP formulation of Max

Cut.

def create_maxcut_miqp(G):

maxcut = ConcreteModel()

0-1 vars: 0 if node in S, 1 if in \bar{S}

maxcut.y = Var(G.nodes(), within = Binary)

maximum cut 87

objective: max sum_{ij in E} w_ij * (y_i + y_j - 2 y_i*y_j)

def max_cut(model):

return sum(G[i][j][’weight’] * (model.y[i] + model.y[j] - \

2*model.y[i]*model.y[j]) for (i,j) in G.edges())

maxcut.maxcutobj = Objective(rule = max_cut, sense = maximize)

return maxcut

In create_maxcut_milp we do the same, but we add Fortet’s
inequalities to MIQP formulation, and linearize the products yiyj,
replacing each bilinear term with a new variable zij (Sect 3.2.1).

def create_maxcut_milp(G):

maxcut = ConcreteModel()

0-1 vars: 0 if node in S, 1 if in \bar{S}

maxcut.y = Var(G.nodes(), within = Binary)

linearization variables z_ij = y_iy_j

maxcut.z = Var(G.edges(), within = PercentFraction)

objective: max sum_{ij in E} w_ij * (y_i + y_j - 2 z_ij)

def max_cut(model):

return sum(G[i][j][’weight’] * (model.y[i] + model.y[j] - \

2*model.z[i,j]) for (i,j) in G.edges())

maxcut.maxcutobj = Objective(rule = max_cut, sense = maximize)

Fortet’s linearization constraints

def fortet1(model, i,j):

return model.z[i,j] <= model.y[i]

maxcut.fortet1 = Constraint(G.edges(), rule = fortet1)

def fortet2(model, i,j):

return model.z[i,j] <= model.y[j]

maxcut.fortet2 = Constraint(G.edges(), rule = fortet2)

def fortet3(model, i,j):

return model.z[i,j] >= model.y[i] + model.y[j] - 1

maxcut.fortet3 = Constraint(G.edges(), rule = fortet3)

return maxcut

For the SDP relaxation of Max Cut, we employ a different MP
modelling environment in Python, namely Picos. Note that the
argument of create_maxcut_sdp is not the graph, but its Laplacian
matrix. You can hopefully make out what the various instructions
do by the comments.

def create_maxcut_sdp(Laplacian):

n = Laplacian.shape[0]

create max cut problem SDP with picos

maxcut = pic.Problem()

SDP variable: n x n matrix

X = maxcut.add_variable(’X’, (n,n), ’symmetric’)

constraint: ones on the diagonal

maxcut.add_constraint(pic.tools.diag_vect(X) == 1)

constraint: X positive semidefinite

maxcut.add_constraint(X >> 0)

objective function

L = pic.new_param(’L’, Laplacian)

note that A|B = tr(AB)

maxcut.set_objective(’max’, L|X)

return maxcut

In the GW algorithm the output of the SDP relaxation phase is
X∗, but the input to the randomized rounding phase is a matrix
factor V of X∗. The rank_factor function computes this factor.

88 mathematical programming

Note that we try and bound the “negative zero” eigenvalues due to
floating point errors.

def rank_factor(X, rk):

n = X.shape[0]

evl, evc = np.linalg.eigh(X) # extract eigeninfo

get closest nonneg eigenvals (small neg number --> 0)

evl[evl < 0] = 0

if rk < n:

V = np.transpose(evc[:,-rk:])

for k in range(rk):

V[k] *= math.sqrt(evl[-rk-1])

else:

V = np.transpose(evc[::-1])

for k in range(n):

V[k] *= math.sqrt(evl[::-1][k])

return V

The function closest_sdp removes small negative eigenvalues
from a matrix X which should be PSD. We factor X it using eigen-
vectors and eigenvalues, we replace negative eigenvalues by zeros,
then we multiply the factor and its transpose to retrieve an updated
matrix X which is PSD. This somehow replicates some of the in-
structions found in the function rank_factor above. The point is
that, as emphasized in Sect. 5.4.3, multiplying the factors involves
many floating point operations, which might introduce new float-
ing point errors. Replicating some of these “cleaning” actions helps
reduce the chances of an error in the call to square root functions.21 21 Honestly, I’m not really sure this

further “cleaning step” is wholly
justified — I must have inserted this
code in consequence of some negative
square root error occurring in the code
on some instance I was testing. Try
a version of the program where you
do not call this function, and see what
happens.

def closest_psd(X):

evl, evc = np.linalg.eigh(X) # extract eigeninfo

get closest nonneg eigenvals (some -1e-27 --> 0)

evl[evl < 0] = 0

return evc.T.dot(np.diag(evl).dot(evc))

We now come to the randomized rounding algorithm: the func-
tion gw_randomized_rounding is wholly commented, so it should be
easy to understand.

def gw_randomized_rounding(V, objX, L, iterations):

n = V.shape[0]

repeat max iterations times

count = 0

obj = 0

print "maxcut(GW/rnd): improv_itn objfun"

while (count < iterations):

r = np.random.normal(0,1,n) # rnd unfrm vector on unit sphere

r /= np.linalg.norm(r) # normalization

x = np.sign(np.dot(V,r)) # signs of V . r

x[x >= 0] = 1 # in case there’s some zeros

o = np.dot(x.T,np.dot(L,x)) # objective function value

if o > obj:

x_cut = x

obj = o

print count, "\t", obj

count += 1

return (x_cut, obj)

maximum cut 89

5.5.3 Main

We now step through the instructions of the “main” part of our
Python program. First, we read the input file having name given as
the first argument on the comand line.

read edge list file as input

if len(sys.argv) < 2:

not enough args on cmd line, error

print "error: need an edge list filename on cmd line"

quit()

each line of input is arc (i,j) weight w: i j w

G = nx.read_weighted_edgelist(sys.argv[1], nodetype = int)

make G undirected

G = nx.Graph(G)

For example, the triangle graph with unit weights is:

1 2 1

1 3 1

2 3 1

Figure 5.10: The logo of PICOS (from
picos.zib.de).

Secondly, we solve the MIQP formulation using the standard
Pyomo constructs (see Sect. 1.8.3).

miqp = create_maxcut_miqp(G)

solver = pyomo.opt.SolverFactory(’cplexamp’, solver_io = ’nl’)

solver.options[’timelimit’] = cplexTimeLimit

solver.options[’mipdisplay’] = 2

t0 = time.time() # start the stopwatch

results = solver.solve(miqp, keepfiles = False, tee = True)

t1 = time.time() # stop it

miqpcpu = t1 - t0 # this is the time taken by the solver

miqp.solutions.load_from(results) # this is an indicator vector

retrieve the set of the indicator vect. as a dictionary (key:val)

ymiqp = {i:miqp.y[i].value for i in G.nodes()}

miqpcut = [i for i,y in ymiqp.iteritems() if y == 1]

miqpobj = miqp.maxcutobj()

Note the use of the time Python library: we call time.time()
around the solver.solve() command, then we take the difference
of the two timings to compute the duration of solver.solve().

Third, we solve the MIQP formulation using the standard Pyomo
constructs (see Sect. 1.8.3).

milp = create_maxcut_milp(G)

t0 = time.time()

results = solver.solve(milp, keepfiles = False, tee = True)

t1 = time.time()

milpcpu = t1 - t0

milp.solutions.load_from(results)

ymilp = {i:milp.y[i].value for i in G.nodes()}

milpcut = [i for i,y in ymilp.iteritems() if y == 1]

milpobj = milp.maxcutobj()

Fourth, we solve the SDP relaxation. Since we modelled the SDP
using Picos, the instructions are different.

L = np.array(1/4.*nx.laplacian_matrix(G).todense()) # compute Laplacian

sdp = create_maxcut_sdp(L) # create max cut SDP relaxation

picos.zib.de

90 mathematical programming

t0 = time.time() # start watch

sdp.solve(verbose = 0) # solve

t1 = time.time() # stop watch

sdpcpu = t1 - t0 # time difference

sdpobj = sdp.obj_value() # retrieve obj fun value

Xsdp = closest_psd(np.array(sdp.get_valued_variable(’X’))) # retrieve solution

Fifth, we run factor Xsdp and apply randomized rounding.

t0 = time.time()

N = len(G.nodes())

V = rank_factor(Xsdp, N)

(gwcut,gwobj) = gw_randomized_rounding(V, sdp.obj_value(), L, GWitn)

t1 = time.time()

gwcpu = t1 - t0

Lastly, we output our comparison statistics: objective function
value and CPU time.

print "maxcut(out): MIQPobj=", miqpobj, ", MIQPcpu=", miqpcpu

print "maxcut(out): MILPobj=", milpobj, ", MILPcpu=", milpcpu

print "maxcut(out): SDPobj=", sdpobj, ", SDPcpu=", sdpcpu

print "maxcut(out): GWobj=", gwobj, ", GWcpu=", gwcpu

This code resides in a text file called maxcut.py, and can be run
using the command line

python maxcut.py file.edg

where file.edg is the instance file with the edge list, as detailed
above (two integers and a floating point number per line, where the
integers are the indices of the vertices adjacent to each edge and the
floating point is its weight).

5.5.4 Comparison on a set of random weighted graphs

I have created22 a set of file in .edg format, each storing a weighted 22 You should do this too! A piece of
advice: don’t do this by hand — use
Python, or another scripting language.

graph generated using the Erdős-Renyi random model. This is
as follows: given an integer n and a real p ∈ [0, 1], generate a
graph with n vertices, where each edge has probability p of being
created. I set the range of n to {10, 20, . . . , 90}, and the range of p to
{0.3, 0.5, 0.7}.

I then launched the maxcut.py Python program on each of the
files, saved the output to a similarly-named .out file, and then
proceeded to collect23 the output data in the table below. Note 23 Again, don’t do this by hand! Parse

the .out file using a program, and
output a tabular format — or simply
edit the maxcut.py script to write its
output in tabular format.

that, since the time limit for CPLEX is set to 100s, CPLEX does
not have the time to solve all instances will not be solved to global
optimality.

The first two columns of the table contain the generation param-
eters for the random graph. The following four columns contain
the objective function values of MIQP, MILP, SDP and randomized
rounding (RR) applied to the SDP solution. The last four columns
contain the user CPU time taken to solve MIQP, MILP, SDP and
perform RR (the time for RR includes factoring the output of the
SDP solution). Thus, the time taken to run the GW algorithm is

maximum cut 91

represented by the (row-wise) sum of the values in the last two
columns. Remember that only MIQP, MILP and RR actually output
a feasible solution for the Max Cut (the SDP relaxation outputs a
matrix which in general does not have rank 1).

