
XVI Workshop on Global Optimization 2025 1

A blueprint for computing with distance
geometry

Leo Liberti1, Maël Kupperschmitt1, Ha Duy Nguyen1

1LIX CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France,
{leo.liberti,mael.kupperschmitt–le-flao,ha-duy.nguyen}@polytechnique.edu

Abstract The equivalence between NP-hard problems given by polynomial
reductions can be exploited to solve a problem in terms of another
problem. Usually “other problems” are those in which humans model
naturally, such as sat. We propose instead to use the fundamental
problem of distance geometry, i.e. drawing a graph in a K-dimensional
Euclidean space by points and segments as long as the edge weights.
The geometrical nature of this problem affords novel solution oppor-
tunities in continuous space (local search, relaxations) when solving
combinatorial problems.

Keywords: Distance Geometry Problem, Complexity, Computation

1. Introduction

The distance geometry problem (DGP) is as follows: given a positive
integer K and a simple edge-weighted undirected graph G = (V,E, d),
decide if there exists a realization x : V → RK such that

∀{u, v} ∈ E ∥xu − xv∥22 = d2uv, (1)

where duv is the edge weight. If K is fixed we denote the problem as DGPK .
We exploit the equivalence properties of the complexity class NP (de-

cision problems for which every YES instance can be certified in polyno-
mial time) in order to solve hard problems for NP in terms of the DGP. We
call this short paper a “blueprint” in the sense that many ideas herein are
sketched and computationally untested.

Leo Liberti
in J. Skåntorp and J. Kronqvist (eds.), Proceedings of STOGO, pp. 89-93, KTH Royal Institute of Technology, 2025

2 Leo Liberti, Maël Kupperschmitt, Ha Duy Nguyen

2. NP-hardness primer

A problem P is hard for the class NP if every other problem in NP can be
polynomially reduced to P . A polynomial reduction from a problem Q ∈ NP
to P is a polytime algorithm that transforms every YES instance of Q in
a YES instance of P and every NO instance of Q in a NO instance of P .
Then P can be no easier than Q (up to a polynomial factor) since otherwise
one could solve P instead of Q and obtain the same answer, which would
make Q easier than itself. From this it follows that every problem in NP is
at most as hard as any NP-hard problem and that all NP-hard problems
have the same hardness.

Polynomial reduction algorithms from Q to P transform problem in-
stances of Q into decision-invariant instances of P , a process often called
modelling. The prototypical NP-hard problem is sat1. In [2], the trace of the
polytime certification algorithm for YES instances of NP was modelled by
an infinite family of sat instances that are satisfiable iff the certification
algorithm succeeds. By [2], modelling sat in terms of new problems P is
sufficient to prove the NP-hardness of P .

2.1 Categorizations of NP-hard problems

NP-hard problems that also belong to NP are called NP-complete. This
provides a first categorization.

A second one is given by weakly and strongly NP-hard problems. If an
NP-hard problem Q has a partly numerical input (e.g. integers), and the
polytime reduction to P represents some of these integers in unary form
(e.g. n ∈ N in Q is transformed to a set of n vertices in P), then P is weakly
NP-hard. If all integers are represented in binary form (e.g. n is represented
as a weight on an edge), then P is strongly NP-hard. Although we apply
this categorization to the problems, it really applies to reductions.

The third categorization is the one between general and specific problems:
humans naturally use the former modelling, such as sat, mathematical
programming (MP), constraint programming (CP). General problems
usually involve sentences with variables. Problems that are perceived to
lack these properties are called specific. Variables, however, are not crucial
to mathematics [7]. The description length is more important: modelling
a specific problem by a general (e.g. k-clique in MP) leads to reasonably
short descriptions of the resulting MP instance, whereas encoding a bi-

1The sat problem asks the question: is a given conjunction of clauses each of which is a
disjunction of literals satisfiable?

Computing with distance geometry 3

nary linear programming (BLP)2 instance by DGP1 leads to a longer
description w.r.t. the original instance size.

2.2 The DGP is NP-hard

In [5] we find several reductions to the DGP, both weak and hard. In par-
ticular, the DGP1 is weakly NP-hard by reduction from partition3 and
strongly NP-hard by reduction from 3sat4.

The DGP1 is known to be NP-complete while this is not know for the
DGPK for K > 1 [1]. In K > 1 dimensions an instance with integer edge
weights might lead to a realization that necessarily involves real algebraic
numbers, such as e.g. a triangle graph with unit weights. We do not know
a polytime algorithm for checking whether Eq. (1) holds if xu, xv have real
algebraic components. The DGP is considered a specific problem.

3. Motivations

The reason why we believe that there could be advantages in modelling
by DGP is the geometric nature of the realization x: (i) although we do not
know how to use x to certify a YES instance precisely, it can be used ap-
proximately (e.g. using floating-point operations) to verify Eq. (1) to any
desired accuracy; (ii) the fact that x ranges over RK reduces any combina-
torial problem Q ∈ NP to one in continuous space, paving the way for the
use of solution algorithms involving gradients and hessians; (iii) obtaining
a relaxation of a DGPK instance may be as simple as solving the instance
in a higher-dimensional space.

