
Preamble
Introduction

Classes
Templates

Introduction to C++

Leo Liberti

DIX, École Polytechnique, Palaiseau, France

2007/2008

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Course

Preliminary remarks

Teachers

Leo Liberti: liberti@lix.polytechnique.fr.
Office: LIX 412-29 (prefab). Telephone ext.: 4138

Jean-François Biasse: biasse@lix.polytechnique.fr

Aim of the course

Teach the basics of the C++ language

Means

Mixed lecture/practical teaching style
Develop a simple C++ application which performs a complex task

http://www.lix.polytechnique.fr/∼liberti/teaching/c++/
dmap-08/

Leo Liberti Introduction to C++

liberti@lix.polytechnique.fr
biasse@lix.polytechnique.fr
http://www.lix.polytechnique.fr/~liberti/teaching/c++/dmap-08/
http://www.lix.polytechnique.fr/~liberti/teaching/c++/dmap-08/

Preamble
Introduction

Classes
Templates

Course

Course structure
Timetable

Lectures/TDs: mondays 1345-1730 (all but 13/3) / 830-1215 (13,17/3); SI36

Examination

31/3/08: 1330-1630 practical exam at the computer

Course material

Bjarne Stroustrup, The C++ Programming Language, 3rd
edition, Addison-Wesley, Reading (MA), 1999

Stephen Dewhurst, C++ Gotchas: Avoiding common
problems in coding and design, Addison-Wesley, Reading
(MA), 2002

Herbert Schildt, C/C++ Programmer’s Reference, 2nd
edition, Osborne McGraw-Hill, Berkeley (CA)

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Course

Course contents
Syllabus
1 Preamble

Course
2 Introduction

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

3 Classes
Basic class semantics
Input and output
Inheritance and polymorphism

4 Templates
User-defined templates
Standard Template Library

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Course

Course contents

Application

WET (WWW Exploring Topologizer)

Graph representation of the World Wide Web

Explores local neighbourhood of a given URL

Outputs the graph in a format that can be displayed
graphically

Didactical value

Sufficiently complex software architecture, easy code

Coded during the practicals as a series of separate exercises

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Generalities

Definitions

Program: set of instructions that can be interpreted by a
computer

Instructions: well-formed sequences of characters (syntax)

Interpretation: sequence of operations performed by the
computer hardware (semantics)

Programming language: set of rules used to form valid
instructions

Algorithm: a program which terminates (though sometimes
find “non-terminating algorithm” with abuse of notation)

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Operations

Valid computer operations

Input: transfer data from external device to processor

Output: transfer data from processor to external device

Storage: transfer data from processor to memory

Retrieval: transfer data from memory to processor

AL operation: perform arithmetic/logical operation on data

Test: verify condition on data and act accordingly

Loop: repeat a sequence of operations

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Memory

Usual representation for memory: indexed array of cells where
values can be stored

0

0 1 1 0 0 0 1 0

1

0 1 1 0 0 0 1 0

2

0 1 1 0 0 0 1 0

3

0 1 1 0 0 0 1 0

4

0 1 1 0 0 0 1 0

5

0 1 1 0 0 0 1 0

6

0 1 1 0 0 0 1 0

7

0 1 1 0 0 0 1 0

value

address

unit of measure: bit (Binary digIT) — can hold a 0 or a 1

8b (bit) = 1B (byte), 1024 B = 1 KB (Kilobyte), 1024 KB =
1MB

sometimes find 1KB = 1000 B and 1MB = 1000 KB

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Creating and using data
Declaration: the compiler is told about a new symbol and its
type void myFunction(void);
Definition: a segment of memory is associated to a symbol
(called variable name) char varName;

