
Introduction
Memory management

Standard Template Library
Classes and templates

Introduction to C++ for Java users

Leo Liberti

DIX, École Polytechnique, Palaiseau, France

2006/2007

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Preliminary remarks

Teachers

Leo Liberti: liberti@lix.polytechnique.fr.
TDs: Giacomo Nannicini giacomo.nannicini@v-trafic.com,

Claus Gwiggner gwiggner@lix.polytechnique.fr

Aim of the course

Introducing C++ to Java users

Means

Develop a simple C++ application which performs a complex task

http://www.lix.polytechnique.fr/∼liberti/teaching/c++/
fromjava07/

Leo Liberti Introduction to C++ for Java users

liberti@lix.polytechnique.fr
giacomo.nannicini@v-trafic.com
gwiggner@lix.polytechnique.fr
http://www.lix.polytechnique.fr/~liberti/teaching/c++/fromjava07/
http://www.lix.polytechnique.fr/~liberti/teaching/c++/fromjava07/

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Course structure

Timetable

Lecture: Monday 8/1/07 13:30-15:00, Amphi Carnot
TDs: 9-10/1/07, 8-10, 10:15-12:15, 14-16, 16:15-18:15, SI 32, 36

Course material (optional)

Bjarne Stroustrup, The C++ Programming Language, 3rd
edition, Addison-Wesley, Reading (MA), 1999

Stephen Dewhurst, C++ Gotchas: Avoiding common
problems in coding and design, Addison-Wesley, Reading
(MA), 2002

Herbert Schildt, C/C++ Programmer’s Reference, 2nd
edition, Osborne McGraw-Hill, Berkeley (CA)

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Course contents

Syllabus
1 Introduction

Programming style issues
Main differences
Development of the first program

2 Memory management
Pointers
Memory allocation/deallocation

3 Standard Template Library
Input and output

4 Classes and templates
Inheritance and embedding
Interfaces
Templates

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Course contents

Application (developed during TDs)

WET (WWW Exploring Topologizer)

Graph representation of the World Wide Web

Explores local neighbourhood of a given URL

Outputs the graph in a format that can be displayed
graphically

Help yourself!

If you don’t understand some terms, look for them on google
together with the string c++, you will almost certainly find a lot of
explanations

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Indentation

Absolutely necessary for the programmer / maintainer

ONE STATEMENT PER LINE
After each opening brace {: new line and tab (2 characters)

Each closing brace } is on a new line and “untabbed”

double x, y, z, epsilon;
. . .
if (fabs(x) < epsilon) {

if (fabs(y) < epsilon) {
if (fabs(z) < epsilon) {

for(int i = 0; i < n; i++) {
x *= y*z;

}
}

}
} else {

cerr << "error" << endl;
}

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Indentation: Don’ts

1

if (condition) {
i = 0;

}
else

i = 1;

2

int main(int argc, char** argv)
{
int ret = 0;
return ret; }

Auto-indent properly. Use the Emacs editor, and press TAB
at each line or code; to indent a whole paragraph, highlight
it then press ALT-x and then type “indent-region” in the
minibuffer on the bottom of the screen.

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Comments

Absolutely necessary for the programmer / maintainer

One-line comments: introduced by //

Multi-line comments: /* . . . */

Avoid over- and under-commentation

Example of over-commentation

// assign 0 to x
double x = 0;

Example of under-commentation

char buffer[] = "01011010 01100100";
char* bufPtr = buffer;
while(*bufPtr &&

(*bufPtr++ = *bufPtr == ’0’ ? ’F’ : ’T’));

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

C++/Java: main differences

Java is a byte-compiled language, C++ is fully compiled (⇒
C++ is faster)
Java requires the use of classes, C++ may also be used in
“old fashion” procedural style
In Java, no code is ever outside classes; in C++ some code
(namely, the main() function) must be outside classes
C++ lets you access memory directly through pointers, Java
has no pointer mechanism worthy of note
C++ has a more fine-grained memory management
(allocation/deallocation)
C++ programs usually employ classes/algorithms from the
Standard Template Library (STL)
Some differences in class inheritance
C++ employs templates for generic programming (Java has
the Object data type)

