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LIX, École Polytechnique, F-91128 Palaiseau, France

(liberti@lix.polytechnique.fr)

June 25, 2007

Abstract

We introduce a new family of valid inequalities for general linear integer programming problems,

based on the distance of the relaxed solution to the closest integral point. We show that these are valid

cuts, establish some relations with Balas’ intersection cuts, and show that a straightforward cutting

plane algorithm derived from either spherical or intersection cuts will in general only converge if a

suitable Gomory-type strengthening is put in place.
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1 Introduction

In this paper we propose a new family of valid cuts for Integer Programming (IP) linear problems in the

following general form:

minx cx

s.t. Ax ≤ b

x ≥ 0

x ∈ Z
n,































(1)

where x ∈ Z
n are the decision variables, c ∈ R

n is a row cost vector, A is an m × n matrix and b ∈ R
m.

Let P = {x ∈ Z
n
+ | Ax ≤ b} be the feasible region of problem (1), and let R = {x ∈ R

n
+ | Ax ≤ b}

be the continuous relaxation of the feasible region P . Assume R has a non-empty interior and that

dim aff(R) = n. Let x∗ be the (integral) solution of (1), let x′ be the solution of the relaxed problem

minx∈R cx and assume that x′ is not an integral vector. The cuts we shall propose are suitable for use in

a cutting plane or Branch-and-Cut algorithm.

Finding valid cuts is a fundamental task when solving IP problems. The most effective cutting

techniques usually rely on problem structure. See [15], Ch. II.2 for a good technical discussion on the
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most standard techniques, and [13, 14, 10] for recent interesting group-theoretical approaches which are

applicable to large subclasses of IPs. Valid cuts for IP problems in general form (1) are not as easy to

come by. Valid inequalities are generated by all relaxation hierarchies (like e.g. Sherali-Adams’ [16]).

The best known general-purpose valid cuts are the Gomory cuts [8]: they are simple to define, can

be written in a form suitable for straightforward insertion in a simplex tableau, and are guaranteed

to yield the optimal integer solution in a finite number of steps of a cutting plane algorithm; many

strengthenings of the Gomory cutting planes have been proposed [11]. Lift-and-project techniques are

used to generate new cuts from existing inequalities [4]. Families of valid cuts for general Binary Integer

Programming (BIP) problems have been derived, for example, in [5, 12], based on geometrical properties

of the definition hypercube {0, 1}n. In [5], inequalities defining the various faces of the unit hypercube

are derived. The cuts proposed in [12] are defined by finding a suitable hyperplane separating a unit

hypercube vertex x̄ from its adjacent vertices. Balas’ intersection cuts [2], based on finding intersection

points between the hypersphere circumscribing the unit hypercube and the extreme rays of a cone rooted

at the current relaxed optimum, are investigated in Section 3. In [6], Fenchel duality arguments are used

to find the maximum distance between the solution of the continuous relaxation of (1) and the convex

hull of the feasible set; this gives rise to provably deep cuts (called “Fenchel cuts”). The constraint

programming community has developed techniques for generating valid cuts which are based on logical

inference methods [9, 1, 7]. Although these cuts may not always be expressed as linear inequalities, they

are nonetheless rules which attempt to separate the solution of the relaxation from the integral feasible

region.

The main contribution of this paper is the description of a new family of cutting planes, called spherical

cuts, which can be applied to linear IPs in general form. These are based on the following geometrical

observation (described graphically in Fig. 1). Consider the ball centered at x′ with radius ||x′− x̄||, where

x̄ is the integral vector nearest to x′. Intuitively, we can discard all the points in the interior of this ball

as they will not be integer (thus defining an improved, albeit nonconvex, feasible region). The cuts we

propose define a tighter convex relaxation of the improved feasible region.

Section 2 contains the definitions and theoretical results concerning spherical cuts. Section 3 es-

tablishes some relations between Balas’ intersection cuts and spherical cuts. Section 4 shows that a

straightforward cutting plane algorithm based on spherical or intersection cuts need not converge unless

a Gomory-type cut modification is employed. Section 5 concludes the paper.

2 Spherical cuts

By a valid cut we mean an inequality which is valid for P but which is not satisfied by at least a non-

integral point of R. Notationally, given a set of constraint indices I we indicate with AI the matrix
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formed by the rows of A indexed by I. Likewise, bI is the column vector formed by the rows of b indexed

by I. We make use of the fact that x∗ is a vertex of the polyhedron R if and only if x∗ may not be

written as a strict convex combination of points of R.