0

1 1 0 1 0 1 1 0
1

1 1 0 1 0 1 1 0
2

1 1 0 1 0 1 1 0
3

1 1 0 1 0 1 1 0
4

1 1 0 1 0 1 1 0
5

1 1 0 1 0 1 1 0
6

1 1 0 1 0 1 1 0
7

1 1 0 1 0 1 1 0varName

Assignment: a value is stored in the memory associated to
the variable name

char varName(9); 0

0 0 0 0 0 1 0 1
1

0 0 0 0 0 1 0 1
2

0 0 0 0 0 1 0 1
3

0 0 0 0 0 1 0 1
4

0 0 0 0 0 1 0 1
5

0 0 0 0 0 1 0 1
6

0 0 0 0 0 1 0 1
7

0 0 0 0 0 1 0 1varName

varName = 100; 0

0 1 1 0 0 1 0 0
1

0 1 1 0 0 1 0 0
2

0 1 1 0 0 1 0 0
3

0 1 1 0 0 1 0 0
4

0 1 1 0 0 1 0 0
5

0 1 1 0 0 1 0 0
6

0 1 1 0 0 1 0 0
7

0 1 1 0 0 1 0 0varName

Deallocation: the variable name is discarded and the
associated memory is considered free

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Basic data types

boolean value: bool (1 bit), true or false

ASCII character: char (1 byte), integer between -128 and 127

integer number:

int (usually 4 bytes), between −231 and 231 − 1
long (usually 8 bytes)
can be prefixed by unsigned

floating point: double (also float, rarely used)

arrays:
typeName variableName[constArraySize] ;

char myString[15];

pointers (a pointer contains a memory address):

typeName * pointerName ; char* stringPtr;

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Declaration, Assignment, Test, AL Operators

declaration: typeName variableName ; int i;

assignment: variableName = expression ; i = 0;

test:

if (condition) {
statements ;

} else {
statements ;

}

if (i == 0) {
i = 1;

} else if (i < 0) {
i = 0;

} else {
i += 2;

}

logical operators: and (&&), or (||), not (!)

condition1 logical op condition2 ;

if (!(i == 0 || (i > 5 && i % 2 == 1))) { ...

arithmetic operators: +, -, *, /, %, ++, --, +=, -=, *=, /=, . . .

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Loops

loop (while):

while (condition) {
statements ;

}

while (i < 10) {
i = i + 1;

}
loop (for):

for (initial statement ; condition ; itn statement) {
statements ;

}

for (i = 0; i < 10; i++) {
std::cout << "i = " << i << std::endl;

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Functions

function declaration:
typeName functionName(typeName1 argName1, . . .) ;

double performSum(double op1, double op2);

function call:
varName = functionName(argName1, . . .) ;

double d = performSum(1.0, 2.1);

return control to calling code: return value ;

double performSum(double op1, double op2) {
return op1 + op2;

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Functions: Argument passing

Arguments are passed from the calling function to the called
function in two possible ways:

1 by value
2 by reference

Passing by value (default): the calling function makes a copy
of the argument and passes the copy to the called function;
the called function cannot change the argument
double performSum(double op1, double op2);

Passing by reference (prepend a &): the calling function
passes the argument directly to the called function; the called
function can change the argument

void increaseArgument(double& arg) { arg++; }

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Functions: Overloading
Different functions with the same name but different
arguments: overloading
Often used when different algorithms exist to obtain the same
aim with different data types
void getInput(int theInput) {

std::cout << "an integer" << std::endl;

}
void getInput(std::string theInput) {

std::cout << "a string" << std::endl;

}

Can be used in recursive algorithms to differentiate
initialization and recursive step
void retrieveData(std::string URL, int maxDepth, Digraph& G,

bool localOnly, bool verbose);

void retrieveData(std::string URL, int maxDepth, Digraph& G,

bool localOnly, bool verbose,

int currentDepth, VertexURL* vParent);

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Pointers

retrieve the address of a variable:

pointerName = &variableName ;
int* pi;
pi = &i;

retrieve the value stored at an address:

variableName = *pointerName ;
int j;
j = *i;

using pointers as arrays:
const int bufferSize = 10;
char buffer[bufferSize] = "J. Smith";
char* bufPtr = buffer;
while(*bufPtr != ’ ’) {

bufPtr++;
}
std::cout << ++bufPtr << std::endl;

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Pointer warnings

Pointers allow you to access memory directly, hence can be
very dangerous

Attempted memory corruption results in “segmentation fault”
error and abort, or garbage output, or unpredictable behaviour

Most common dangers:
1 writing to memory outside bounds

char buffer[] = "LeoLiberti";
char* bufPtr = buffer;
while(*bufPtr != ’ ’) {

*bufPtr = ’ ’;
bufPtr++;