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Building

The translation process from C++ code to executable is called
building, carried out in two stages:

1 compilation: production of an intermediate object file (.o)
with unresolved external symbols

2 linking: resolve external symbols by reading code from
standard and user-defined libraries

int getReturnValue(void);

int main() {

int ret = 0;

ret = getReturnValue();

return ret;

}

Compilation → OB-

JECT CODE: dictio-

nary associating func-

tion name to ma-

chine language, save

for undefined symbols

(getReturnValue)

main: 0010 1101

...getReturnValue

Linking → looks up

libraries (.a and .o)

for unresolved sym-

bols definitions, pro-

duces executable

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Building

Can perform both compilation and linking in one go with the
GNU command c++:
c++ -o helloworld helloworld.cxx

Can perform separately: c++ -c helloworld.cxx
(produces helloworld.o),
c++ -o helloworld helloworld.o (useful for combining
multiple object files into one executable)

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Debugging

Two types of errors: compilation and runtime

For compilation errors: READ THE ERROR MESSAGES
OUTPUT BY THE COMPILER BEFORE ASKING FOR
HELP — not always, but sometimes they are useful

For runtime errors:
1 GNU/Linux debugger: gdb
2 Graphical front-end: ddd
3 Designed for Fortran/C, not C++
4 Can debug C++ programs but has troubles on complex objects

(use the “insert a print statement” technique when gdb fails)
5 Memory debugger: valgrind (to track pointer bugs)
6 In order to debug, compile with -g flag:

c++ -g -o helloworld helloworld.cxx
7 More details during labs

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

Packaging and Distribution

For big projects with many source files, a Makefile (detailing
how to build the source) is essential

Documentation for a program is absolutely necessary for
both users and maintainers

Better insert a minimum of help within the program itself (to
be displayed on screen with a particular option, like -h)

A README file to briefly introduce the software is usual

There exist tools to embed the documentation within the
source code itself and to produce Makefiles more or less
automatically

UNIX packages are usually distributed in tarred, compressed
format; extension .tar.gz obtained with the command
tar zcvf directoryName.tar.gz directoryName

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

The first C++ program

/***
* Name: helloworld.cxx
* Author: Leo Liberti
* Source: GNU C++
* Purpose: hello world program
* Build: c++ -o helloworld helloworld.cxx
* History: 060818 work started
***/

#include<iostream>

int main(int argc, char** argv) {
using namespace std;
cout << "Hello World" << endl;
return 0;

}

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

The first C++ program

Each executable program coded in C++ must have one
function called main()

int main(int argc, char** argv); outside all classes
The main function is the entry point for the program
It returns an integer exit code which can be read by the shell
that launched the program
The integer argc contains the number of arguments on the
command line
The array of character arrays **argv contains the arguments:
the command ./mycode arg1 arg2 gives rise to the
following storage:

argv[0] is a char pointer to the char array ./mycode
argv[1] is a char pointer to the char array arg1
argv[2] is a char pointer to the char array arg2
argc is an int variable containing the value 3

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Programming style issues
Main differences
Development of the first program

The first C++ program

C++ programs are stored in one or more text files

Source files: contain the C++ code, extension .cxx

Header files: contain the declarations which may be common
to more source files, extension .h

Source files are compiled

Header files are included from the source files using the
preprocessor directive #include (like import in Java)
#include<standardIncludeHeader>
#include "userDefinedIncludeFile.h"

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Pointers
Memory allocation/deallocation

Memory

Usual representation for memory: indexed array of cells where
values can be stored