Let x′ be the solution of the continuous relaxation of (1) corresponding to a vertex of the polyhedron

R, assume that x′ is not an integral vector, and let x̄ the integral vector nearest to x′ (this can be found

by rounding each fractional component of x′ to the nearest integer value). Let γ = ||x′ − x̄||. Since we

assumed that x′ is not integral, we have γ > 0.

2.1 Proposition

The nonconvex inequality

||x − x′|| ≥ γ (2)

is a valid cut for P .

Proof. By definition γ = min{||x − x′|| | x ∈ Z
n}, so all the points in P are feasible with respect to (2).

However, x′ ∈ R is not feasible with respect to (2) because ||x′ − x′|| = 0 < γ, as claimed. 2

So (2) is a nonconvex valid cut for problem (1). Let Q = R∩{x | ||x−x′|| ≥ γ}. A convex relaxation for

Q can easily be obtained by identifying n points β1, . . . , βn where the spherical surface S(x′, γ) intersects

n edges of the polyhedron R adjacent to x′ (see the example in Fig. 1 and see also the discussion of the

case when x′ is a degenerate vertex in the next paragraph). The points β1, . . . , βn define a hyperplane

πx ≤ π0 which is a valid (linear) inequality for P and a valid cut with respect to R. We call such a cut

a spherical cut.

More precisely, let I ′ be the set of indices of constraints which are active at x′. Since x′ ∈ R
n and x′

is a vertex of R, we have |I ′| ≥ n. Let I be a subset of I ′ such that |I| = n and AI is nonsingular. Then

AIx
′ = bI . (3)

This corresponds to a choice of active constraints whose gradients are linearly independent; some of these

constraints may be range constraints and may not have a corresponding row in the canonical constraint

matrix. For each i ≤ n define I(i) = I\{i}. The n linear systems AI(i)x = bI(i) (each having rank n− 1)

for i ≤ n describe n one-dimensional affine spaces which contain x′. For each i ≤ n, let di be a unit

direction vector satisfying AI(i)di = 0 such that βi = x′ +γdi satisfies AIβi ≤ bI . If x′ is a nondegenerate

vertex, all these spaces contain an edge of R which is adjacent to x′. For example in Fig. 1 there are two

such affine spaces, i.e. those containing the segments (x′, β1) and (x′, β2), leading to the construction of

the spherical cut πx ≤ π0. If x′ is degenerate, some of these spaces may not contain edges of R, but the

derived spherical cut is valid nonetheless (see Fig. 2).
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x′

x̄

x∗

β1

β2

d1

d2

R
c

Spherical cut πx ≤ π0

Figure 1: The spherical cut construction in 2D.

x′

x̄

x∗

R
c

degenerate spherical cut

Figure 2: Spherical cut on degenerate vertex.

2.2 Theorem

Let πx = π0 be the hyperplane passing through β1, . . . , βn. Then πx = π0 separates x′ from conv(P ).

Proof. Let Q0 = {x | πx ≤ π0} and Q̄ = R ∩ Q0. Q̄ is easily shown to be a convex relaxation of Q (it

is convex by definition and it contains every point of Q by construction). Hence, the inequality πx ≤ π0

is valid for each point in Q. Suppose now, to get a contradiction, that πx′ = π0. This means that the

directions di are coplanar, and hence affinely dependent. So there are affine coefficients λ1, . . . , λn with
∑n

i=1 λi = 1 such that
∑n

i=1 λidi = 0. Pick ε > 0 such that ξi = x′ + εdi ∈ R for all i ≤ n. We have:

n
∑

i=1

λiξi =

n
∑

i=1

λi(x
′ + εdi) = x′

n
∑

i=1

λi + ε

n
∑

i=1

λidi = x′.