}
2 deallocating memory more than once

Pointer bugs are usually very hard to track

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Indentation

Not necessary for the computer

Absolutely necessary for the programmer / maintainer

After each opening brace {: new line and tab (2 characters)

Each closing brace } is on a new line and “untabbed”

double x, y, z, epsilon;
. . .
if (fabs(x) < epsilon) {

if (fabs(y) < epsilon) {
if (fabs(z) < epsilon) {

for(int i = 0; i < n; i++) {
x *= y*z;

}
}

}
}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Comments

Not necessary for the computer

Absolutely necessary for the programmer / maintainer

One-line comments: introduced by //

Multi-line comments: /* . . . */

Avoid over- and under-commentation

Example of over-commentation

// assign 0 to x
double x = 0;

Example of under-commentation

char buffer[] = "01011010 01100100";
char* bufPtr = buffer;
while(*bufPtr &&

(*bufPtr++ = *bufPtr == ’0’ ? ’F’ : ’T’));

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Structure of a C++ Program I

/***
* Name: helloworld.cxx
* Author: Leo Liberti
* Source: GNU C++
* Purpose: hello world program
* Build: c++ -o helloworld helloworld.cxx
* History: 060818 work started
***/

#include<iostream>

int main(int argc, char** argv) {
using namespace std;
cout << "Hello World" << endl;
return 0;

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Structure of a C++ Program II

Each executable program coded in C++ must have one
function called main()

int main(int argc, char** argv);

The main function is the entry point for the program

It returns an integer exit code which can be read by the shell

The integer argc contains the number of arguments on the
command line

The array of character arrays **argv contains the arguments:
the command ./mycode arg1 arg2 gives rise to the
following storage:

argv[0] is a char pointer to the string ./mycode
argv[1] is a char pointer to the string arg1
argv[2] is a char pointer to the string arg2
argc is an int variable containing the value 3

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Structure of a C++ Program III

C++ programs are stored in one or more text files

Source files: contain the C++ code, extension .cxx

Header files: contain the declarations which may be common
to more source files, extension .h

Source files are compiled

Header files are included from the source files using the
preprocessor directive #include
#include<standardIncludeHeader>
#include "userDefinedIncludeFile.h"

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Development stages

Creating a directory for your project(s) mkdir directoryName

Entering the directory cd directoryName

Creating/editing the C++ program

Building the source

Debugging the program/project

Packaging/distribution (Makefiles, READMEs,
documentation. . .)

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Basic UNIX tools

cd directoryName : change working directory

pwd : print the working directory

cat fileName : display the (text) file fileName to standard output

mv file position : move file to a new position: e.g. mv /etc/hosts . moves the

file hosts from the directory /etc to the current working directory (.)

cp file position : same as mv, but copy the file

rm file : remove file

rmdir directory : remove an empty directory

grep string file(s) : look for a string in a set of files: e.g. grep -Hi complex *

looks in all files in the current directory (*) for the string complex ignoring
upper/lower case (-i) and displays the name of the file (-H) as well as the line
where the match occurs

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Combining UNIX tools
By default, unix tools send their output messages to the
standard output stream (stdout) and their error messages to
the standard error stream (stderr)

Both streams can be redirected. E.g., to redirect both stdout
and stderr, use:
sh -c ’command options arguments > outFile 2>&1’

The output stream of a command can become the input
stream of the next command in a chain:
e.g. find ˜ | grep \.cxx finds all files with extension .cxx in

all subdirectories of the home directory; the first command
(find) sends a recursive list across subdirectories of the home
directory (denoted by ˜) to stdout. This stream is
transformed by the pipe character (|) in the standard input
(stdin) stream of the following command (grep), which
filters out all lines not containing .cxx.

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Editing

Traditional GNU/Linux text editor: emacs

emacs programName.cxx

Many key-combination commands (try ignoring menus!)