0

0 1 1 0 0 0 1 0

1

0 1 1 0 0 0 1 0

2

0 1 1 0 0 0 1 0

3

0 1 1 0 0 0 1 0

4

0 1 1 0 0 0 1 0

5

0 1 1 0 0 0 1 0

6

0 1 1 0 0 0 1 0

7

0 1 1 0 0 0 1 0

value

address

unit of measure: bit (Binary digIT) — can hold a 0 or a 1

8b (bit) = 1B (byte), 1024 B = 1 KB (Kilobyte), 1024 KB =
1MB

real memory addresses look like 0xbffe4213 or 0x812ab310

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Pointers
Memory allocation/deallocation

Pointers

variables contain values, pointers contain addresses
retrieve the address of a variable:

pointerName = &variableName ;
int* pi;
pi = &i;

retrieve the value stored at an address:

variableName = *pointerName ;
int j;
j = *i;

using pointers as arrays:
const int bufferSize = 10;
char buffer[bufferSize] = "J. Smith";
char* bufPtr = buffer;
while(*bufPtr != ’ ’) {

bufPtr++;
}
std::cout << ++bufPtr << std::endl;

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Pointers
Memory allocation/deallocation

Pointer semantics

Warning

Meaning of * and & operators changes if they are found in
declarations rather than inside function implementations

int myFunction(int byVal, int& byRef, int* ptr, int* &ptrRef);

1 changes to byVal done by myFunction are lost after
myFunction terminates

2 changes to byRef are kept

3 changes to the value pointed to by the address in ptr are
kept, but changes to the address in ptr are lost

4 changes to the value pointed to by the address in ptrRef and
to the memory address in ptrRef are both kept

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Pointers
Memory allocation/deallocation

Pointer warnings

Pointers allow you to access memory directly

Attempted memory corruption results in segmentation fault
(SIGSEGV), or garbage output, or unpredictable behaviour

Most common dangers:
1 writing to memory outside bounds

char buffer[] = "LeoLiberti";

char* bufPtr = buffer;

while(*bufPtr != ’ ’) {
*bufPtr = ’ ’;

bufPtr++;

}
2 deallocating memory more than once

Pointer bugs are usually very hard to track

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Pointers
Memory allocation/deallocation

Using object pointers

Suppose myObject is a pointer to a MyClass object, and that
MyClass has a method void MyClass::update(void);

Two equivalent ways to call this method:

1 (*ttsPtr).update();

2 ttsPtr->update();

Prefer second way over first

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Pointers
Memory allocation/deallocation

The stack and the heap
Executable program can either refer to near memory (the
stack) or far memory (the heap)
Accessing the stack is faster than accessing the heap
The stack is smaller than the heap
Variables are allocated on the stack double myDouble;

Common bug (but hard to trace): stack overflow

char veryLongArray[1000000000];
Memory allocated on the stack is deallocated automatically at
the end of the scope where it was allocated (closing brace })
Memory on the heap can be accessed through user-defined
memory allocation
Memory on the heap must be deallocated explicitly, otherwise
memory leaks occur, exhausting all the computer’s memory
Memory on the heap must not be deallocated more than
once (causes unpredictable behaviour)

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Pointers
Memory allocation/deallocation

Automatic stack allocation

varType arrayName [constantValue];

char buffer[1024];

deletion is automatic at end of scope where array was declared

memory is limited (may vary, don’t use more than 64KB as a
rule of thumb)

int n; ...; int myArray[n]; is a mistake, as n is not a
constant value; use the new operator to deal with variable
memory allocation (see below)

forget about Java’s int[] myArray; syntax, it won’t work

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Pointers
Memory allocation/deallocation

User-defined heap allocation

Operator new: allocate memory from the heap

pointerType* pointerName = new pointerType ;

MyClass* myObject = new MyClass;

Operator delete: release allocated memory
delete pointerName; delete myObject;

Commonly used with arrays in a similar way:

pointerType* pointerName = new pointerType [size];

double* positionVector = new double [3];

delete [] pointerName ; delete [] positionVector;

Improper user memory management causes the most
difficult C++ bugs!!

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Input and output

The STL

Collection of generic classes and algorithms

Born at the same time as C++

Well defined

Very flexible

Reasonably efficient

Use it as much as possible, do not reinvent the wheel!