4. Contributions

4.1 Saxe’s reduction from 3sat to DGP1

Our first contribution is a proof that the strongly polynomial reduction
from 3sat to DGP1 (with edge weights restricted to {1, . . . 4}) in [5] is valid.
The original construction is based on three weighted graph gadgets, the
most complicated of which represents the j-th clause Lj1 ∨Lj2 ∨Lj3 of the
given 3sat. Saxe writes:

2A subclass of MP with linear objective and constraints and binary variables only.
3Given a list (a1, . . . , an) is there I ⊆ [n] = {1, . . . , n} such that

∑
i∈I ai =

∑
i̸∈I ai?

4Like sat, but every clause has exactly 3 literals.

4 Leo Liberti, Maël Kupperschmitt, Ha Duy Nguyen

careful study of the graph [. . .] will reveal that it is impossible to em-
bed it in the lin in such a way that [. . .] all three of the Ljk are sent to
−1 (FALSE), but if one or more of the Ljk are to be sent to 1 (TRUE)
then [. . .] exactly one such embedding is possible.

In fact, the clause gadget is wrong: Lj2 is placed at the wrong vertex, and
one of the edges is missing its weight. The technical report [6] corrects the
gadget but still lacks a proof, which is nontrivial. We were able to write a
satisfactory proof based on showing that realized cycles in the graphs fail
to close correctly5 unless at least one literal Ljk is placed at xLjk

= 1.

4.2 Strong reduction from BLP to DGP1

Our second contribution is a reduction from BLP to DGP1 based on § 4.1.
First, we reduce BLP to a sat: this involves turning all negative integers
to positive and replace corresponding variables to negative literals, trans-
form conditional additions to adder circuits, and introduce an integer com-
parison circuit. Then the circuit sequence is turned into a sat instance [3],
which is then transformed to a 3sat by successive “linearization” [4]. Fi-
nally, the 3sat is reduced to DGP1 by § 4.1.

4.3 Weak relaxed reduction from BLP to DGP1

Our third contribution is a “relaxed reduction” from BLP to DGP1. Each of
the m inequalities Aiy ≤ bi of the BLP is transformed to an equation via a
binary encoding of a slack variable si as

∑
h<log2 Ui

2hβh where Ui ≥
∑

j |Aij |

and each β ∈ {0, 1}. The equations are penalized by squaring them and
then summed together. Each squared variable ν2 is replaced by ν since all
variables are binary. Cross products νµ are linearized to a single variable
ξ. In this form, the instance is equivalent to a subset-sum6, which can be
easily reduced to partition. We then apply the weak reduction to DGP1

in [5]7. This BLP→DGP1 reduction is relaxed because, upon solving the
DGP1, the vertex positions corresponding to the ξ variables may take val-
ues different from the corresponding product νµ. We address this issue via
a solution algorithm for the DGP1, called Branch-and-Prune in 1D (BP1),
which can correct such errors at runtime8.

5I.e. the first vertex position xα on the cycle path is different from the last vertex position xω .
6Given a list (a1, . . . , an) of integers and a value b, is there an I ⊆ [n] such that

∑
i∈I ai = b?

7In the original paper as well as in [6] the proof is only sketched: we wrote a full proof.
8BP1 places the next vertex left or right of the previous one (vertex orders allowing this always
exist when K = 1 and the graph is connected). When two out of the three variables ν, µ, ξ are
fixed to certain values in a branch, the third value is fixed: BP1 prunes the other branch.

Computing with distance geometry 5

4.4 Geometric relaxations

We apply the strong reduction to an infeasible BLP instance to obtain an
infeasible DGP1. We consider the error formulation9 min{

∑
{u,v}∈E(s

+
uv +

s−uv) | ∥xu − xv∥22 = d2uv}. We show that globally solving this instance
with K = 2 in increasingly thin slabs around the first coordinate leads to
increasingly tightened relaxations tending towards the exact optimal value
of the ℓ1 error. We define some convex relaxations of MinErr-DGP.

5. Conclusion

Much work remains to be done: (1) streamlining our reductions; (2) im-
proving our BP1 implementation; (3) tight and efficient geometric relax-
ations; (4) mapping relaxation bound values from the DGP back to the BLP.
Lastly, we are also looking at possible reductions based on computability
rather than complexity.

References

[1] N. Beeker, S. Gaubert, C. Glusa, and L. Liberti. Is the distance geometry prob-
lem in NP? In A. Mucherino, C. Lavor, L. Liberti, and N. Maculan, editors, Dis-
tance Geometry: Theory, Methods, and Applications, pages 85–94. Springer, New
York, 2013.

[2] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the
Symposium on the Theory of Computing, STOC, pages 151–158, New York, 1971.
ACM.

[3] N. Eén and N. Sörensson. Translating pseudo-boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation, 2:1–25, 2006.

[4] R. Karp. Reducibility among combinatorial problems. In R. Miller and
W. Thatcher, editors, Complexity of Computer Computations, volume 5 of IBM Re-
search Symposia, pages 85–104, New York, 1972. Plenum.

[5] J. Saxe. Embeddability of weighted graphs in k-space is strongly NP-hard.
Proceedings of 17th Allerton Conference in Communications, Control and Computing,
pages 480–489, 1979.

[6] J. Saxe. Two papers on graph embedding problems. Technical Report CMU-
CS-80-102, Dept. of Computing, Carnegie-Mellon University, 1980.

[7] A. Tarski and S. Givant. A formalization of set theory without variables. Number 41
in American Mathematical Society Colloquium Publications. AMS, Providence,
RI, 1987.

9Called MinErr-DGP.