Legenda: C-key: CTRL+key, M-key: ALT+key (for keyboards
with no ALT key or for remote connections can obtain same
effect by pressing and releasing ESC and then key)
Basics:

1 C-x C-s: save file in current buffer (screen) with current
name (will ask for one if none is supplied)

2 C-x C-c: exit (will ask for confirmation for unsaved files)
3 C-space: start selecting text (selection ends at cursor

position)
4 C-w: cut, M-w: copy, C-y: paste
5 tab: indents C/C++ code
6 M-x indent-region: properly indents all selected region

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Building

The translation process from C++ code to executable is called
building, carried out in two stages:

1 compilation: production of an intermediate object file (.o)
with unresolved external symbols

2 linking: resolve external symbols by reading code from
standard and user-defined libraries

int getReturnValue(void);

int main() {

int ret = 0;

ret = getReturnValue();

return ret;

}

Compilation → OB-

JECT CODE: dictio-

nary associating func-

tion name to ma-

chine language, save

for undefined symbols

(getReturnValue)

main: 0010 1101

...getReturnValue

Linking → looks up

libraries (.a and .o)

for unresolved sym-

bols definitions, pro-

duces executable

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

File types

C++ declarations are stored in text files with extension .h
(header files)

C++ source code is stored in text files with extension .cxx

Executable files have no extensions but their “executable”
property is set to on (e.g. ls -la /bin/bash returns ’x’ in the

properties field)

Each executable must have exactly one symbol main
corresponding to the first function to be executed

An executable can be obtained by compiling many source
code files (.cxx), exactly one of which contains the definition

of the function int main(int argc, char** argv); , and linking

all the objects together

Source code files are compiled into object files with extension
.o by the command c++ -c sourceCode.cxx

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Objects and symbols

An object file (.o) contains a table of symbols used in the corresponding source
file (.cxx)

The symbols whose definition was given in the corresponding source file are
resolved

The symbols whose definition is found in another source file are unresolved

Unresolved symbols in an object file can be resolved by linking the object with
another object file containing the missing definitions

An executable cannot contain any unresolved symbol

A group of object files file1.o, . . . , fileN.o can be linked together as a single

executable file by the command c++ -o file file1.o . . . fileN.o only if:

1 the symbol main is resolved exactly once in exactly one object
file in the group

2 for each object file in the group and for each unresolved
symbol in the object file, the symbol must be resolved in
exactly one other file of the group

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Debugging

GNU/Linux debugger: gdb

Graphical front-end: ddd

Designed for Fortran/C, not C++

Can debug C++ programs but has troubles on complex
objects (use the “insert a print statement” technique when
gdb fails)

Memory debugger: valgrind (to track pointer bugs)

In order to debug, compile with -g flag:
c++ -g -o helloworld helloworld.cxx

More details during labs

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Programming Languages
C++ Language basics
Syntax
Basic Linux development tools

Packaging and Distribution

For big projects with many source files, a Makefile (detailing
how to build the source) is essential

Documentation for a program is absolutely necessary for
both users and maintainers

Better insert a minimum of help within the program itself (to
be displayed on screen with a particular option, like -h)

A README file to briefly introduce the software is usual

There exist tools to embed the documentation within the
source code itself and to produce Makefiles more or less
automatically

UNIX packages are usually distributed in tarred, compressed
format (extension .tar.gz obtained with the command

tar zcvf directoryName.tar.gz directoryName

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Classes: motivations

1 Problem analysis is based on data and algorithm break-down
structuring ⇒ hierarchical design for data and algorithms

2 Fewer bugs if data inter-dependency is low ⇒ design data
structure first, then associate algorithms to data (not the
reverse)

3 Data structures are usually complex entities ⇒ need for
sufficiently rich expressive powers for data design

4 Different data objects may share some properties ⇒ exploit
this fact in hierarchical design

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

The class concept

Class

A class is a user-defined data type. It contains some data fields
and the methods (i.e. algorithms) acting on them.

class TimeStamp {
public: // can be accessed from outside
TimeStamp(); // constructor
T̃imeStamp(); // destructor
long get(void) const; // some methods
void set(long theTimeStamp);
void update(void);

private: // can only be accessed from inside
long timestamp; // a piece of data

};

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Objects of a class

An object is a piece of data having a class data type

A class is declared, an object is defined

In a program there can only be one class with a given name,
but several objects of the same class

Example:

TimeStamp theTimeStamp; // declare an object
theTimeStamp.update(); // call some methods
long theTime = theTimeStamp.get();
std::cout << theTime << std::endl;

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Referring to the current object