Documentation: http://www.sgi.com/tech/stl/

Contains:

Classes: vector, map, string, I/O streams, . . .
Algorithms: sort, swap, copy, count, . . .

Leo Liberti Introduction to C++ for Java users

http://www.sgi.com/tech/stl/

Introduction
Memory management

Standard Template Library
Classes and templates

Input and output

vector example
#include<vector>

#include<algorithm>

...

using namespace std;

vector<int> theVector;

theVector.push back(3);

theVector.push back(0);

if (theVector.size() >= 2) {
cout << theVector[1] << endl;

}
for(vector<int>::iterator vi = theVector.begin();

vi != theVector.end(); vi++) {
cout << *vi << endl;

}
sort(theVector.begin(), theVector.end());

for(vector<int>::iterator vi = theVector.begin();

vi != theVector.end(); vi++) {
cout << *vi << endl;

}
Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Input and output

map example

#include<map>

#include<string>

...

using namespace std;

map<string, int> phoneBook;

phoneBook["Liberti"] = 3412;

phoneBook["Baptiste"] = 3800;

for(map<string,int>::iterator mi = phoneBook.begin();

mi != phoneBook.end(); mi++) {
cout << mi->first << ": " << mi->second << endl;

}
cout << phoneBook["Liberti"] << endl;

cout << phoneBook["Smith"] << endl;

for(map<string,int>::iterator mi = phoneBook.begin();

mi != phoneBook.end(); mi++) {
cout << mi->first << ": " << mi->second << endl;

}

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Input and output

Streams

Data “run” through streams

Stream types: input, output, input/output, standard, file,
string, user-defined
outputStreamName << varName or literal . . . ;

std::cout << "i = " << i << std::endl;

inputStreamName >> varName ; std::cin >> i;

stringstream buffer;

char myFileName[] = "config.txt";

ifstream inputFileStream(myFileName);

char nextChar;

while(inputFileStream && !inputFileStream.eof()) {
inputFileStream.get(nextChar);

buffer << nextChar;

}
cout << buffer.str();

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Input and output

Object onto streams

Complex objects may have a complex output procedure

Example: suppose we have a class called TimeStamp which
reads the system clock (method update()), and produces the
time when asked (methodget())

class TimeStamp {...};
We create an object of this class
TimeStamp theTimeStamp;

We would like to be able to
cout << theTimeStamp << endl; and get

Thu Sep 7 12:23:11 2006 as output

Solution: overload the << operator
std::ostream& operator<<(std::ostream& s, TimeStamp& t)

throw (TimeStampException);

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Input and output

Object onto streams II

#include <ctime>

std::ostream& operator<<(std::ostream& s, TimeStamp& t)

throw (TimeStampException) {
using namespace std;

time t theTime = (time t) t.get();

char* buffer;

try {
buffer = ctime(&theTime);

} catch (...) {
cerr << "TimeStamp::updateTimeStamp(): "

"couldn’t print system time" << endl;

throw TimeStampException();

}
buffer[strlen(buffer) - 1] = ’\0’;
s << buffer;

return s;

}

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

Example: nested inheritance

Consider a corporate personnel database

Need class Employee;

Certain employees are “empowered” (have more

responsibilities): need class Empowered : public Employee;

Among the empowered employees, some are managers: need
class Manager : public Empowered;

Manager contains public data and methods from Empowered,
which contains public data and methods from Employee

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

Example: nested inheritance

class Employee {
public:

Employee();

Ẽmployee();

double getMonthlySalary(void);

virtual void

getEmployeeType(void);

};

←

class Empowered : public Employee {
public:

Empowered();

Ẽmpowered();

bool isOverworked(void);

virtual void

getEmployeeType(void);

};

↑
class Manager : public Empowered {
public:

Manager();

M̃anager();

bool isIncompetent(void);

virtual void

getEmployeeType(void);

};

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

Example: nested inheritance

It is possible to write a function such as:
void use(Employee* e) {

e->getEmployeeType();

}

and then call it using Employee, Empowered, Manager objects:
Employee e1;

Empowered e2;

Manager e3;

Employee* e1Ptr = &e1; // all pointers to Employee base class

Employee* e2Ptr = &e2;

Employee* e3Ptr = &e3

use(e1Ptr); // output: Employee

use(e2Ptr); // output: Empowered

use(e3Ptr); // output: Manager

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

Being or having an object?