It is clear that the GW makes a very reasonable concession24 to 24 Is this always the case? Generate
other kinds of graphs and see for
yourself! For example, how about
square mesh grid graphs with unit
weights?

the quality of the obtained cut, in exchange for huge savings on
the CPU time. This is why I wrote that this is an approximation
algorithm which actually works in practice!

instance objective function value user CPU time
n p MIQP MILP SDP RR MIQP MILP SDP RR
10 0.3 7.82 7.82 8.38 7.82 0.1 0.0 0.1 0.2
10 0.5 9.87 9.87 10.15 9.87 0.1 0.1 0.0 0.2
10 0.7 15.09 15.09 15.20 15.09 0.1 0.1 0.0 0.2
20 0.3 28.54 28.54 28.93 27.29 0.1 0.1 0.1 0.2
20 0.5 36.55 36.55 37.94 35.40 0.2 0.2 0.1 0.2
20 0.7 44.88 44.88 46.44 44.44 0.2 0.3 0.1 0.2
30 0.3 52.80 52.80 55.14 47.82 0.3 0.5 0.1 0.2
30 0.5 74.82 74.82 77.01 68.36 0.5 1.3 0.1 0.2
30 0.7 100.49 100.49 102.67 93.31 1.9 3.4 0.1 0.2
40 0.3 85.55 85.55 89.07 75.80 1.1 2.0 0.1 0.2
40 0.5 134.52 134.52 138.69 124.54 4.4 6.4 0.1 0.2
40 0.7 175.29 175.29 179.88 162.63 46.2 100.2 0.1 0.2
50 0.3 148.99 148.99 151.83 127.68 2.6 3.8 0.1 0.2
50 0.5 206.02 206.02 212.62 182.69 21.6 33.7 0.1 0.2
50 0.7 263.75 263.20 269.46 243.14 100.1 100.2 0.1 0.2
60 0.3 201.12 201.12 209.16 178.03 38.0 100.1 0.1 0.3
60 0.5 281.69 280.52 291.98 256.08 100.1 100.2 0.2 0.3
60 0.7 370.38 367.92 382.96 348.29 100.1 100.3 0.2 0.2
70 0.3 253.52 252.85 262.39 223.67 100.1 100.2 0.1 0.3
70 0.5 394.33 383.24 403.63 352.04 100.1 100.3 0.1 0.3
70 0.7 497.64 487.58 509.99 461.83 100.1 100.4 0.2 0.3
80 0.3 309.52 309.52 321.58 276.06 100.1 100.2 0.1 0.3
80 0.5 490.93 493.07 514.59 455.93 100.1 100.3 0.2 0.4
80 0.7 648.89 628.01 665.94 603.25 100.2 100.5 0.2 0.3
90 0.3 405.39 400.41 424.94 355.79 100.1 100.2 0.2 0.3
90 0.5 608.89 590.78 631.28 560.55 100.1 100.5 0.2 0.4
90 0.7 818.97 800.58 848.35 764.77 100.2 100.5 0.2 0.3

Implement the trivial randomized
approximation algorithm from Exam-
ple 5.2.1, and compare it to the other
algorithms on unweighted Max Cut

instances. What is its performance like,
with respect to RR? Would you define
it as “an algorithm which actually
works in practice”?

5.6 Summary

This chapter focuses on the Max Cut problem. It presents applica-
tions, MP formulations and a very famous randomized approxima-
tion algorithm by Goemans and Williamson. Before delving into the
thick of this algorithm, it explains what approximation algorithms
are, what randomized algorithms are, and what the union of the
two concepts is.

6
Distance Geometry David Hilbert

Leopold Kro-

necker
Ernst Zermelo

Adolf Fraenkel
Kurt Gödel

Karl Menger

Distance Geometry (DG) is a sub-field of geometry based on the
concept of points and distances rather than points, lines, planes, hy-
perplanes or general manifolds. By far the most common setting is
where the distances are Euclidean, although early axiomatizations
of DG worked with general (semi)metrics [Menger, 1931, Blumen-
thal, 1953]. This novel axiomatization of geometry was proposed
at a time where the “old” way of doing mathematics (read: up to
1900) was being formalized1 into our current setting. To be honest, 1 Up to 1900, many proofs had ele-

ments of “hand-waving” in them. At
the end of the 19th century, David
Hilbert decided he’d had enough
of being unable to prove anyone
wrong formally (specifically Leopold
Kronecker, who kept saying that exis-
tential proofs did not prove anything
– only constructive proofs were good),
and decided to use his extensive in-
fluence to steer the community into
defining things formally once and for
all. His valiant attempt succeeded to
a large extent, insofar as we now have
the Zermelo-Fraenkel-Choice (ZFC)
system of axioms, which appear to be
enough to do almost anything of inter-
est in mathematics, but was ultimately
crushed by Gödel’s incompleteness
theorem in its aim of having a finitistic
mechanical procedure for proving
every true sentence from the axioms.

mathematicians still use a lot of hand-waving [Krantz, 2010], but
now at least they know they could do things completely formally if
they wanted to.2

2 What if the only way to write a
certain proof formally takes longer
than the maximum extent of the
human life? Well, use computers!
What about reading a proof? Today we
have formal proofs, partly or wholly
written out by computers, which
no-one can possibly hope to read in a
lifetime, much less understand. Can
they still be called proofs? This is
similar to the old “does the universe
still exist if no-one’s around to notice?”

6.1 The fundamental problem of DG

The reason why DG and MP are related is through the fundamental
problem of DG:

Distance Geometry Problem (DGP). Given a positive integer K and
a simple undirected weighted graph G = (V, E, d) where d : E → R+

is an edge weight function, is there a realization3 x : V → RK such

3 A realization of a graph is a function,
mapping each vertex to a vector of
a Euclidean space, which satisfies
Eq. (6.1).

that the constraints:

∀{i, j} ∈ V ‖xi − xj‖ = dij (6.1)

are satisfied?

When the norm in Eq. (6.1) is the 2-norm, the DGP is also called
Euclidean DGP (EDGP), which was introduced in Sect. 2.6.

Because it consists of a set of constraints for which we need
to find a solution, the DGP is a CP problem (see Ch. 4). On the
other hand, CP problems usually have integer, bounded variables,
whereas the DGP has continuous unbounded ones. So it makes
more sense to see it as a feasibility NLP, i.e. an NLP with zero
objective function.

As mentioned in Sect. 2.6, it is difficult to solve DGPs as systems
of nonlinear constraints, as given in Eq. (6.1). Usually, MP solvers
are better at improving optimality than ensuring feasibility. A nice
feature of DGPs is that we can write them as a minimization of

94 mathematical programming

constraint errors:

min
x ∑
{i,j}∈E

| ‖xi − xj‖ − dij |. (6.2)

Evidently, x∗ is feasible in Eq. (6.1) if and only if it is globally
optimum in Eq. (6.2), with zero optimal objective function value.

6.2 Some applications of the DGP

As mentioned in Sect. 2.6, the DGP has many applications to sci-
ence and engineering [Liberti et al., 2014]. We always assume that
the input graph G is connected (otherwise the problem can be
decomposed and solved for each component separately).

6.2.1 Clock synchronization

Figure 6.1: Clock synchronization
(from www.mdpi.com).

Let K = 1 and V be a set of clocks. An edge {i, j} is in E if the time
difference between clocks i and j is dij. Suppose that each clock i
knows its own time as well as the weighted graph G. Then a solu-
tion x∗ ∈ R1 = R is a consistent evaluation of the absolute times of
each clock in V. This application arises in network synchronization
protocols [Singer, 2011].

6.2.2 Sensor network localization

Figure 6.2: Sensor network localization
(from www.commsys.isy.liu.se).

Let K = 2 and V be a set of mobile devices in a wireless network at
a certain given time t. An edge {i, j} is in E if the distance between
i and j is known to be dij at time t. Such distances can be measured
up to a certain threshold, for example by estimating how much
battery power a peer-to-peer communication between i and j takes.
By exploiting network communication, the weighted graph G can
be transmitted to a central server. A solution x∗ ∈ R2 gives a
consistent position of the devices at time t. This application arises
naturally in the localization of sensors in wireless networks [Yemini,
1978, Biswas et al., 2006, Bachrach and Taylor, 2005, Ding et al.,
2010, Cucuringu et al., 2012a].

6.2.3 Protein conformation

Figure 6.3: Protein conformation from
distance data (slide by Dr. B. Chazotte
www.campbell.edu).

Let K = 3 and V be a set of atoms in a molecule such as e.g. a
protein. It is well known that proteins interact with cells because of
their geometrical (as well as chemical) properties: in other words,
their shape matters. Being so small, we cannot directly observe
their shape. We can, however, measure inter-atomic distances up to
a certain threshold, usually 5Å to 6Å [Schlick, 2002], using Nuclear
Magnetic Resonance (NMR) [Wüthrich, 1989]. Although NMR only
really gives a frequency for each triplet (atom type, atom type, length),
which means that we can only know how frequent it is to observe
a certain distance between, say, a hydrogen and a carbon, using
these data we can reconstruct a weighted graph where {i, j} is in E

www.mdpi.com
www.commsys.isy.liu.se
www.campbell.edu

distance geometry 95

if the distance dij between atom i and atom j is known. A solution
x∗ ∈ R3 gives a consistent conformation of the protein [Moré
and Wu, 1999, Reams et al., 1999, Wu et al., 2008, Cucuringu et al.,
2012b, Lavor et al., 2011, Davis et al., 2010, Cassioli et al., 2015].

6.2.4 Unmanned underwater vehicles

Figure 6.4: Unmanned underwater
vehicles (from www.swissint.ch).

Let K = 3 and V be a set of unmanned submarines, such as
e.g. those used by Shell when trying to fix the oil spill in the Gulf of
Mexico. Since GPS cannot be used underwater, the position of each
submarine must be inferred. An edge {i, j} is in E if the distance
between submarines i and j can be obtained using the sonars. A
solution x∗ ∈ R3 gives a consistent snapshot of the positions of the
submarines at a certain time instant.

6.3 Formulations of the DGP

The DGP is really a whole class of problems, which depends on
the type of norm used in Eq. (2.21). In general, however, if it is not
explicitly given, most people would mean the Euclidean norm ‖ · ‖2.
In other words, most of the times you read DGP, you should think
of EDGP.

Figure 6.5: The 2-, 1- and ∞-norms.
6.4 The 1-norm and the max norm

We just point out that DGPs defined on the 1-norm and the ∞-
norm4 can be linearized exactly to MILPs. We show how to proceed 4 Also known as max norm.

in the case5 ‖ · ‖ = ‖ · ‖1. Eq. (6.2) becomes: 5 By adapting the MILP reformulation
for the ‖ · ‖1 case, derive a MILP
reformulation for the ‖ · ‖∞ case.

min
x ∑
{i,j}∈E

∣∣∣∣∣ ∑
k≤K
|xik − xjk| − dij

∣∣∣∣∣ .

Figure 6.6: The 1-norm between these
two points is 12 (from Wikipedia).

By applying the reformulations in Sect. 3.2.4 and 3.1.5 we obtain
the following nonconvex NLP:

min
x,s

∑
{i,j}∈E

(s+ij + s−ij)

∀{i, j} ∈ E ∑
k≤K

(t+ijk + t−ijk)− dij = s+ij − s−ij

∀k ≤ K, {i, j} ∈ E t+ijk − t−ijk = xik − xjk

∀k ≤ K, {i, j} ∈ E t+ijk t−ijk = 0

∀{i, j} ∈ E s+ij , s−ij ≥ 0

∀k ≤ K, {i, j} ∈ E t+ijk, t−ijk ≥ 0,

where the only nonlinear constraints are the products t+ijk t−ijk = 0. In
theory, we cannot apply the reformulation in Sect. 3.2.3 since the t
variables are unbounded. On the other hand, their unboundedness
stems from the x variables, which are themselves unbounded — but
simply because we did not bother looking at the problem closely
enough. Suppose that the weighted diameter6 of the input graph G

6 The weighted diameter of a graph is
the maximum, over all pairs of vertices
u, v in the graph, of the weight of the
shortest path connecting u and v.

is γ. Then no realization can have ‖xi − xj‖ ≥ γ, which also implies7

7 This implication holds since all
translations are congruences, but it
requires us to add another family of
(linear) constraints to the formulation.
Which ones?

www.swissint.ch

96 mathematical programming

‖xi‖ ≤ γ for all i ∈ V, and in turn −γ ≤ xik ≤ γ for all i ∈ V and
k ∈ K. So, using interval arithmetic on the linear constraints, we can
bound all variables x, s, t by a suitably large8 constant M. We can 8 For best computational results, this

constant should be as small as possible
for each instance to be solved.

now apply the reformulation in Sect. 3.2.3, which yields the MILP:

min
x,s

∑
{i,j}∈E

(s+ij + s−ij)

∀{i, j} ∈ E ∑
k≤K

(t+ijk + t−ijk)− dij = s+ij − s−ij

∀k ≤ K, {i, j} ∈ E t+ijk − t−ijk = xik − xjk

∀k ≤ K, {i, j} ∈ E t+ijk ≤ Mzijk

∀k ≤ K, {i, j} ∈ E t−ijk ≤ M(1− zijk)

∀{i, j} ∈ E s+ij , s−ij ≥ 0

∀k ≤ K, {i, j} ∈ E t+ijk, t−ijk ≥ 0

∀k ≤ K, {i, j} ∈ E zijk ∈ {0, 1}.