Occasionally, we may want to know the address of an object
within one of its methods

Each object is endowed with the this pointer
cout << this << endl;

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Constructors and destructors

The class constructor defines the data fields and performs all
user-defined initialization actions necessary to the object

The class constructor is called only once when the object is
defined

The class destructor performs all user-defined actions
necessary to object destruction

The class destructor is called only once when the object is
destroyed

An object is destroyed when its scope ends (i.e. at the first
brace } closing its level)

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Lifetime of an object I

int main(int argc, char** argv) {
using namespace std;

TimeStamp theTimeStamp; // object created here

theTimeStamp.update();

long theTime = theTimeStamp.get();

if (theTime > 0) {
cout << "seconds from 1/1/1970: "

<< theTime << endl;

}
return 0;

} // object destroyed before brace (scope end)

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Lifetime of an object II

Constructor and destructor code:
TimeStamp::TimeStamp() {

std::cout << "TimeStamp object constructed at address "

<< this << std::endl;

}
TimeStamp::̃ TimeStamp() {

std::cout << "TimeStamp object at address "

<< this << " destroyed" << std::endl;

}

Output:
TimeStamp object constructed at address 0xbffff24c

seconds from 1/1/1970: 1157281160

TimeStamp object at address 0xbffff24c destroyed

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Data access privileges

class ClassName {
public:

members with no access restriction

protected:

access by: this, derived classes, friends

private:

access by: this, friends

} ;

a derived class is a class which inherits from this (see
inheritance below)

a function can be declared friend of a class to be able to
access its protected and private data
class TheClass {

...

friend void theFriendMethod(void);

};

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Namespaces

All C++ symbols (variable names, function names, class
names) exist within a namespace
The complete symbol is namespaceName::symbolName
The only pre-defined namespace is the global namespace
(its name is the empty string ::varName)
Standard C++ library: namespace std std::string

namespace WET {
const int maxBufSize = 1024;

const char charCloseTag = ’>’;

}

char buffer[WET::maxBufSize];

using namespace WET;

for(int i = 0; i < maxBufSize - 1; i++) {
buffer[i] = charCloseTag;

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Exceptions I

Upon failure, a method may abort its execution

We do not wish the whole program to abort

Mechanism:
1 method throws an exception
2 caller method catches it
3 called method handles it if it can
4 otherwise it re-throws the exception

Exceptions are passed on the method calling hierarchy levels
until one of the method can handle it

If exceptions reaches main(), the program is aborted

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Exceptions II
Definition

An exception is a class. Exceptions can be thrown and caught by
methods. If a method throws an exception, it must be declared:
returnType methodName(arguments) throw (ExceptionName)

The TimeStamp::update() method obtains the current time
through the operating system, which is outside the program’s
control
update() does not know how to deal with a failure directly,
as it can only update the time; should failure occur, control is
delegated to higher-level methods

class TimeStampException {
public:

TimeStampException();

T̃imeStampException();

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Exceptions III

void TimeStamp::update(void) throw (TimeStampException) {
using namespace std;

struct timeval tv;

struct timezone tz;

try {
int retVal = gettimeofday(&tv, &tz);

if (retVal == -1) {
cerr << "TimeStamp::updateTimeStamp(): "

<< "could not get system time" << endl;

throw TimeStampException();

}
} catch (...) {

cerr << "TimeStamp::updateTimeStamp(): "

<< "could not get system time" << endl;

throw TimeStampException();

}
timestamp = tv.tv sec;

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Overloading operators in and out of classes I

Suppose you have a class Complex with two pieces of private
data, double real; and double imag;

You wish to overload the + operator so that it works on
objects of type Complex

There are two ways: (a) declare the operator outside the class
as a friend of the Complex class; (b) declare the operator to
be a member of the Complex class

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Overloading operators in and out of classes II

(a) declaration:
class Complex {
public:

Complex(double re, double im) : real(re), imag(im) {}
...

friend Complex operator+(Complex& a, Complex& b);

private:

double real;

double imag;

}

definition (out of the class):
Complex operator+(Complex& a, Complex& b) {

Complex ret(a.real + b.real, a.imag + b.imag);

return ret;

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Overloading operators in and out of classes III
(b) declaration:
class Complex {
public:

Complex(double re, double im) : real(re), imag(im) {}
...