So x′ can be expressed as a (strict) affine combination of the points ξ1, . . . , ξn, all of which are contained
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in the polyhedron R. So x′ cannot not a vertex of R, against the assumption. 2

An alternative proof to Thm. 2.2 is provided by an easy corollary to Thm. 1 in [3] (attributed to

F. Glover).

3 Intersection cuts

Intersection cuts [2] are general-purpose valid cuts for IP problem introduced by Balas in 1971. Let x′ be

the solution of the continuous relaxation of (1) and x̄ be the closest integral vector to x′, e = (1
2 , . . . , 1

2 ) ∈

R
n, y = ⌊x′⌋ + e and γ0 = ||y − x̄|| =

√
n

2 . Then it is easy to show that ||x − y|| ≥ γ0 is a (nonconvex)

valid inequality for (1). Let Q0 = R ∩ {x | ||x − y|| ≥ γ0}. A convex relaxation for Q0 can be obtained

with the same techniques as those used to obtain the convex relaxation for Q in Sect. 2, as illustrated by

Fig. 3.

x′

x̄

x∗

α1

α2

d1

d2

R

c

y

Intersection cut

Figure 3: An intersection cut.

In particular, intersection cuts are based on the intersection of the semi-infinite lines x′ + fi (for

i ≤ n) with the hypersphere circumscribing the unit hypercube containing x′, where fi is the R-feasible

direction defined by AI(i)fi = 0. This is the same construction as for spherical cuts, the only difference

being in how the sphere is defined. We denote by σ be the sphere with equation ||x − y|| = ||x̄ − y||

(defining sphere for intersection cuts) and S be the sphere with equation ||x − x′|| = ||x̄ − x′|| (defining

sphere for spherical cuts). We can now use Lemma 2 in [2] to find αi = x′ + fi for all i ≤ n: we write

fi = λiāi where āi is the i-th column of the final simplex tableau (completed with zeroes in components

corresponding to nonbasic variables). For intersection cuts, λi is a steplength defined as follows (for all

i ≤ n):

∀i ≤ n λi =
(x′ − ⌊x′⌋ − e)āi

||āi||2
+

||e||

||āi||
. (4)
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We remark that (4) is derived from Eq. (12) in [2] by simple transformations. For spherical cuts, as was

mentioned above, we write βi = x′ + γdi where di = āi

||āi|| and γ = ||x′ − x̄||, for all i ≤ n. We can use

Thm. 2 in [2] to compute the cut coefficients.

3.1 Dominance relations

It turns out there is no dominance relation between the class of intersection cuts and that of spherical

cuts. A valid inequality πx ≤ π0 is defined to be dominant in R with respect to another valid inequality

µx ≤ µ0 if there is a value u > 0 such that uµ ≤ π and π0 ≤ uµ0. Fig. 4 shows an example where an

intersection cut dominates a spherical cut. On the other hand, it is possible to construct cases where

there is no dominance relation (see Fig. 5) and cases where spherical cuts dominate intersection cuts (see

Fig. 6).

x′

x̄

x∗

c

spherical cut

intersection cut

Figure 4: Dominance of intersection over spherical cuts.

If the ball defining the spherical cut is wholly contained within the ball defining the intersection cut,

then the intersection cut µx ≤ µ0 dominates the spherical cut πx ≤ π0, as the following result shows.

Let σ̄ be the (filled) ball centered at y with radius
√

n

2 , and let S̄ be the (filled) ball centered at x′ with

radius x′ − x̄.

3.1 Proposition

If S̄ ⊆ σ̄ then the intersection cut for problem (1) at x′ dominates the corresponding spherical cut on R.

Proof. For all i ≤ n, by construction βi belongs to the segment [x′, αi], so the simplex defined by

{x′, βi | i ≤ n} is wholly contained in the simplex defined by {x′, αi | i ≤ n}. Thus, for all x ∈ R with

πx ≥ π0 we have µx ≥ µ0. The result follows. 2

The proposition above really only applies to very special cases: let D be the set of diagonals of the

hypercube cornered in ⌊x⌋, i.e. induced by the vertices in H = {⌊x′⌋ + u | u ∈ {0, 1}n}.
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x′

x∗ = x̄

spherical cut

intersection cut

Figure 5: No dominance relation.

x′
x̄

spherical cut

intersection cut

Figure 6: Dominance of spherical over intersection cuts.

3.2 Lemma

The locus of points x′ ∈ σ̄ such that S̄ ⊆ σ̄ is D.