(6.3)

For the rest of this chapter we shall focus on the 2-norm, i.e. we
shall mean EDGP whenever we write DGP.

6.4.1 The 2-norm

We can square both sides of Eq. (6.1) and obtain another NLP with
exactly the same set of solutions:

∀{i, j} ∈ V ‖xi − xj‖2
2 = d2

ij, (6.4)

which we recognize as a QCQP with zero objective function: in-
deed, the right hand side of Eq. (6.4) can be written as:

‖xi − xj‖2
2 = (xi − xj) · (xi − xj)

= xi · xi + xj · xj − 2xi · xj

= ‖xi‖2
2 + ‖xj‖2

2 − 2xi · xj

= ∑
k≤K

x2
ik + ∑

k≤K
x2

jk − 2 ∑
k≤K

xikxjk,

which is a multivariate polynomial of second degree. An SDP
relaxation of Eq. (6.4) was derived in Sect. 2.10, see Eq. (2.35).

Applying Eq. (6.2) to Eq. (6.4), we obtain the Global Optimiza-
tion (GO) formulation9 9 Note that the absolute values in

Eq. (6.2) have been replaced by a
square: obviously the set of global
optima of Eq. (6.2) is the same as the
one for Eq. (6.5).

min
x ∑
{i,j}∈E

(‖xi − xj‖2
2 − d2

ij)
2, (6.5)

which is an unconstrained quartic polyonomial minimization prob-
lem. This formulation is at the basis of several different solution
methods for the DGP [Lavor et al., 2006, Liberti et al., 2009b].

6.5 Euclidean Distance Matrices

A Euclidean distance matrix (EDM) is an n × n zero-diagonal sym-
metric matrix D = (dij) for which there exist an integer K and a

realization x = (x1, . . . , xn)
> ∈ RnK such that ∀i, j ≤ n we have

‖xi − xj‖2 = dij. Oftentimes, people write EDM when they really
mean square EDM, i.e. D = (d2

ij).

distance geometry 97

6.5.1 The Gram matrix from the square EDM

Since

∀i ≤ j ≤ n ‖xi − xj‖2
2 = ‖xi‖2

2 + ‖xj‖2
2 − 2xi · xj, (6.6)

the square EDM D is intimately related to the Gram matrix B =

(xi · xj) (see Sect. 2.10 and 5.3.4) of the realization x ∈ RnK. In this
section we show10 how to compute B in function of D. 10 The sequence of transformations

that follow is fastidiously detailed and
precise. It is more or less taken from
[Cox et al., 1997], with some added
steps of my own. The reason I tried to
put in as many details as possible is
that I was tired to re-work the details
out every time I read this proof with
some missing steps.

We first translate x so that its barycenter11 is at the origin:

11 The barycenter of a sequence
(x1, . . . , xn) of points in RK is the
vector 1

n ∑
i≤n

xi . The barycenter is also

known as centroid.

∑
i≤n

xi = 0. (6.7)

Now we remark that, for each i, j ≤ n, we have:

d2
ij = ‖xi− xj‖2 = (xi− xj) · (xi− xj) = xi · xi + xj · xj− 2xi · xj. (6.8)

Next, we “invert” Eq. (6.8) to express xi · xj in function of d2
ij: we

sum Eq. (6.8) over all values of i ∈ {1, . . . , n}, obtaining:

∑
i≤n

d2
ij = ∑

i≤n
(xi · xi) + n(xj · xj)− 2

(
∑
i≤n

xi

)
· xj. (6.9)

By Eq. (6.7), the rightmost term in the right hand side of Eq. (6.9) is
zero. On dividing through by n, we have

1
n ∑

i≤n
d2

ij =
1
n ∑

i≤n
(xi · xi) + xj · xj. (6.10)

Similarly for j ∈ {1, . . . , n}, we obtain:

1
n ∑

j≤n
d2

ij = xi · xi +
1
n ∑

j≤n
(xj · xj). (6.11)

We now sum Eq. (6.10) over all j, getting:

1
n ∑

i≤n
j≤n

d2
ij = n

1
n ∑

i≤n
(xi · xi) + ∑

j≤n
(xj · xj) = 2 ∑

i≤n
(xi · xi) (6.12)

(the last equality in Eq. (6.12) holds because the same quantity
f (k) = xk · xk is being summed over the same range {1, . . . , n}, with
the symbol k replaced by the symbol i first and j next). We then
divide through by n to get:

1
n2 ∑

i≤n
j≤n

d2
ij =

2
n ∑

i≤n
(xi · xi). (6.13)

We rearrange Eq. (6.8), (6.11), (6.10) as follows:

2xi · xj = xi · xi + xj · xj − d2
ij (6.14)

xi · xi =
1
n ∑

j≤n
d2

ij −
1
n ∑

j≤n
(xj · xj) (6.15)

xj · xj =
1
n ∑

i≤n
d2

ij −
1
n ∑

i≤n
(xi · xi), (6.16)

98 mathematical programming

and replace the left hand side terms of Eq. (6.15)-(6.16) into Eq. (6.14)
to obtain:

2xi · xj =
1
n ∑

k≤n
d2

ik +
1
n ∑

k≤n
d2

kj − d2
ij −

2
n ∑

k≤n
(xk · xk), (6.17)

whence, on substituting the last term using Eq. (6.13), we have:

2xi · xj =
1
n ∑

k≤n
(d2

ik + d2
kj)− d2

ij −
1
n2 ∑

h≤n
k≤n

d2
hk. (6.18)

Eq. (6.18) can also be written12 in matrix form as: 12 Prove it.

B = −1
2

JDJ, (6.19)

where J = In − 1
n 1 · 1> and 1 = (1, . . . , 1)︸ ︷︷ ︸

n

.

6.5.2 Is a given matrix a square EDM?

We can now establish that the problem of determining whether a
given matrix is a square EDM can be solved in polytime as follows:

1. given D, compute B as per Sect. 6.5.1

2. compute the eigenvalues of B

3. if all eigenvalues are non-negative, then B � 0, so we can factor
B as in Sect. 5.4.1, to obtain x such that B = xx>, as required:
output YES13 13 This proves that any PSD matrix is a

Gram matrix of some realization.
4. if at least one eigenvalue is negative, then output NO.

We note that all of the steps can be carried out in polynomial time,
and remark that the above algorithm can also be used to ascertain
whether D is a (non-square) EDM or not.14 14 Why?

6.5.3 The rank of a square EDM

EDMs and their square counterparts have a fundamental difference,
as remarked in the recent survey [Dokmanić et al., 2015]: whereas
EDMs may have any rank greater or equal to rank(x), square EDMs
have rank in the set15 {rank(x), . . . , rank(x) + 2} . By Eq. (6.6), we 15 So, if x has full rank K, the square

EDM of x has rank in {K, K + 1, K + 2}.can write the EDM D of the realization x ∈ RnK as:

D = 1diag(xx>)
> − 2xx> + diag(xx>)1>,

where 1 is the (column) vector of all ones, and diag(v) is the (col-
umn) vector of the diagonal of v. This implies16 16 Note that Eq. (6.20) is the matrix

equation inverse of Eq. (6.19).

D = 1diag(B)> − 2B + diag(B)1>, (6.20)

where B is the Gram matrix of x. Now, by Prop. 5.3.2(ii), we know
that rank(B) = rank(x), and both the first and the last term in the
RHS of Eq. (6.20) have rank 1. The claim follows by rank inequali-
ties.17

17 I.e., if M = M′ + M′′ then rank(M) ≤
rank(M′) + rank(M′′). In other words,
the rank(·) function is sub-additive.

distance geometry 99

The reason why this matters in practice is the following. Usually,
given an EDM, you really want to find the realization it corre-
sponds to. If you square every component of your given EDM, and
then compute its rank r (perhaps only considering eigenvalues
having absolute value larger than a given “floating point error tol-
erance”), r − 2 will be a lower bound on the affine dimension K′

of the realization giving rise to your EDM. In most applications, n
will be very large, but K will be very small, see e.g. Sect. 6.2 where
K ∈ {1, 2, 3}. If you find r− 2 � K, and you cannot impute this to
a floating point error in eigenvalue computations, chances are your
given EDM is wrong.

Figure 6.7: There are many different
completion problems: see above an
example of rank-1 completion (from
Wikipedia.

6.6 The EDM Completion Problem

The following problem is closely related to the EDGP.

Euclidean Distance Matrix Completion Problem (EDMCP).
Given a partially specified18 n× n zero-diagonal symmetric matrix, 18 A partially specified matrix (or partial

matrix) over a number field F is a
matrix over F ∪ {?}. By convention,
a ? entry is unspecified. Here is an
example of a partial matrix:

0 ? 1 1
? 0 4 9
1 4 0 4
1 9 4 0

 .

Can this matrix be completed to an
EDM?

determine whether it can be completed to an EDM (or to a square
EDM).

Figure 6.8: An EDMCP instance
(above) and the equivalent EDGP
instance (below).

It is easy to show that a partially specified zero-diagonal square
symmetric matrix D over R+ carries the same information as a
simple undirected edge-weighted graph G = (V, E, d): every
component dij 6= ? in D corresponds to an edge {i, j} ∈ E with
weight dij, whereas ? components corresponds to edges not in E.
So is the EDMCP just another name for the EDGP? The difference
between EDGP and EDMCP is in the integer K: in the former,
K > 0 is given as part of the input, while in the latter it is part of
the output. Specifically, while the graph information is the same,
the EDGP is also given K, and then asks if, for that K, the given
partial matrix can be completed to a distance matrix of a realization
in RK. The EDMCP, on the other hand, asks if there is any K such
that the given partial matrix can be completed to a distance matrix
of a realization in RK.

This difference is subtle, but has a very deep implication: the
EDGP is known to be NP-hard,19 whereas we do not know the

19 By reduction from the Partition

problem, see [Saxe, 1979].

complexity status of the EDMCP: no-one has found a polytime
algorithm, nor a proof of NP-hardness.

6.6.1 An SDP formulation for the EDMCP

By Prop. 5.3.2, every Gram matrix is PSD, and, by Sidenotes 13 in
Ch. 5 and 13 in this chapter, every PSD matrix is the Gram matrix
of some other matrix (or realization). If we were given a partially
specified Gram matrix B = (bij), we could complete20 it by solving 20 This is called the PSD Completion

Problem (PSDCP).the following SDP:

∀i, j ≤ n : bij 6= ? Xij = bij

X � 0.

}
(6.21)

100 mathematical programming

Any solution X∗ to Eq. (6.21) is a PSD matrix having bij in the
components specified by B.

However, we are not given B but the square EDM matrix D =

(d2
ij). We therefore use Eq. (6.6) and replace xi · xj by Xij (for all

i, j ≤ n):

∀i, j ≤ n : d2
ij 6= ? Xii + Xjj − 2Xij = d2

ij

X � 0.

}
(6.22)

Note the similarity of the first constraint of Eq. (6.22) with Eq. (2.34),
written in terms of weighted graphs instead of partial matrices.
Any solution X∗ to Eq. (6.22) is a PSD matrix, and hence a Gram
matrix, such that Xii + Xjj − 2Xij = d2

ij in the components specified
by D. In other words, if we apply Eq. (6.20) with B replaced by X∗,
we get an EDM with the specified entries.

Compare the two SDP formulations for the EDGP (Eq. (2.35))
and for the EDMCP (Eq. (6.22)). The former is different, in that
we use the Schur complement:21 while in the EDGP we require a 21 The Schur complement being PSD

states X � xx>, which is a relaxation
of X = xx>. The fact that x (and hence
its rank) is explicitly mentioned in the
SDP makes the relaxation tighter with
respect to the rank constraint.

PSD solution of a given rank K, in the EDMCP we only want a PSD
solution of any rank (or, in other words, any PSD solution). This is
why Eq. (2.35) is only a relaxation of the EDGP, whereas Eq. (6.22)
is an exact formulation of the EDMCP.