Complex operator+(Complex& b);

private:

double real;

double imag;

}

definition (in the class):
Complex Complex::operator+(Complex& b) {

Complex ret(this->real + b.real, this->imag + b.imag);

return ret;

}

this-> is not strictly required, but it makes it clear that the
left operand is now the object calling the operator+ method

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

The stack and the heap
Executable program can either refer to near memory (the
stack) or far memory (the heap)
Accessing the stack is faster than accessing the heap
The stack is smaller than the heap
Variables are allocated on the stack TimeStamp tts;

Common bug (but hard to trace): stack overflow

char veryLongArray[1000000000];
Memory allocated on the stack is deallocated automatically at
the end of the scope where it was allocated (closing brace })
Memory on the heap can be accessed through user-defined
memory allocation
Memory on the heap must be deallocated explicitly, otherwise
memory leaks occur, exhausting all the computer’s memory
Memory on the heap must not be deallocated more than
once (causes unpredictable behaviour)

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

User-defined memory allocation

Operator new: allocate memory from the heap

pointerType* pointerName = new pointerType ;

TimeStamp* ttsPtr = new TimeStamp;

Operator delete: release allocated memory
delete pointerName; delete ttsPtr;

Commonly used with arrays in a similar way:

pointerType* pointerName = new pointerType [size];

double* positionVector = new double [3];

delete [] pointerName ; delete [] positionVector;

Improper user memory management causes the most
difficult C++ bugs!!

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Using object pointers

Suppose ttsPtr is a pointer to a TimeStamp object

Two equivalent ways to call its methods:

1 (*ttsPtr).update();

2 ttsPtr->update();

Prefer second way over first

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Streams

Data “run” through streams

Stream types: input, output, input/output, standard, file,
string, user-defined
outputStreamName << varName or literal . . . ;

std::cout << "i = " << i << std::endl;

inputStreamName >> varName ; std::cin >> i;

stringstream buffer;

char myFileName[] = "config.txt";

ifstream inputFileStream(myFileName);

char nextChar;

while(inputFileStream && !inputFileStream.eof()) {
inputFileStream.get(nextChar);

buffer << nextChar;

}
cout << buffer.str();

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Object onto streams

Complex objects may have a complex output procedure

Example: we want to be able to say
cout << theTimeStamp << endl; and get

Thu Sep 7 12:23:11 2006 as output

Solution: overload the << operator
std::ostream& operator<<(std::ostream& s, TimeStamp& t)

throw (TimeStampException);

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Object onto streams II

#include <ctime>

std::ostream& operator<<(std::ostream& s, TimeStamp& t)

throw (TimeStampException) {
using namespace std;

time t theTime = (time t) t.get();

char* buffer;

try {
buffer = ctime(&theTime);

} catch (...) {
cerr << "TimeStamp::updateTimeStamp(): "

"couldn’t print system time" << endl;

throw TimeStampException();

}
buffer[strlen(buffer) - 1] = ’\0’;
s << buffer;

return s;

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Overloading the << and >> operators I

How does an instruction like
cout << "time is " << theTimeStamp << endl; work?

Can parenthesize is as
(((cout << "time is ") << theTimeStamp) << endl);
to make it clearer

Each << operator is a binary operator whose left operand is an
object of type ostream (like the cout object); we need to
define an operator overloading for each new type that the
right operand can take

Luckily, many overloadings are already defined in the Standard
Template Library

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Overloading the << and >> operators II

The declaration to overload is:
std::ostream& operator<<(std::ostream& outStream,

newType& newObject)
To output objects of type TimeStamp, use:

std::ostream& operator<<(std::ostream& outStream,
TimeStamp& theTimeStamp)

Note: in order for the chain of << operators to output all their
data to the same ostream object, each operator must return
the same object given at the beginning of the chain (in this
case, cout)
In other words, each overloading must end with the statement
return outStream; (notice outStream is the very same
name of the input parameter — so if the input parameter was,
say, cout, then that’s what’s being returned by the
overloading)

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Inheritance

Consider a class called FileParser which is equipped with
methods for parsing text occurrences like tag = value in
text files