Proof. Let x′ 6∈ D. Then ||x′ − x̄|| = γ > 0; furthermore, the tangents to S̄ and σ̄ in x̄ differ. Hence

there must be a neighbourhood of x̄ containing a point z ∈ S̄ r σ̄, proving the result. 2

The above lemma notwithstanding, there are in practice a lot of cases when intersection cuts dominate

spherical cuts in R even though x′ 6∈ D.
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3.2 Intersection cuts from outer polars

In [3], the intersection cut idea was applied to a set generating deeper cuts than those yielded by the

sphere σ: namely the octahedron τ = {x + e ∈ R
n | |x − e| = n

2 }. It is easy to show with examples

similar to those above that spherical cuts and intersection cuts from outer polars may be in any type of

dominance relation with each other (see Fig. 7).

x′

x∗

x̄

spherical cut

intersection cut

x′

sph. cut

intersection cut

Figure 7: Some dominance relations between spherical cuts and intersection cuts from outer polars. In

the picture on the left (no dominance), the negative quadrant is feasible. The picture on the right shows

a case where the spherical cut dominates.

4 Cutting plane algorithm

A general separation procedure such as spherical cut generation naturally lends itself to be used within

a cutting plane algorithm, as follows.

1. Solve the continuous relaxation of (1) to find a solution x′.

2. If x′ ∈ Z
n terminate with solution x′.

3. Generate a spherical cut πx ≤ π0 separating x′ from conv(P ).

4. Repeat from 1.
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The fundamental question to address is whether such an algorithm converges in a finite number of steps.

In this section we show a counterexample showing that the cutting plane algorithm as given above does

not, in general, converge to the optimum. Consider the problem:

min−x1 − x2

3x1 ≤ 4

3x2 ≤ 4

x1, x2 ≥ 0

x1, x2 ∈ Z.











































(5)

The initial solution of the relaxed problem is x′ = (4
3 , 4

3 ). The nearest integral point, which also solves

the problem, is x∗ = (1, 1). Spherical cuts keep cutting away portions of relaxed feasible region belonging

to the circle centered at x′ with radius d(x′, x∗) without ever reaching x∗, as shown in Fig. 8.

x1

x2

1.5

1.5

1

0.5

10.5
0

0

x2

1.2

1.2

0.8

0.8

0.4

0
0.40 1.6

x1 x1

x2

1.2

1.2

0.8

0.4

0.8
0

0.40

x1

x2

1.2

1.2

0.8

0.4

0.8
0

0.40

x2

1.6

1.2

x1

0.8

0.4

1.2
0

0.80.40
x1

x2

1.2

1.2

0.8

0.4

0.8
0

0.40

Figure 8: Nonconvergence of the cutting plane algorithm.

In order to show that the cutting plane algorithm does not converge for the example above, we prove

that x∗ does not satisfy any problem constraint or added spherical cut at equality. It follows that x∗ can

never be a vertex of the relaxed polyhedron, which implies the nonconvergence of the algorithm. Since

3x∗
j < 4, for j = 1, 2, the original problem constraints are not satisfied at equality by x∗. It remains to

be shown that no spherical cut is ever satisfied at equality by x∗; this is dealt with in a more general
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setting in Lemma 4.1.

4.1 Lemma

Consider problem (1) with optimal (integer) solution x∗. Assume (a) that Ax∗ < b; (b) at each iteration

k of the spherical cut based cutting plane algorithm the closest integral point to the the current relaxed

solution is always x∗; (c) the first generated spherical cut is not active at x∗. Then none of the spherical

cuts generated during the algorithm is ever active at x∗.

Proof. We proceed by induction on the cutting plane algorithm iteration index k. For k = 1 the claim

is verified by assumption (c). The induction hypothesis is now that for all j < k the claim is verified.

Suppose, to get a contradiction, that the k-th spherical cut, πx ≤ π0, is such that πx∗ = π0, and let x′

be the current relaxed solution. By the definition of spherical cut, x∗ is the intersection of the sphere

centered at x′ of radius d(x′, x∗) and a half-line contained in a problem constraint active at x∗. By (a),

no original problem constraint is active at x∗, so there is an algorithmic iteration j < k such that the

spherical cut generated at iteration j is active at x∗, against the inductive hypothesis. 2

For problem (5), conditions (a) and (c) of Lemma 4.1 are trivially verified. To verify condition (b),

consider Fig. 9, left frame. We have to show that the current relaxed solution x′ can never be in the sets

�� ��

�� ��

1

1

0

0.5

0.5

x∗

(x′)1

4
3

4
3

A

B

C D E

�� ��

�� ��

��

��

��

1

1

0

0.5

0.5

x∗

(x′)1

x′

y

−c

4
3

4
3

A

B

C D E

Figure 9: Verification of condition (b) of Lemma 4.1.