Since SDPs can be solved in polytime and the SDP in Eq. (6.22) is
an exact formulation for the EDMCP, why am I saying that no-one
found a polytime algorithm for solving the EDMCP yet? Essentially,
because of floating point errors: the IPMs that solve SDPs are
approximate methods: they find a matrix which is approximately
feasible with respect to the constraints and approximately PSD (see
Sect. 5.4.3). Worst-case complexity classes such as P or NP, however,
are defined for precise solutions only. As discussed in Sidenote 15

in Ch. 5, approximate feasibility disqualifies the algorithm from
being defined as an “approximation algorithm”.

6.6.2 Inner LP approximation of SDPs

SDPs are nice because they usually provide tight relaxations and
can be solved in polytime. On the other hand, current technology
can solve relatively small SDPs, say with matrices of up to around
1000 components. In practice, it is not uncommon to see DGP appli-
cations where K ∈ {1, 2, 3} but n ≥ 1000. This would yield an SDP
variable matrix with at least one million components. Since SDP
solvers are usually based on IPMs, at each iteration the solver has
to deal with O(106) floating point numbers. Unless the structure
of the problem can be exploited to simplify the formulation, SDP
solvers will generally fail. In Sect. 6.7 we will present a heuristic
algorithm which scales better.

Figure 6.9: Amir Ali Ahmadi is the
main architect behind the work in
SDP approximations by DD matrices.
You’ve already seen his mug in
Fig. 2.30.

Here we discuss an extremely recent method [Majumdar et al.,
2014] which can be used to approximate an SDP by means of an
LP. Since the LP is based on an inner approximation, any solution X′

found by the LP is also a feasible solution for the SDP. This method

distance geometry 101

is based on diagonal dominance.22 22 An n × n matrix A = (aij) is
diagonally dominant (DD) if Eq. (6.23)
holds.

Recall that an SDP is simply an LP defined on a matrix X of
decision variables, subject to a further PSD constraint X � 0. We
replace the PSD constraint by the DD constraint:

∀i ≤ n aii ≥ ∑
j 6=i
|aij|, (6.23)

and remark that any matrix X which is DD is also SDP; this follows
directly from Gershgorin’s theorem.23 Lastly, we reformulate the 23 The proof on Wikipedia is very clear,

search for “Gershgorin circle theorem”.absolute values in Eq. (6.23) using Eq. (3.16)-(3.18) in Sect. 3.2.4,
obtaining the following LP, which will yield solutions of the SDP
relaxation in Eq. (2.35):

∀{i, j} ∈ E Xii + Xjj − 2Xij = d2
ij

∀i ∈ V ∑
j 6=i

tij ≤ Xii

∀i 6= j ∈ V −tij ≤ Xij ≤ tij.

 (6.24)

Note that this is a feasibility LP. We can solve it “as such”, or try to
make the entries of X as small as possible (which might reduce its
rank if many of them become zero) by using min ∑ij tij.

6.6.3 Refining the DD approximation

An iterative refinement method for improving the approximation
quality of the solution X of Eq. (6.24) with respect to the SDP is
described in [Ahmadi and Hall, 2015]. We present it here in full
generality, applied to any SDP.

Figure 6.10: An example of diagonal
dominance (from www.voonik.com).

For any n× n matrix U, we have U>U � 0. This follows because
any Gram matrix is PSD, and, trivially, U>U = Gram(U). Moreover,
for any X � 0, we have

U>XU � 0,

since X being PSD means that it is the Gram matrix of some other
matrix V, so

U>XU = U>V>VU = (VU)>VU � 0

as the Gram matrix of VU must be PSD. This means that the set

D(U) = {U>XU | X is DD}

only contains PSD matrices.
Let us go back to the general SDP formulation in Eq. (2.32). As

mentioned above, we obtain an inner approximation of this SDP
by replacing X � 0 by “X is DD”, which can be reformulated to an
LP. This LP has no “adjustable parameters” by which we can try
and improve the approximation; in other words, it is an LP rather
than a family of LPs — and this is one of those cases where having
a parametrized family of LP approximations could help in adapting
the approximation to the original SDP. By replacing “X is DD” by

102 mathematical programming

X ∈ D(U) we achieve exactly this, and let our LP approximation
depend on the matrix U.

min C • X
∀i ≤ m Ai • X = bi

X ∈ D(U),

 (6.25)

Figure 6.11: An introductory slide on
parametric LP (from users.soe.ucsc.

edu/~kross).

We can now leverage the parameter matrix U to attempt to
improve the approximation.

The iterative algorithm proposed in [Ahmadi and Hall, 2015]
defines a sequence of matrices U0, U1, . . . , U`, . . . as follows:

U0 = I (6.26)

U` = factor(X`−1), (6.27)

where, factor denotes a factor24 of the argument matrix, and for 24 The factor can be found in any
number of ways. The paper suggests
using Cholesky factors where

X`−1 = LL>,

with L a lower triangular matrix.

each k ∈N, X` is the solution to the LP

min C • X
∀i ≤ m Ai • X = bi

X ∈ D(U`),

 (6.28)

which is the same as Eq. (6.25) with U replaced by U`. Eq. (6.28)
actually defines a sequence of approximating LPs to Eq. (2.32).

6.6.1 Proposition
The approximation X` to the solution of Eq. (2.32) is no worse than X`−1.

Proof. It suffices to show that X`−1 is feasible for the `-th approxi-
mating LP in the sequence, since this shows that the feasible sets F`

of the approximating LP sequence form a chain

F0 ⊆ · · · ⊆ F` ⊆ · · ·

Since all are inner approximations of the feasible region of Eq. (2.32),
the larger the feasible region, the better the approximation. Now,

by Eq. (6.27) we have that X`−1 = (U`)
>U` = (U`)

> IU`, and since
the identity matrix I is trivially DD, we have that X`−1 ∈ D(U`).
Moreover, since X`−1 solves the (`− 1)-th approximating LP in the
sequence Eq. (6.28), we have ∀i ≤ m Ai • X`−1 = bi, which proves
the claim. 2

6.6.4 Iterative DD approximation for the EDMCP

The application of the results of Sect. 6.6.3 to Eq. (6.24) yields the
following iterative algorithm.

1. Initialize U0 = I and ` = 0

2. Solve the following LP in the matrix variables X, Y and T ≥ 0:

∀i, j : d2
ij 6= ? Xii + Xjj − 2Xij = d2

ij

∀i ≤ n ∑
j 6=i

tij ≤ Yii

−T ≤ Y ≤ T

(U`)
>YU` = X

(6.29)

users.soe.ucsc.edu/~kross
users.soe.ucsc.edu/~kross

distance geometry 103

and let (X`, Y`, T`) be its solution

3. Let U`+1 be a Cholesky factor of of X`

4. Increase ` and loop from Step 2.

Figure 6.12: DD and SDD inner
approximations of the PSD set

I + xA + yB � 0

(from aaa.princeton.edu).

The termination conditions are based on either ` being smaller than
a pre-determined `max threshold, or CPU time, or ‖X` − X`−1‖ being
too small.

6.6.5 Working on the dual

What if the original SDP formulation is used to compute a guar-
anteed bound to some problem P? Then inner approximations
of the SDP feasible region will not help, since only an optimum
of the SDP (or a bound to this optimum) will provide the bound
guarantee for P.

Figure 6.13: A geometric view of a
minimization SDP dual: maximizing
over the direction vectors perpendicu-
lar to the outer approximation (from
[Dattorro, 2015]).

In such cases, we leverage the fact that both LPs and SDPs have a
strong duality theory. In particular:

• the dual of an LP is another LP, and the dual of an SDP is an-
other SDP;

• the optimal objective function values of the LP and its dual
(respectively of the SDP and its dual) are equal;

• any feasible solution of the LP (respectively, SDP) dual is a
guaranteed bound on the objective function value of the primal.

So all we need to do is to compute the dual of the original SDP,
and then apply the DD inner approximation to the dual. This will
yield a feasible solution in the dual SDP, which provides a valid
guaranteed bound for the original SDP (and hence, in turn, for P).

6.6.6 Can we improve the DD condition?

All DD matrices are SDP, but not every SDP matrix is DD. In fact,
X being DD is quite a restrictive condition on X. It can be relaxed
somewhat by requiring that there is a diagonal matrix ∆ with
strictly positive diagonal components such that ∆X∆ is DD. A
matrix X with this property is called scaled diagonally dominant
(SDD).

The relevant property of SDD matrices to this discussion is that
every SDD matrix is PSD, and every DD matrix is also (trivially,
with ∆ = I) an SDD matrix. So they represent a set of matrices
between DD and PSD matrices.

Luckily, it turns out that X is SDD can be written as a SOCP (see
Sect. 2.10.1). Methods similar to those discussed above can also
be derived, with LPs replaced by SOCPs. The trade-off is that, in
exchange for improving the approximation of the PSD matrix cone,
and hence the solution quality, we have to spend more CPU time
computing the solution of each SOCP.

aaa.princeton.edu

104 mathematical programming

6.7 The Isomap heuristic

The Isomap algorithm is usually known as a dimensionality reduc-
tion method, i.e. an algorithm which transforms a set X ⊆ Rn into
another set Y ⊆ Rm with m < n, and such that some properties of
X are preserved, or approximately preserved, in Y. In summary, the
Isomap method is as follows: given X,

Figure 6.14: The Isomap method for
DG: complete a partial distance matrix
using shortest paths, above; then find
an approximate realization, below
(from [Tenenbaum et al., 2000]).

1. compute a partial EDM D on X (for example by only considering
distances smaller than a certain threshold);

2. complete D to some approximate distance matrix D̄, for example
by running a weighted shortest path algorithm on the weighted
graph corresponding to D;

3. use Sect. 6.5.1 to find the (approximate) Gram matrix B̄ corre-
sponding to D̄;

4. in general, since D̄ is usually not an EDM, B̄ is not a Gram
matrix, in particular it is not PSD and hence fails to have a real
factoring YY>; so we find the closest PSD matrix B′ to B̄ (see
Sect. 5.4.3) and then factor it as B′ = YY>.

This algorithm is successful as long as

m = rank(Y) < rank(X) = n.

In practice, though, we would prefer m� n.

6.7.1 Isomap and DG

In order to employ Isomap as an algorithm for the EDMCP we
simply start it from Step 2, so that its input is the partial EDM D.

Figure 6.15: The Isomap algorithm
solving a DGP instance (left). The
shape of the solution (right) looks
convincingly similar to the original
shape.

If we want to apply it to the EDGP, we replace B′ by the closest
PSD matrix to B̄ having given rank K, namely,25 we only keep at

25 To make this summary explanation
somewhat more explicit: we factor B̄
into eigenvectors P and eigenvalues
Λ listed in decreasing order, we zero
all negative ones, and possibly all
the positive ones up until we leave at
most K non-negative ones Λ+, then we
compute B′ = P>Λ+P.

most K non-negative eigevalues.
In general, the Isomap algorithm is neither exact nor approxi-

mate, and hence only qualifies as a heuristic algorithm. It is nonethe-
less very successful in practice [Tenenbaum et al., 2000] since it
scales well to large sizes.

6.8 Random projections

An important feature of the 2-norm is that it can be approxi-
mately preserved by random projections. Let X ⊆ Rm with
X = {x1, . . . , xn}, and think of X as an m × n matrix having n
columns x1, . . . , xn each defining a point in Rm. Then there is a
randomized algorithm which outputs a k×m matrix T, where k is
O(1

ε2 log n), such that the probability that:

Figure 6.16: The JLL won’t work in low
dimensions.

∀i < j ≤ n (1−ε)‖xi−xj‖2 ≤ ‖Txi−Txj‖2 ≤ (1+ε)‖xi−xj‖ (6.30)

distance geometry 105

holds can be made arbitrarily close to 1. This is known as the
Johnson-Lindenstrauss Lemma (JLL) [Johnson and Lindenstrauss,
1984], and is one of the cornerstones of clustering large-dimensional
datasets (such as image databases).