We now want a class HTMLPage representing an HTML page
with all links

HTMLPage will need to parse an HTML (text) file to find links;
these are found by looking at occurrences like HREF="url"

It is best to keep the text file parsing data/methods and
HTML-specific parts independent

HTMLPage can inherit the public data/methods from
FileParser:
class HTMLPage : public FileParser {...} ;

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Nested inheritance

Consider a corporate personnel database

Need class Employee;

Certain employees are “empowered” (have more

responsibilities): need class Empowered : public Employee;

Among the empowered employees, some are managers: need
class Manager : public Empowered;

Manager contains public data and methods from Empowered,
which contains public data and methods from Employee

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Nested inheritance II

class Employee {
public:

Employee();

Ẽmployee();

double getMonthlySalary(void);

void getEmployeeType(void);

};

←

class Empowered : public Employee {
public:

Empowered();

Ẽmpowered();

bool isOverworked(void);

void getEmployeeType(void);

};

↑
class Manager : public Empowered {
public:

Manager();

M̃anager();

bool isIncompetent(void);

void getEmployeeType(void);

};

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Hiding

Consider method getEmployeeType: can be defined in different
ways for Manager, Empowered, Employee: hiding
void Employee::getEmployeeType(void) {

std::cout << "Employee" << std::endl;

}
void Empowered::getEmployeeType(void) {

std::cout << "Empowered" << std::endl;

}
void Manager::getEmployeeType(void) {

std::cout << "Manager" << std::endl;

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Nested inheritance and hiding

Examples of usage
Employee e1;

Empowered e2;

Manager e3;

cout << e1.getMonthlySalary(); // output the monthly salary

cout << e2.getMonthlySalary(); // call to the same fn as above

e1.getEmployeeType(); // output: Employee

e2.getEmployeeType(); // output: Empowered (call to different fn)

e3.getEmployeeType(); // output: Manager (call to different fn)

e3.Employee::getEmployeeType(); // output: Employee (forced call)

cout << e1.isIncompetent(); // ERROR, not in base class

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Inheritance vs. embedding

Consider example of a salary object:
class Salary {

Salary();

S̃alary();

void raise(double newSalary);

...

};

Might think of deriving Employee from Salary so that we can
say theEmployee.raise(); to raise the employee’s salary

Technically, nothing wrong

Architecturally, very bad decision!

Rule of thumb:
derive B from A only if B can be considered as an A

In this case, better embed a Salary object as a data field of
the Employee class

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Polymorphism I

Hiding provides compile-time polymorphism

Almost always, this is not what is desired, and should be
avoided!

Want to be able to choose the class type of an object at
run-time

Suppose we want to write a function such as:
void use(Employee* e) {

e->getEmployeeType();

}

and then call it using Employee, Empowered, Manager objects:
use(&e1); // output: Employee

use(&e2); // output: Employee

use(&e3); // output: Employee

As far as use() is concerned, the pointers are all of Employee
type, so wrong method is called

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Polymorphism II

Run-time polymorphism can be obtained by declaring the relevant
methods as virtual

class Employee {
...

virtual void getEmployeeType(void);

...

};

class Empowered : public Employee {
...

virtual void getEmployeeType(void);

...

};

class Manager : public Empowered {
...

virtual void getEmployeeType(void);

...

};

use(&e1); // output: Employee

use(&e2); // output: Empowered

use(&e3); // output: Manager

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Pure virtual classes
Get objects to interact with each other: need conformance to
a set of mutually agreed methods

In other words, need an interface

All classes derived from the interface implement the interface
methods as declared in the interface

Can guarantee the formal behaviour of all derived objects

In C++, an interface is known as a pure virtual class: a class
consisting only of method declarations and no data fields

A pure virtual class has no constructor — no object of that
class can ever be created (only objects of derived classes)

A pure virtual class may have a virtual destructor to permit
correct destruction of derived objects

All methods (except the destructor) are declared as follows:

returnType methodName(args) = 0;
All derived classes must implement all methods

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

Basic class semantics
Input and output
Inheritance and polymorphism

Pure virtual classes

class EmployeeInterface {
public:

virtual ẼmployeeInterface() { }
virtual void getEmployeeType(void) = 0;

};

class Employee : public virtual EmployeeInterface {...};
class Empowered : public Employee, public virtual EmployeeInterface {...};
class Manager : public Empowered, public virtual EmployeeInterface {...};

void use(EmployeeInterface* e) {...}
...

use(&e1); // output: Employee

use(&e2); // output: Empowered

use(&e3); // output: Manager

Code behaves as before, but clearer architecture

public virtual inheritance: avoids having many copies of
EmployeeInterface in Empowered and Manager

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

User-defined templates
Standard Template Library

Templates I

Situation: action performed on different data types

Possible solution: write many functions taking arguments of
many possible data types.