Consider example of a salary object:
class Salary {

Salary();

S̃alary();

void raise(double newSalary);

...

};

Might think of deriving Employee from Salary so that we can
say theEmployee.raise(); to raise the employee’s salary

Technically, nothing wrong

Architecturally, very bad decision!

Rule of thumb:
derive B from A only if B can be considered as an A

In this case, better embed a Salary object as a data field of
the Employee class

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

Pure virtual classes

Java equivalent: interface

All classes derived from the interface implement the interface
methods as declared in the interface

Can guarantee the formal behaviour of all derived objects

In C++, an interface is known as a pure virtual class: a class
consisting only of method declarations and no data fields

A pure virtual class has no constructor — no object of that
class can ever be created (only objects of derived classes)

A pure virtual class may have a virtual destructor to permit
correct destruction of derived objects

All methods (except the destructor) are declared as follows:

returnType methodName(args) = 0;

All derived classes must implement all methods

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

Pure virtual classes

class EmployeeInterface {
public:

virtual ẼmployeeInterface() { }
virtual void getEmployeeType(void) = 0;

};

class Employee : public virtual EmployeeInterface {...};
class Empowered : public Employee, public virtual EmployeeInterface {...};
class Manager : public Empowered, public virtual EmployeeInterface {...};

void use(EmployeeInterface* e) {...}
...

use(&e1); // output: Employee

use(&e2); // output: Empowered

use(&e3); // output: Manager

Code behaves as before, but clearer architecture

public virtual inheritance: avoids having many copies of
EmployeeInterface in Empowered and Manager

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

User-defined templates

Situation: action performed on different data types

Possible solution: write many functions taking arguments of
many possible data types.

Example: swapping the values of two variables

void varSwap(int& a, int& b);
void varSwap(double& a, double& b);
. . .
Potentially an unlimited number of objects ⇒ invalid approach

Need for templates
template<class TheClassName> returnType functionName(args);

template<class T> void varSwap(T& a, T& b) {
T tmp(b);

b = a;

a = tmp;

}

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

User-defined templates

Behaviour with predefined types:
int ia = 1;

int ib = 2;

varSwap(ia, ib);

cout << ia << ", " << ib << endl; // output: 2, 1

double da = 1.1;

double db = 2.2;

varSwap(da, db);

cout << da << ", " << db << endl; // output: 2.2, 1.1

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

User-defined templates

Behaviour with user-defined types:
class MyClass {
public:

MyClass(std::string t) : myString(t) { }
M̃yClass() { }
std::string getString(void) { return myString; }
void setString(std::string& t) { myString = t; }

private:

std::string myString;

};

MyClass ma("A");

MyClass mb("B");

varSwap(ma, mb);

cout << ma << ", " << mb << endl; // output: B, A

Leo Liberti Introduction to C++ for Java users

Introduction
Memory management

Standard Template Library
Classes and templates

Inheritance and embedding
Interfaces
Templates

Internals and warnings

Many hidden overloaded functions are created at
compile-time (one for each argument list that is actually
used)

Very difficult to use debugging techniques such as breakpoints
(which of the hidden overloaded functions should get the
breakpoints?)

Use sparingly

But use the Standard Template Library as much as possible
(already well debugged and very efficient!)

Leo Liberti Introduction to C++ for Java users

	Introduction
	Programming style issues
	Main differences
	Development of the first program

	Memory management
	Pointers
	Memory allocation/deallocation

	Standard Template Library
	Input and output

	Classes and templates
	Inheritance and embedding
	Interfaces
	Templates