The most striking feature26 of the JLL is that k is not a function 26 Edo Liberty (of Yahoo! Labs) once
told me that the way he sees the JLL is
that, in any Euclidean space, you can
fit exponentially many (in function of the
dimension) “approximately pairwise
orthogonal” vectors . Prove that this is
equivalent to the JLL.

of m. In other words, the actual number of dimensions you need in
order to “pack” the projections of the vectors in X, so that the pair-
wise distances are approximately preserved to within ε, does not
depend on the number of dimensions of X. Another striking fea-
ture is that the number of dimensions grows only logarithmically in
the number of vectors.27 27 The upshot is that the perfect

application setting for the JLL is when
X contains a moderate to large number
of vectors in a huge dimensional space.
Image or movie databases have this
property, which is why the random
projections are used when clustering
images.

A few comments on the JLL are in order.

• O(ε−2 log n) is not really a number, but a short-hand for Cε−2 log n
for some constant C which does not depend on n or m. To use
the JLL in practice, this constant must be estimated somehow.28

28 There is not much literature on this,
unfortunately [Venkatasubramanian
and Wang, 2011].

• Cε−2 log n is not always smaller than m — aside from C, it de-
pends on ε and n, of course. But asymptotically, the term in log n
grows very slowly with respect to how fast ε−2 grows.

• If you want the approximation to be very accurate, then ε should
be very small, so 1/ε2 is going to be very large. If m is huge,
there will be a saving. The trade-off is between ε and m. For
smaller m’s, you would need a larger error tolerance ε.

The randomized algorithm to find T is very simple.

1. Sample each of the km components of T independently from a
normal distribution with mean 0 and standard deviation 1√

k

2. Does TX verify Eq. (6.30)? If not, repeat from Step 1.

The elementary proof of the JLL given in [Dasgupta and Gupta,
2002] shows that the number of iterations of this algorithm is O(n).

6.8.1 Usefulness for solving DGPs

A possible use of random projections for solving EDGPs is given by
the observation that it is easier to satisfy Eq. (6.1) if K is large than
if K is small. On the other hand, most applications require a small
K. So, for extremely large-scale EDGP instances, one might try
deploying any heuristic method to find an acceptably good solution
in a high-dimensional space, and then use a random projection
matrix T to scale the dimensions down to a more acceptable level.
One would then need a heuristic such as Isomap (Sect. 6.7) to drive
the dimensions down to a given K.29

29 More in general, the JLL is applica-
ble to any algorithm which only (or
mostly) uses Euclidean distances, such
as e.g. the popular k-means heuris-
tic for solving Euclidean clustering
problems.

6.9 How to adjust an approximately feasible solution

Working with SDP and heuristic solutions exposes us to the issue
of infeasibility: what if our solution x to a EDGP does not satisfy
Eq. (6.1)? A practical and usually acceptably fast way to do so is

106 mathematical programming

to use x as a starting point for a local search with respect to the
GO formulation Eq. (6.5). A good, open-source local NLP solver
which can be employed for this purpose is IPOPT. There is still no
guarantee of feasibility, but at least the infeasibility error should
decrease.

6.10 Summary

This chapter is about Distance Geometry, and introduces the funda-
mental problem of DG. It argues that it is useful for scientific and
engineering applications, it presents formulations for the 1-, ∞- and
2-norms. It introduces Euclidean distance matrices and draws a
parallel between the DGP and the completion problem for partially
specified EDMs. It presents an SDP formulation for this problem,
and discusses a very new method for finding feasible SDP solu-
tions by solving an LP. It then presents the famous dimensionality
reduction Isomap heuristic as a solution algorithm for the DGP,
and briefly introduces random projections which approximately
preserve Euclidean distances.

Bibliography

A. Ahmadi and G. Hall. Sum of squares basis pursuit with
linear and second order cone programming. Technical Report
1510.01597v1, arXiv, 2015.

A. Alfakih, A. Khandani, and H. Wolkowicz. Solving Euclidean dis-
tance matrix completion problems via semidefinite programming.
Computational Optimization and Applications, 12:13–30, 1999.

F. Alizadeh and D. Goldfarb. Second order cone programming.
Mathematical Programming B, 95:3–51, 2003.

E. Amaldi, K. Dhyani, and L. Liberti. A two-phase heuristic for
the bottleneck k-hyperplane clustering problem. Computational
Optimization and Applications, 56:619–633, 2013.

D. Applegate, R. Bixby, V. Chvátal, and W. Cook. The Traveling
Salesman: a Computational Study. Princeton University Press, Prince-
ton, 2007.

J. Bachrach and C. Taylor. Localization in sensor networks. In
I. Stojmenović, editor, Handbook of Sensor Networks, pages 3627–
3643. Wiley, 2005.

P. Belotti. Couenne: a user’s manual. Dept. of Mathematical
Sciences, Clemson University, 2011.

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branch-
ing and bounds tightening techniques for non-convex MINLP.
Optimization Methods and Software, 24(4):597–634, 2009.

T. Berthold, G. Gamrath, A. Gleixner, S. Heinz, T. Koch, and
Y. Shinano. Solving mixed integer linear and nonlinear problems using
the SCIP Optimization Suite. ZIB, http://scip.zib.de/, 2012.

D. Bertsimas and M. Sim. The price of robustness. Operations
Research, 52(1):35–53, 2004.

P. Biswas, T. Lian, T. Wang, and Y. Ye. Semidefinite programming
based algorithms for sensor network localization. ACM Transactions
in Sensor Networks, 2:188–220, 2006.

L. Blumenthal. Theory and Applications of Distance Geometry. Oxford
University Press, Oxford, 1953.

108 mathematical programming

I. Bomze. Evolution towards the maximum clique. Journal of Global
Optimization, 10:143–164, 1997.

I. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo. The max-
imum clique problem. In D.-Z. Du and P.M. Pardalos, editors,
Handbook of Combinatorial Optimization, Supp. A, volume supp. A,
pages 1–74. Kluwer Academic Publishers, Dordrecht, 1998.

P. Bonami and J. Lee. BONMIN user’s manual. Technical report, IBM
Corporation, June 2007.

M. Boulle. Compact mathematical formulation for graph partition-
ing. Optimization and Engineering, 5:315–333, 2004.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, 2004.

C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth. On the
optimal design of water distribution networks: a practical minlp
approach. Optimization and Engineering, 13:219–246, 2012.

R. Burkard, M. Dell’Amico, and S. Martello. Assignment problems.
SIAM, Providence, 2009.

E. Candès. The mathematics of sparsity. In S.Y. Jang, Y.R. Kim, D.-
W. Lee, and I. Yie, editors, Proceedings of the International Congress of
Mathematicians, volume I. Kyung Moon SA, Seoul, 2014.

G. Caporossi, D. Alamargot, and D. Chesnet. Using the computer
to study the dyamics of the handwriting processes. In DS 2004
Proceedings, volume 3245 of LNAI, pages 242–254. Springer, 2004.

A. Cassioli, B. Bordeaux, G. Bouvier, A. Mucherino, R. Alves,
L. Liberti, M. Nilges, C. Lavor, and T. Malliavin. An algorithm to
enumerate all possible protein conformations verifying a set of
distance constraints. BMC Bioinformatics, page 16:23, 2015.

B. Colson, P. Marcotte, and G. Savard. Bilevel programming: a
survey. 4OR, 3:87–107, 2005.

V. Cortellessa, F. Marinelli, and P. Potena. Automated selection of
software components based on cost/reliability tradeoff. In V. Gruhn
and F. Oquendo, editors, EWSA 2006, volume 4344 of LNCS, pages
66–81. Springer, 2006.

A. Costa, P. Hansen, and L. Liberti. On the impact of symmetry-
breaking constraints on spatial branch-and-bound for circle pack-
ing in a square. Discrete Applied Mathematics, 161:96–106, 2013.

D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms.
Springer, Berlin, second edition, 1997.

M. Cucuringu, Y. Lipman, and A. Singer. Sensor network local-
ization by eigenvector synchronization over the Euclidean group.
ACM Transactions on Sensor Networks, 8:1–42, 2012a.

bibliography 109

M. Cucuringu, A. Singer, and D. Cowburn. Eigenvector synchro-
nization, graph ridigity and the molecule problem. Information and
Inference: a journal of the IMA, 1:21–67, 2012b.

N. Cutland. Computability: an introduction to recursive function
theory. Cambridge University Press, Cambridge, 1980.

C. D’Ambrosio and A. Lodi. Mixed-integer nonlinear programming
tools: a practical overview. 4OR, 9:329–349, 2011.

G. Dantzig, A. Orden, and P. Wolfe. The generalized simplex
method for minimizing a linear form under linear inequality
restraints. Pacific Journal of Mathematics, 5(2):183–196, 1955.

S. Dasgupta and A. Gupta. An elementary proof of a theorem by
johnson and lindenstrauss. Random Structures and Algorithms, 22:
60–65, 2002.

J. Dattorro. Convex Optimization and Euclidean Distance Geometry.
Mεβoo, Palo Alto, 2015.

R. Davis, C. Ernst, and D. Wu. Protein structure determination via
an efficient geometric build-up algorithm. BMC Structural Biology,
10(Suppl 1):S7, 2010.

Ph. Delsarte. Bounds for unrestricted codes by linear programming.
Philips Research Reports, 27:272–289, 1972.

K. Dhyani. Personal communication, 2007.

Kanika Dhyani. Optimization models and algorithms for the hyperplane
clustering problem. PhD thesis, Politecnico di Milano, 2009.

Y. Ding, N. Krislock, J. Qian, and H. Wolkowicz. Sensor network
localization, Euclidean distance matrix completions, and graph
realization. Optimization and Engineering, 11:45–66, 2010.

I. Dokmanić, R. Parhizkar, J. Ranieri, and M. Vetterli. Euclidean
distance matrices: Essential theory, algorithms and applications.
IEEE Signal Processing Magazine, 1053-5888:12–30, Nov. 2015.

C. Dürr. Programmation par contraintes et programmation
mathématique, 2011. Lecture notes, École Polytechnique.

J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathemat-
ics, 17:449–467, 1965.

M. Ehrgott. Multicriteria Optimization. Springer, New York, 2005.

L. Euler. Solutio problematis ad geometriam situs pertinentis.
Commentarii Academiæ Scientiarum Imperialis Petropolitanæ, 8:128–
140, 1736.

L. Evans. An introduction to mathematical optimal control theory. v. 0.2.
math.berkeley.edu/ evans/control.course.pdf.

110 mathematical programming

M. Fischetti and A. Lodi. Local branching. Mathematical Program-
ming, 98:23–37, 2005.

M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathe-
matical Programming, 104(1):91–104, 2005.

M. Flood. The traveling salesman problem. Operations Research, 4

(1):61–75, 1956.

L. Ford and D. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8(3):399–404, 1956.

R. Fortet. Applications de l’algèbre de Boole en recherche opéra-
tionelle. Revue Française de Recherche Opérationelle, 4:17–26, 1960.

R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific
Grove, 2002.

V. Giakoumakis, D. Krob, L. Liberti, and F. Roda. Technological
architecture evolutions of information systems: trade-off and
optimization. Concurrent Engineering Research and Applications, 20

(2):127–147, 2012.

K. Gödel. Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme, I. Monatshefte für Mathematik und
Physik, 38:173–198, 1930.

R.E. Gomory. Essentials of an algorithm for integer solutions to
linear programs. Bulletin of the American Mathematical Society, 64(5):
256, 1958.

G. Gutin and A. Punnen, editors. The traveling salesman problem and
its variations. Kluwer, Dordrecht, 2002.

P. Hall. On representatives of subsets. Journal of the London
Mathematical Society, 10(1):26–30, 1935.

D. Harel. On folk theorems. Communications of the ACM, 23(7):
379–389, 1980.

W. Hart, C. Laird, J.-P. Watson, and D. Woodruff. Pyomo — Opti-
mization modelling in Python. Springer, New York, 2012.

IBM. ILOG CPLEX 12.2 User’s Manual. IBM, 2010.