Example: swapping the values of two variables

void varSwap(int& a, int& b);
void varSwap(double& a, double& b);
. . .
Potentially an unlimited number of objects ⇒ invalid approach

Need for templates
template<class TheClassName> returnType functionName(args);

template<class T> void varSwap(T& a, T& b) {
T tmp(b);

b = a;

a = tmp;

}

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

User-defined templates
Standard Template Library

Templates II

Behaviour with predefined types:
int ia = 1;

int ib = 2;

varSwap(ia, ib);

cout << ia << ", " << ib << endl; // output: 2, 1

double da = 1.1;

double db = 2.2;

varSwap(da, db);

cout << da << ", " << db << endl; // output: 2.2, 1.1

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

User-defined templates
Standard Template Library

Templates III

Behaviour with user-defined types:
class MyClass {
public:

MyClass(std::string t) : myString(t) { }
M̃yClass() { }
std::string getString(void) { return myString; }
void setString(std::string& t) { myString = t; }

private:

std::string myString;

};

MyClass ma("A");

MyClass mb("B");

varSwap(ma, mb);

cout << ma << ", " << mb << endl; // output: B, A

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

User-defined templates
Standard Template Library

Internals and warnings

Many hidden overloaded functions are created at
compile-time (one for each argument list that is actually
used)

Very difficult to use debugging techniques such as breakpoints
(which of the hidden overloaded functions should get the
breakpoints?)

Use sparingly

But use the Standard Template Library as much as possible
(already well debugged and very efficient!)

Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

User-defined templates
Standard Template Library

The STL

Collection of generic classes and algorithms

Born at the same time as C++

Well defined

Very flexible

Reasonably efficient

Use it as much as possible, do not reinvent the wheel!

Documentation: http://www.sgi.com/tech/stl/

Contains:

Classes: vector, map, string, I/O streams, . . .
Algorithms: sort, swap, copy, count, . . .

Leo Liberti Introduction to C++

http://www.sgi.com/tech/stl/

Preamble
Introduction

Classes
Templates

User-defined templates
Standard Template Library

vector example
#include<vector>

#include<algorithm>

...

using namespace std;

vector<int> theVector;

theVector.push back(3);

theVector.push back(0);

if (theVector.size() >= 2) {
cout << theVector[1] << endl;

}
for(vector<int>::iterator vi = theVector.begin();

vi != theVector.end(); vi++) {
cout << *vi << endl;

}
sort(theVector.begin(), theVector.end());

for(vector<int>::iterator vi = theVector.begin();

vi != theVector.end(); vi++) {
cout << *vi << endl;

}
Leo Liberti Introduction to C++

Preamble
Introduction

Classes
Templates

User-defined templates
Standard Template Library

map example

#include<map>

#include<string>

...

using namespace std;

map<string, int> phoneBook;

phoneBook["Liberti"] = 3412;

phoneBook["Baptiste"] = 3800;

for(map<string,int>::iterator mi = phoneBook.begin();

mi != phoneBook.end(); mi++) {
cout << mi->first << ": " << mi->second << endl;

}
cout << phoneBook["Liberti"] << endl;

cout << phoneBook["Smith"] << endl;

for(map<string,int>::iterator mi = phoneBook.begin();

mi != phoneBook.end(); mi++) {
cout << mi->first << ": " << mi->second << endl;

}

Leo Liberti Introduction to C++

	Preamble
	Course

	Introduction
	Programming Languages
	C++ Language basics
	Syntax
	Basic Linux development tools

	Classes
	Basic class semantics
	Input and output
	Inheritance and polymorphism

	Templates
	User-defined templates
	Standard Template Library