A,B,C,D,E (which are closest to integral points different from x∗). Suppose x′ ∈ A ∪ B ∪ C ∪ D ∪ E

(so that d(x′, x∗) > 0). Let y = 1
2x′ + 1

2x∗. Then (by inspection, but it is easy to show it algebraically)

(−c)x′ ≤ (−c)y and (−c)x∗ > (−c)y. Hence (−c)x ≤ (−c)y separates R (the convex hull of P , the

feasible region of the integer problem) from x∗, whence x∗ is infeasible, against the hypothesis (see Fig. 9,

right frame).
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4.1 Intersection cuts based cutting plane algorithm

Intersection cuts yield a convergent cutting plane algorithm [2], but only after applying a Gomory-type

strengthening of the intersection cut called integerization. If we consider intersection cuts as defined in

Sect. 3) with no integerization, a cutting plane algorithm based on them need not converge.

4.2 Lemma

Consider problem (1) with optimal (integer) solution x∗. Assume that Ax∗ < b. Then none of the

intersection cuts generated during the algorithm is ever active at x∗.

Proof. The proof, by induction, is very similar to that of Lemma 4.1. By assumption, none of the

problem constraints are active at x∗, which implies that the first generated intersection cut cannot be

active at x∗. For an intersection cut to be active at x∗ at iteration k, one would need at least one relaxed

polyhedron edge to be active at x∗ at iteration k − 1, but this is impossible by the induction hypothesis,

as the polyhedron edges are either original problem constraints or intersection cuts generated at previous

iterations. 2

By Lemma 4.2, problem (5) can also be used to show nonconvergence of an intersection cuts based

cutting plane algorithm. So the reason allowing the intersection cut-based cutting plane algorithm to

converge is really the integerization procedure applied to the cut.

4.2 Integerization of spherical cuts

The integerization procedure described in [2] for intersection cuts applies to

[. . . ] any equation of the simplex tableau that is selected as a pivot row for a dual simplex

iteration [. . . ] ([2], p. 27-28)

and hence can readily be applied to spherical cuts as well as intersection cuts. The convergence proof

([2], p. 31-32) specifically depends on intersection cuts only to state that a relaxed fractional solution is

cut off by the intersection cut generated at the next iteration. By Thm. 2.2, this also holds for spherical

cuts. Hence a spherical cuts based cutting plane algorithm with integerization will converge to the integer

solution.
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4.3 Example

To conclude the section, we exhibit the behaviour of the spherical cut-based cutting plane algorithm

(with no integerization) on the illustrative example below.

min−2x1 − 3x2

6x1 + 4x2 ≤ 5

−x1 + 2x2 ≤ 1

x1, x2 ∈ {0, 1}.

With this particular instance, the cutting plane algorithm terminates having found a point x∗ each

component of which is at most 10−6 away from its closest integral value (see Fig. 10).
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Figure 10: Cutting plane algorithm running to termination on the illustrative example.

5 Conclusion

This paper describes a new class of valid cuts, called spherical cuts, which are applicable to general integer

programming problems. Spherical cuts are the convex (linear) relaxation of a nonconvex cut consisting

of the outside of a sphere centred at the current LP relaxation solution with radius equal to the distance

to the nearest integer point. Although the geometric idea underlying spherical cuts is very similar to that

of Balas’ intersection cuts, no dominance relation can be established between the two classes of cuts. We

also show that a cutting plane algorithm based on spherical cuts or intersection cut may fail to converge

unless a suitable Gomory-type cut strengthening is put in place.
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J.-C. Régin and M. Rueher, editors, Proceedings of the 1st International Conference on Integration

of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems

(CPAIOR 2004), volume 3011 of LNCS, pages 127–141, Berlin, 2004. Springer.

[8] R.E. Gomory. Essentials of an algorithm for integer solutions to linear programs. Bulletin of the

American Mathematical Society, 64(5):256, 1958.

[9] J.N. Hooker. Constraint satisfaction methods for generating valid cuts. In D.L. Woodruff, editor,

Advances in Computational and Stochastic Optimization, Logic Programming, and Heuristic Search,

pages 1–30, Dordrecht, 1997. Kluwer.

[10] V. Kaibel and M. Pfetsch. Packing and partitioning orbitopes. Optimization Online, 3(1354), 2006.

[11] A. Letchford and A. Lodi. Strengthening Chvátal-Gomory cuts and Gomory fractional cuts. Oper-
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