IBM. ILOG CPLEX 12.6 User’s Manual. IBM, 2014.

W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. In G. Hedlund, editor, Conference in Modern
Analysis and Probability, volume 26 of Contemporary Mathematics,
pages 189–206, Providence, 1984. American Mathematical Society.

N. Karmarkar. A new polynomial time algorithm for linear
programming. Combinatorica, 4(4):373–395, 1984.

bibliography 111

R. Karp. Reducibility among combinatorial problems. In R. Miller
and W. Thatcher, editors, Complexity of Computer Computations,
volume 5 of IBM Research Symposia, pages 85–104, New York, 1972.
Plenum.

L. Khachiyan. Polynomial algorithms in linear programming. USSR
Computational Mathematics and Mathematical Physics, 23(1):53–72,
1980.

H. Konno and A. Wijayanayake. Portfolio optimization problem
under concave transaction costs and minimal transaction unit
constraints. Mathematical Programming, Series B, 89(2):233–250, 2001.

S. Krantz. The Proof is in the pudding. Springer, New York, 2010.

S. Kucherenko, P. Belotti, L. Liberti, and N. Maculan. New formula-
tions for the kissing number problem. Discrete Applied Mathematics,
155(14):1837–1841, 2007.

M. Laurent and F. Vallentin. Semidefinite optimization. Technical
Report Lecture Notes, CWI and TU Delft, 2012.

C. Lavor, L. Liberti, and N. Maculan. Computational experience
with the molecular distance geometry problem. In J. Pintér, editor,
Global Optimization: Scientific and Engineering Case Studies, pages
213–225. Springer, Berlin, 2006.

C. Lavor, A. Mucherino, L. Liberti, and N. Maculan. On the
computation of protein backbones by using artificial backbones of
hydrogens. Journal of Global Optimization, 50:329–344, 2011.

L. Liberti. Writing global optimization software. In L. Liberti and
N. Maculan, editors, Global Optimization: from Theory to Implementa-
tion, pages 211–262. Springer, Berlin, 2006.

L. Liberti. Compact linearization of binary quadratic problems.
4OR, 5(3):231–245, 2007.

L. Liberti. Reformulations in mathematical programming: Defini-
tions and systematics. RAIRO-RO, 43(1):55–86, 2009.

L. Liberti. Symmetry in mathematical programming. In J. Lee and
S. Leyffer, editors, Mixed Integer Nonlinear Programming, volume
154 of IMA, pages 263–286. Springer, New York, 2012.

L. Liberti. Optimization and sustainable development. Computa-
tional Management Science, 12(3):371–395, 2015.

L. Liberti and N. Maculan. Preface to special issue on reformula-
tions in mathematical programming. Discrete Applied Mathematics,
157(6), 2009.

L. Liberti and F. Marinelli. Mathematical programming: Turing
completeness and applications to software analysis. Journal of
Combinatorial Optimization, 28(1):82–104, 2014.

112 mathematical programming

L. Liberti, S. Cafieri, and F. Tarissan. Reformulations in mathemat-
ical programming: A computational approach. In A. Abraham,
A.-E. Hassanien, P. Siarry, and A. Engelbrecht, editors, Founda-
tions of Computational Intelligence Vol. 3, number 203 in Studies in
Computational Intelligence, pages 153–234. Springer, Berlin, 2009a.

L. Liberti, C. Lavor, N. Maculan, and F. Marinelli. Double variable
neighbourhood search with smoothing for the molecular distance
geometry problem. Journal of Global Optimization, 43:207–218, 2009b.

L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean
distance geometry and applications. SIAM Review, 56(1):3–69, 2014.

J. Löfberg. YALMIP: A toolbox for modeling and optimization in
MATLAB. In Proceedings of the International Symposium of Computer-
Aided Control Systems Design, volume 1 of CACSD, Taipei, 2004.
IEEE.

M. López and G. Still. Semi-infinite programming. European Journal
of Operational Research, 180(2):491–518, 2007.

N. Maculan, P. Michelon, and J. MacGregor Smith. Bounds on the
kissing numbers in Rn: Mathematical programming formulations.
Technical report, University of Massachusetts, Amherst, USA,
1996.

A. Majumdar, A. Ahmadi, and R. Tedrake. Control and verification
of high-dimensional systems with dsos and sdsos programming. In
Conference on Decision and Control, volume 53, pages 394–401, Los
Angeles, 2014. IEEE.

A. Makhorin. GNU Linear Programming Kit. Free Software Founda-
tion, http://www.gnu.org/software/glpk/, 2003.

A. Man-Cho So and Y. Ye. Theory of semidefinite programming
for sensor network localization. Mathematical Programming B, 109:
367–384, 2007.

H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91,
1952.

matlab. MATLAB R2014a. The MathWorks, Inc., Natick, MA, 2014.

Y. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Boston, 1993.

J. Matoušek and B. Gärtner. Understanding and using Linear Pro-
gramming. Springer, Berlin, 2007.

K. Menger. New foundation of Euclidean geometry. American
Journal of Mathematics, 53(4):721–745, 1931.

M. Minsky. Computation: Finite and infinite machines. Prentice-Hall,
London, 1967.

J. Moré and Z. Wu. Distance geometry optimization for protein
structures. Journal of Global Optimization, 15:219–234, 1999.

bibliography 113

mosek7. The mosek manual, Version 7 (Revision 114). Mosek ApS,
2014. (www.mosek.com).

T. Motzkin and E. Straus. Maxima for graphs and a new proof of
a theorem of Turán. Canadian Journal of Mathematics, 17:533–540,
1965.

J. Munkres. Algorithms for the assignment and transportation
problems. Journal of SIAM, 5(1):32–38, 1957.

R. Reams, G. Chatham, W. Glunt, D. McDonald, and T. Hayden. De-
termining protein structure using the distance geometry program
APA. Computers and Chemistry, 23:153–163, 1999.

N.V. Sahinidis and M. Tawarmalani. BARON 7.2.5: Global Optimiza-
tion of Mixed-Integer Nonlinear Programs, User’s Manual, 2005.

J. Saxe. Embeddability of weighted graphs in k-space is strongly
NP-hard. Proceedings of 17th Allerton Conference in Communications,
Control and Computing, pages 480–489, 1979.

T. Schlick. Molecular modelling and simulation: an interdisciplinary
guide. Springer, New York, 2002.

A. Singer. Angular synchronization by eigenvectors and semidefi-
nite programming. Applied and Computational Harmonic Analysis, 30:
20–36, 2011.

A. Soyster. Convex programming with set-inclusive constraints and
applications to inexact linear programming. Operations Research, 21

(5):1154–1157, 1973.

A. Sutou and Y. Dai. Global optimization approach to unequal
sphere packing problems in 3D. Journal of Optimization Theory and
Applications, 114(3):671–694, 2002.

J. Tenenbaum, V. de Silva, and J. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290:
2319–2322, 2000.

A. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical
Society, 42(1):230–265, 1937.

R. Vanderbei. Linear Programming: Foundations and Extensions.
Kluwer, Dordrecht, 2001.

S.A. Vavasis. Nonlinear Optimization: Complexity Issues. Oxford
University Press, Oxford, 1991.

S. Venkatasubramanian and Q. Wang. The Johnson-Lindenstrauss
transform: An empirical study. In Algorithm Engineering and
Experiments, volume 13 of ALENEX, pages 164–173, Providence,
2011. SIAM.

114 mathematical programming

J.P. Vielma. Mixed integer linear programming formulation
techniques. SIAM Review, 57:3–57, 2015.

D. Wu, Z. Wu, and Y. Yuan. Rigid versus unique determination of
protein structures with geometric buildup. Optimization Letters, 2(3):
319–331, 2008.

K. Wüthrich. Protein structure determination in solution by nuclear
magnetic resonance spectroscopy. Science, 243:45–50, 1989.

Y. Yemini. The positioning problem — a draft of an intermedi-
ate summary. In Proceedings of the Conference on Distributed Sensor
Networks, pages 137–145, Pittsburgh, 1978. Carnegie-Mellon Uni-
versity.

Index

k-consistent, 69

1-consistency, 69

1-norm, 95

2-consistency, 70

2-norm, 96, 104

absolute value, 52

accuracy, 42, 82

arbitrary, 39

adjacency matrix, 39

weighted, 81

adjacent, 31

vertex, 70

algorithm
analysis, 20

approximation, 75, 76, 100

cMINLP, 37

exact, 76

GW, 85–87

iteration, 105

iterative, 102

Monte Carlo, 76

polytime, 99, 100

randomized, 75–77, 104, 105

randomized approximation, 77, 91

randomized rounding, 88

AllDifferent, 70–72

alphabet, 13

AMPL, 23, 59

dat file, 24, 25

dat syntax, 24

IDE, 24

mod file, 24

run, 24

run file, 24

angle, 82

extent, 83

applied mathematics, 68

approximate algorithm, 104

approximate feasibility, 100

approximate method, 100

approximation, 33, 39, 101, 102

accurate, 105

improvement, 103

inner, 100–103

inner, SDP, 103

ratio, 76, 83

scheme, 76

approximation algorithm, 76, 77, 85

constant, 76

randomized, 77

approximation error, 36

approximation quality, 101

approximation reformualation, 51

arc, 19

antiparallel, 79

capacity, 19

arc capacity, 44

arc-consistency, 70

architecture, 61

spaghetti, 61

array
bi-dimensional, 24

multi-dimensional, 9, 24

partially defined, 72

slice, 24

square, 41, 72

assembly language, 25

assignment, 16, 27, 53, 57

constraint, 53

feasible, 70

linear, 30

variables, 58

assignment constraint, 29

asymptotic complexity, 20

atom, 75, 94, 95

position, 41

axiomatization, 93

backtracking, 69

BARON, 36, 37, 39, 40

barrier method, 17

barycenter, 97

battery
power, 94

BB, 27, 28, 33, 36, 56

node, 36

big M, 72

bijection, 29

bilevel programming, 44, 45

binary
variable, 55

binary encoding, 53

bipartite
graph, 70

bisection, 21, 71

algorithm, 71

complexity, 71

bit
storage, 20

blending, 27

BLevP, 44

BLP, 30, 53, 79

BONMIN, 37

bound
guarantee, 103

guaranteed, 103

lower, 71

upper, 71

bounded above, 76

bounded below, 76

bounded probability, 76

BQCP, 78

BQP, 39, 79

branch, 36

branch-and-bound, 17, 27

spatial, 36

branching, 36, 53, 69

variable, 69

branching variable, 70

brute force, 76

byte, 14

canonical form
LP, 27

capacity, 18

carbon, 94

cardinality constraint, 36

cartesian, 69

cartesian product, 24, 28, 36, 37

CCMVPS, 38

cell, 13

certificate, 71

PSD, 85

chain, 102

116 mathematical programming

characteristic vector, 39

scaled, 39

chessboard, 67

Cholesky
factor, 103

Cholesky factor, 102

Church-Turing thesis, 16

circle, 34

slice, 83

circle packing, 34

circuit, 75

clause, 75

clauses
satisfiable, 75

Clique, 51

clique, 33, 61

largest, 39

max, 33

maximal, 39

maximum, 39

clock, 94

synchronization, 94

clustering, 57

Euclidean, 105

images, 105

cMINLP, 36

cNLP, 33, 35, 36

code
parallelized, 86

code efficiency, 86

column, 72, 80, 85

combinatorial
property, 55

combinatorial optimization, 75

command line, 89, 90

argument, 86

commodity, 18, 19

comparison
empirical, 86

compiled, 25

complement, 75

complement graph, 33

complementarity, 55

constraint, 56

linear, 55

complexity
worst-case, 20, 36, 100

component, 105

composition, 15

computation, 13

computation model, 14, 15

computational model, 33

computer
multi-core, 86

real, 17

computer science, 68

condition

restrictive, 103

cone, 34

cone programming
second-order, 42

congruence, 95

conjunction, 75

conjunctive normal form, 75

connectivity, 19

consistency, 69

arc, 70

node, 69

consistent
domain, 69

constant time, 20

constraint, 21, 53, 67, 69, 70, 78, 93

k-ary, 69

additional, 72

assignment, 58, 62

binary, 53, 67, 69

cardinality, 36, 72

convex nonlinear, 85

convex quadratic, 85

DD, 101

disjunction, 72

dual, 67

equality, 52

infinite, 46

integrality, 21, 53

nonconvex, 36

nonlinear, 93, 95

number, 72

PSD, 41, 101

quadratic, 40, 53

qualification, 36

rank, 41, 79

reliability, 62

simple, 21

unary, 67, 69

uncountable, 47

uncountably many, 47

constraint matrix, 26

constraint programming, 9, 67

contradiction, 69

contrapositive, 71

control transfer, 86

control variables, 47

convex
function, 33, 34

set, 33

subset, 47

convex relaxation, 36

convexity, 33

cost, 61

minimization, 44

unit transportation, 18

COUENNE, 37, 39, 40

Couenne, 36

covariance matrix, 36, 38

CP, 9, 67, 68, 71, 93

dual, 67, 68

formulation, 67, 71, 72

language, 67

CP formulation
original, 68

CPLEX, 40, 60, 79, 85, 90

convex MIQP, 85

MILP, 85

nonconvex MIQP, 85

sBB, 85

system clock, 86

v. 12.6, 85

CPU, 14

time, 86, 90, 91, 103

timings, 86

user, 86

CPU time, 20

cQP, 37, 38

crossword, 67

crystal, 75

customer site, 18

cut, 39, 75, 77, 91

maximum, 39

cutset, 75

maximum, 77–79, 82

maximum weight, 75

size, 78

cutset size
average, 83

CvxOpt, 85

cycle
disjoint, 29

Dantzig, 27

data transfer, 86

DD, 101–103

inner approximation, 103

decision problem, 20, 27, 68, 72, 76,
77

decision variable, 21, 41, 43, 44, 47,
67, 68, 78

binary, 29

bounded, 67

continuous, 29

discrete, 67

matrix, 40, 101

scalar, 80

symbol, 22

vector, 80

decision version, 20

decomposition, 94

demand, 18

derivative, 22

device, 94

mobile, 94

index 117

DG, 93

fundamental problem, 93

DGP, 93, 95

application, 100

solution methods, 96

diagonal, 82

diagonal component
strictly positive, 103

diagonal dominance, 56

diagonally dominant, 101

scaled, 103

diameter, 83

weighted, 95

dictionary, 13

random, 26

differentiable, 22

digraph, 19, 30, 81

dimension, 105

dimensionality reduction, 104

direction
feasible improving, 35

discrepancy, 36

Disjunction, 72

disjunction, 75

distance, 93–95

Euclidean, 93, 105

euclidean, 36

inter-atomic, 41, 94

minimum, 57

pairwise, 105

distance geometry, 35, 93

Distance Geometry Problem, 93

distribute
products over sums, 63

distribution
normal, 105

domain, 21, 67–70

bounded, 69

reduction, 69, 70

domain product, 70

dual, 103

LP, 103

SDP, 103

duality, 69

economic equilibrium, 27

edge, 35, 77, 79, 99

list, 90

probability, 90

set, 78

total number, 78

weight, 78, 90

weight function, 93

EDGP, 35, 41, 93, 95, 99, 100, 105

algorithm, 104

instance, 41

relaxation, 42

EDM, 96, 99

partial, 104

square, 96, 98, 99

EDMCP, 99, 100

algorithm, 104

efficiency
maximization, 57

eigenvalue, 38, 88, 98

negative, 88, 98, 104

negative zero, 88

non-negative, 38, 41, 98

ordered, 85

slightly negative, 85

small negative, 88

strictly positive, 38

eigenvector, 82, 85, 88

element
one, 70

upper-left, 72

ellipsoid algorithm, 27

encoding
finite, 47

energy
minimum, 75

enumerative method, 17

equality constraint, 52

equation, 40, 52

quadratic, 53

erase, 13

Erdős-Renyi
model, 90

error, 88

floating point, 100

minimization, 94

tolerance, 33, 85

error minimization, 38

eternity, 67

exact algorithm, 104

exact reformulation, 51

execution environment, 17

expected reutrn, 36

exponential, 22, 53

exponential time, 76

expression
boolean, 75

mathematical, 22

facet, 47

factor, 79, 102

Cholesky, 102, 103

transpose, 88

factorization, 41, 85

feasibility, 40, 54, 82, 93

strict, 82

feasibility problem, 27, 32, 67

feasible, 94

approximately, 100

set, 22

solution, 22

feasible point, 35, 36

feasible polyhedron, 56

feasible region, 69

feasible set, 102

feasible solution, 68, 103

file
format, 90

line, 90

finite difference
equation, 47

fixed cost, 28

fKNP, 35

floating point, 85, 86

error, 88

error tolerance, 86

number, 90

operation, 88

flow, 19, 27, 44

conservation, 20

positive, 20

total, 20

form
linear, 41

quadratic, 41

standard, 27

format
tabular, 90

formula
logical, 75

formulation, 22, 23, 34, 96, 100

bilevel, 45

exact, 100

MIQP, 86

MP, 27, 44

natural, 78, 79

quadratic, 79

SDP, 99, 101, 103

structured, 68

Fortet
inequalities, 87

Fortet reformulation, 54

Fourier, 27

FPTAS, 76, 82

fractional value, 36

frequency, 94

function, 20

basic, 15

computable, 16

constant, 15

convex, 33, 36

nonlinear, 27, 34, 37

objective, 21

partial recursive, 14

projection, 15

successor, 15

118 mathematical programming

trigonometric, 22

function call, 24

Gödel, 93

Gödel number, 14, 16

gap
minimum, 84

general-purpose, 43, 45

geometry, 93

elementary, 83

Gershgorin’s theorem, 101

global optimality, 77

global optimization, 96

global optimum, 94

GO, 96, 106

goal, 45

gobal solution, 36

Goemans-Williamson, 82

Gram matrix, 80, 97

partial, 99

graph, 35, 39, 61

adjacency matrix, 39

bipartite, 30, 70

connected, 94

diameter, 95

directed, 19, 62

directed complete, 79

drawing, 35

edge-weighted, 99

mesh grid, 91

random, 90

simple, 31, 33, 42

simple undirected, 93

triangle, 89

undirected, 86

undirected edge-weighted, 79

weighted, 90, 94, 100

growth
logarithmic, 105

slow, 105

guarantee
exactness, 76

GW, 82, 83, 85, 91

Hall’s theorem, 70

halting problem, 14

hash table, 20

HCP, 57, 59

head, 13

heuristic, 37, 69, 105

algorithm, 104

k-means, 105

method, 51

hierarchical stakeholders, 45

Hilbert, 93

Hitchcock, 27

hydrogen, 94

hypercube, 30

hyperedge, 31

hypergraph, 31, 33

cover, 31

hyperplane, 38, 57, 82, 93

Hyperplane Clustering Problem, 57

ILOG, 60

ILP, 30

image database, 105

implementation, 85

implication, 72

Implies, 72

incompleteness theorem, 93

indefinite, 38

index, 29

indexing, 72

indicator vector, 31

inequality
Fortet, 87

linear, 38

opposite sign, 40, 52

infeasibility, 105

error, 106

information, 99

input, 13, 69, 76, 79, 99

input data, 20

input graph, 94

instance, 21–23, 25, 71, 76, 77

CP, 69

file, 90

finitely many, 20

infeasible, 71

NO, 20, 35, 76

size, 33

YES, 20, 35, 76

instance size, 34

small, 35

instantiation, 23

instruction, 13

basic, 14

imperative, 16

integer, 90

consecutive, 53

lattice, 30

smallest, 53

integral, 47

integrality constraint, 21

integrality constraints, 36

interface, 62

interface module, 61

interior point, 27, 42

method, 27

interpreter, 14, 17, 22

interval
endpoint, 47

range, 21

IPM, 42, 81, 100

SDP, 82

IPOPT, 33, 35, 39, 40, 106

irrational, 33

irrational component, 34

Ising model, 75

Isomap, 104

iterations
maximum number, 86

iterative algorithm, 35

JLL, 105

proof, elementary, 105

Johnson-Lindenstrauss lemma, 105

k-means, 105

Kantorovich, 27

kissing number, 35, 37

Koopmans, 27

Kronecker, 93

Lagrange coefficient, 36

Lagrangian, 36

language
AMPL, 24

declarative, 17

general purpose, 25

high-level, 25

imperative, 17, 24, 25

interpreted, 25

LAP, 30

Laplacian
matrix, 87

lattice
integer, 27, 28, 30, 36, 37

layer, 75

LCP, 55

leaf node, 70

left, 13

LFP, 57

library
standard, 86

lifting, 52

line, 93

linear, 17

linear complementarity, 55

linear algebra, 41

computation, 86

linear assignment, 70

linear combination, 80

linear form, 27, 28, 30, 40–42

linear fractional
programming, 57

linear fractional term, 57

linear programming, 27

binary, 30

integer, 30

index 119

mixed-integer, 28

linear regression, 33

restricted, 38

linear term, 52

linearization, 40, 41, 54, 55

exact, 79, 95

product, 54

Linux, 24

literal, 75

local optimum, 36, 37

localization
sensor network, 94

log-space reductions, 27

logarithm, 22, 35, 63

logarithmic, 21

logical connective, 72

logistics, 29

loop, 16, 103

lower bound, 77

LP, 27, 41, 55, 100–103

approximating, 102

canonical form, 52

dual, 103

family, 101

parametric, 102

parametrized, 101

sequence, 102

solution, 102

standard form, 52

LP relaxation, 36

machine code, 25

MacOSX, 24

magnetic spin, 75

manifold, 93

Markowitz, 36

matching, 70

maximum, 70, 71

perfect, 30, 70

matching problem, 32

material
balance, 20

mathematical programming, 9, 17

MATLAB, 42

MatLab, 85

matrix, 38, 41, 99, 101

adjacency, 39

binary, 39

Cholesky, 102

closest PSD, 85, 104

component, 45

covariance, 38

DD, 103

diagonal, 81, 85, 103

diagonanly dominant, 101

distance, 99

Euclidean distance, 96

factor, 87, 98, 102

Gram, 41, 97, 98, 101

identity, 81, 102

lower triangular, 102

partial, 99, 100

PSD, 38, 41, 80, 98, 99, 101

PSD, closest, 104

rank 1, 91

real symmetric, 80

SDP, 103

sequence, 102

symmetric, 80, 85, 99

unitary, 82

zero-diagonal, 96, 99

matrix problem, 79

max clique, 33

Max Cut, 76, 79, 85

formulation, 78

instance, 82

MILP formulation, 85

MIQP formulation, 85

relaxation, 79

SDP relaxation, 85

solution, 82

unweighted, 77, 91

max cut, 39

Max Flow, 20, 44

Max-2-Sat, 75

maximization, 22

mean, 105

megawatt, 28

memory, 14, 34

method
iterative, 101

metric, 93

midpoint, 71

MILP, 27, 28, 36, 56, 58, 63, 75, 90, 95

reformulation, 59

solver, 59

minimalization, 15, 16

minimization, 22

error, 93

maximum, 54

unconstrained, 96

MINLP, 36, 37, 58, 62

solver, 59

MIQP, 75, 90

mixed-integer
nonlinear programming, 37

modelling, 15

modelling language, 28

molecule, 94

monotonically increasing, 63

Monte Carlo, 76

MOP, 22, 43, 45

MOSEK, 42

MP, 9, 21, 27, 55, 62, 68, 71, 93

binary, 53

formulation, 22

modelling environment, 85

solver, 86, 93

subclass, 69

symmetric, 51

MP class, 51

MP formulation, 27

multi-objective, 22

multi-objective programming, 43

MVCCPS, 36

narrowing reformulation, 51

natural number, 14

negative
definite, 38

semidefinite, 38

neighbourhood, 22

network
wireless, 94

network flow, 19

nine queens, 67

NLP, 27, 34, 95, 96

feasibility, 93

nonconvex, 38

solver, 106

NLP solver, 53

NMR, 35, 94

Nobel prize, 36

node, 19, 38, 69

child, 69

customer, 44

leaf, 70

prior, 71

production, 44

pruned, 70

search tree, 70

node-consistency, 69

node-consistent, 69

nonconvex, 34, 38

NLP, 35

nonconvex MINLP, 37

nonconvex NLP, 36

nonconvexity, 36

nonlinear, 17

nonlinear programming, 34

convex, 33

convex mixed-integer, 36

mixed-integer, 37

nonlinear term, 54

nonzero, 53

norm, 34

Euclidean, 34, 95

infinity, 95

max, 95

one, 95

two, 96

120 mathematical programming

NP, 20, 100

hardest, 20

NP-complete, 76

NP-hard, 20, 28, 32–35, 51, 55, 67, 68,
76, 99

proof, 99

nuclear magnetic resonance, 35, 94

number of bits, 34

number theory, 15

NumPy, 85

objective, 23, 45

approximation, 82

coefficients, 26

direction, 27

nonconvex, 36

objective function, 21, 44, 46, 67, 71,
78, 79, 81

average value, 77

nonconvex, 85

optimal value, 103

quadratic, 85

value, 90, 94

zero, 93

open source, 23

operating system, 86

operation
basic, 15

operator, 52

arithmetical, 22

transcendental, 22

optimal control, 47

optimal order, 28

optimal point, 36

optimal value, 36

optimality, 82, 93

certificate, 34

global, 39

guarantee, 35, 59

local, 39

optimality condition, 36

optimality guarantee
global, 37

optimization
black-box, 22

problem, 17

optimization problem, 15, 20

optimum, 56, 77

global, 22, 33, 35, 39, 58, 76

local, 22, 33, 35, 39, 51, 55

Pareto, 43

strict, 39

orbit, 51

ordered pair, 29

origin, 82, 97

original problem, 42, 51

orthant, 28

OS, 86

output, 13, 99

format, 90

P, 20, 33, 100

P 6=NP, 51

p.r., 14, 17

pairwise intersection, 34

parameter, 21, 22, 24, 44, 47, 52, 67,
69, 78

integer, 72

symbol, 22, 23

tensor, 24

vector, 47, 67, 71

parameter matrix, 102

Pareto
optimum, 43

region, 43

set, 43

Pareto set, 22, 44

infinite, 43

partitioning
graph, 63

path, 19

path length, 47

PECS, 34

permutation, 29, 30, 70

Picos, 85

plane, 93

point, 38, 93

closest, 36

feasible, 76

integral, 36

polyhedron, 27, 28, 30, 37–39

polynomial
quartic, 96

polynomial size, 34

polynomial time, 27, 28, 30, 33, 35, 42

reformulation, 51

polytime, 20, 21, 32, 70, 71, 81, 98,
100

randomized, 77

polytope, 47

portfolio, 36

Markowitz, 38

position, 95

positive
definite, 38

semidefinite, 38

power generation, 28

pre-processing, 69

precedence relation, 30

primal, 103

probability, 83

problem
decision, 35

halting, 37

input, 67

maximization, 76, 77

minimization, 76, 77

optimization, 22, 70

transportation, 18

problem structure, 100

processor, 30

product, 80, 95

binary, 63

binary variables, 79

reformulation, 55

scalar, 80

product term, 56

production facility, 18

program, 17

main, 89

MP, 17

programming language, 37, 67

declarative, 68

projection, 34, 52

random, 104

proof
hand-waving, 93

protein, 94, 95

conformation, 94

protein conformation, 35, 41

protocol
synchronization, 94

pruning, 69–71

PSD, 41, 80, 99, 101

approximately, 100

cone, 103

PSD matrix, 38, 88

PSDCP, 99

PTAS, 76

PyOMO, 25

Pyomo, 85, 86

Python, 25, 42, 85, 90

CvxOpt, 85

cvxopt, 86

math, 86

MP, 85

networkx, 86

numpy, 86

Picos, 85

picos, 86, 87

program, 86, 90

pyomo, 86

sys, 86

time, 86, 89

QCQP, 40, 53, 96

feasibility, 40

QP, 38, 41

indefinite, 39

nonconvex, 38

original, 41

index 121

SDP relaxation, 41

quadratic
equation, 40

quadratic form, 37–41

quadratic programming, 38

binary, 39

convex, 37

quadratically constrained, 40

quadruplet, 13

radius, 34, 83

largest, 34

random projection, 105

EDGP, 105

matrix, 105

randomized algorithm, 76

approximation, 77

randomized rounding, 82–84, 90

phase, 86, 87

randomness, 76

range
discrete, 21

rank, 98

column, 80

constraint, 41

one, 41

row, 80

rank constraint, 79

ratio, 76

realization, 35, 41, 96, 98, 99

function, 93

recursion
primitive, 15

reduction, 35

polytime, 20

reformulation, 51, 56, 80, 95

approximation, 51

automatic, 64

exact, 51, 57, 79, 80

narrowing, 51

polynomial time, 51

product, 85

relaxation, 51

region
feasible, 102

register, 14

register machine, 14

relation
k-ary, 67

relations, 69

relaxation, 51

convex, 38

EDGP, 42

SDP, 42, 79, 85

tight, 100

reliability, 61

representative, 51

resource allocation, 29

rest, 13

restriction, 52

RHS, 23, 26, 78

right, 13

rLR, 38

RM, 14

Minsky, 37

robust, 85

robust optimization, 47

row, 38, 72

row generation, 29

RP, 76

RR, 90, 91

rule, 13

SAT, 55, 67

sBB, 36, 37, 39, 40, 85

algorithm, 38

node, 36

scalability, 59

scalar, 34

scalar product, 83

scaled diagonally dominant, 103

scheduling, 29, 30, 67

Schur complement, 100

SCIP, 36, 37

SDD, 103

SDP, 37, 40, 41, 75, 81, 82, 90, 99–101,
103

dual, 103

formulation, 100

instance, 82

polytime, 82

relaxation, 79, 81–83, 101

small, 100

solution, 82

solver, 42, 85, 86, 100

variable, 100

SDP relaxation, 53

phase, 87

search algorithm, 70

search quantifier, 15

search tree, 70, 71

seconds
CPU, 86

SeDuMi, 42

semantic interpretation, 64

semantic relationship, 62

semantics, 14

semi-infinite optimization, 22

semi-infinite programming, 46

semidefinite, 37

cone, 40

positive, 38

semidefinite programming, 40

semimetric, 93

sensor network, 35

sequence, 35

server, 94

set, 67

convex, 33, 36

edge, 71

feasible, 43

finite, 54

second-order conic, 42

uncountable, 47

vertex, 70

set covering, 31

set packing, 32

set partitioning, 32

shortest path
weight, 95

simplex
method, 27

simplex method, 17, 27, 56

single level, 45

single-level, 45

single-objective, 43

single-user mode, 86

SIP, 46, 47

size
increasing, 20

slack variable, 52

SNOPT, 33, 35, 39, 40

SOCP, 42, 103

solver, 86

software
architecture, 61

component, 61

system, 61

software architecture, 61, 62

solution, 21, 53, 77

acceptable, 105

approximate, 21, 42, 76

aulity, 103

candidate, 70, 71

feasible, 19, 51, 54, 91

heuristic, 105

improvement, 54

rank 1, 82

SDP, 105

slightly infeasible, 85

YES, 20

solver, 17, 22, 23, 35, 59, 69

efficient, 51

global, 35

local, 35

local NLP, 33, 35, 39, 54, 55

polytime, 51

sBB, 85

SDP, 42

solver-dependent
property, 56

122 mathematical programming

sonar, 95

source, 20

space
Euclidean, 36, 37, 93

high-dimensional, 105

sphere packing, 27

spin glass, 75

SQP, 36

square, 34, 96

EDM, 96

unit, 34

square root, 86

function, 88

stability
numerical, 59

stable
largest, 33

standard form, 30

standard deviation, 105

standard form, 27, 28, 30, 33, 34,
36–40, 42–44, 46

LP, 52

star, 61

state, 13, 16

final, 13

initial, 13

step, 16

sub-matrix, 72

subarine, 95

subdomain, 37

subgraph
densest, 62

fully connected, 61

subproblem, 35

subspace, 34

subtour, 29

subtour elimination, 29

sudoku, 67, 72

surplus variable, 52

symbol, 13

sequence, 13

system
software, 61

system clock, 86

system CPU, 86

tabular form, 24

tape, 13, 16

target, 20

task, 30

tensor, 9

term
quadratic, 63

termination, 36

termination condition, 103

test, 16

threshold, 94, 103

time
difference, 94

instant, 95

time horizon, 28, 30

time limit, 86

TM, 13, 33, 37

universal, 37

tolerance, 36, 37, 82

total cost, 29

total CPU, 86

total energy, 47

tour, 29

trade-off, 105

transcendental, 33

translation, 95, 97

transportation
cost, 18

problem, 18

random instance, 23

transportation problem, 19, 23, 25, 27

traveling salesman, 28

triplet, 94

TSP, 28

tuple, 24, 69

Turing complete, 37, 67, 68

Turing machine, 13

universal, 14

unboundedness, 21

uncountable, 47

undefined, 16

underwater vehicles
unmanned, 95

undirected, 31

unit revenue, 45

universality, 14

unix, 24

upper bound, 77

upper-level, 46

user CPU, 86

variable, 69, 79

additional, 41, 52–55, 58, 62, 72

assignment, 63

auxiliary, 52

binary, 53, 72, 85

boolean, 75

bounded, 55

continuous, 28, 53

continuous unbounded, 93

control, 47

decision, 21, 72

discrete, 53

dual, 67

index, 67

integer, 17, 28, 36, 63

integer bounded, 93

linearization, 63

matrix, 102

non-negative, 52

product, 85

relation between, 69

slack, 52, 56, 72

surplus, 52, 56

symbol, 68

unbounded, 95

uncountable, 47

variable domain
discrete bounded, 71

vector
binary variable, 53

column, 80

vertex, 47, 56

adjacent, 90

cover, 31

incident, 75

pair, 95

set, 78

vertex cover, 31

VLSI, 75

weight
maximum, 75

weighted matching, 30

wire
intersection, 75

write, 13

YALMIP, 42

YES, 69, 70

Zermelo-Fraenkel-Choice, 93

zero, 88

ZFC, 93

zip, 26

	I An overview of Mathematical Programming
	Imperative and declarative programming
	Turing machines
	Register machines
	Universality
	Partial recursive functions
	The main theorem
	Imperative and declarative programming
	Mathematical programming
	Modelling software
	Summary

	Systematics and solution methods
	Linear programming
	Mixed-integer linear programming
	Integer linear programming
	Binary linear programming
	Convex nonlinear programming
	Nonlinear programming
	Convex mixed-integer nonlinear programming
	Mixed-integer nonlinear programming
	Quadratic programming formulations
	Semidefinite programming
	Multi-objective programming
	Bilevel programming
	Semi-infinite programming
	Summary

	Reformulations
	Elementary reformulations
	Exact linearizations
	Advanced examples
	Summary

	II In-depth topics
	Constraint programming
	The dual CP
	CP and MP
	The CP solution method
	Objective functions in CP
	Some surprising constraints in CP
	Sudoku
	Summary

	Maximum cut
	Approximation algorithms
	Randomized algorithms
	MP formulations
	The Goemans-Williamson algorithm
	Python implementation
	Summary

	Distance Geometry
	The fundamental problem of DG
	Some applications of the DGP
	Formulations of the DGP
	The 1-norm and the max norm
	Euclidean Distance Matrices
	The EDM Completion Problem
	The Isomap heuristic
	Random projections
	How to adjust an approximately feasible solution
	Summary

	Bibliography
	Index

