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CUTTING PLANES FOR SIGNOMIAL PROGRAMMING

LIDING XU*, CLAUDIA D’AMBROSIO*, LEO LIBERTI*, AND SONIA HADDAD-VANIER*f

Abstract. Cutting planes are of crucial importance when solving nonconvex nonlinear programs
to global optimality, for example using the spatial branch-and-bound algorithms. In this paper,
we discuss the generation of cutting planes for signomial programming. Many global optimization
algorithms lift signomial programs into an extended formulation such that these algorithms can
construct relaxations of the signomial program by outer approximations of the lifted set encoding
nonconvex signomial-term sets, i.e., hypographs, or epigraphs of signomial terms. We show that any
signomial-term set can be transformed into the subset of the difference of two concave power functions,
from which we derive two kinds of valid linear inequalities. Intersection cuts are constructed using
signomial term-free sets which do not contain any point of the signomial-term set in their interior.
We show that these signomial term-free sets are maximal in the nonnegative orthant, and use them
to derive intersection sets. We then convexify a concave power function in the reformulation of the
signomial-term set, resulting in a convex set containing the signomial-term set. This convex outer
approximation is constructed in an extended space, and we separate a class of valid linear inequalities
by projection from this approximation. We implement the valid inequalities in a global optimization
solver and test them on MINLPLib instances. Our results show that both types of valid inequalities
provide comparable reductions in running time, number of search nodes, and duality gap.

Key words. global optimization, signomial programming, extended formulation, cutting plane,
intersection cut, convex relaxation
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1. Introduction. General nonconvex nonlinear programming (NLP) problems
typically admit the following formulation:

(1.1) min c¢-x s.t. Ax+ Bg(z) <d,
z€ER™
where c € R", A ¢ R™*" B € R™*¢ ¢g:R" - Rf, d € R™.

The mapping g(z) represents a vector (g1(z),...,ge(x)) of nonconvex functions
on z, and we denote g; as their terms. Note that the objective function is supposed
to be linear, w.l.o.g., since we can always reformulate a problem with a nonlinear
objective function as the problem (1.1) above (epigraphic reformulation).

General-purpose global optimization solvers, such as BARON [75], Couenne [13],
and SCIP [14], are capable of solving the problem (1.1) within an e-global optimality.
They achieve this by employing the spatial branch-and-bound (sBB) algorithm, which
explores the feasible region of (1.1) implicitly, but systematically. The sBB algorithm
effectively prunes out unpromising search regions by comparing the cost of the best
feasible solution found with the cost bounds associated with those regions. These cost
bounds can be computed by solving convex relaxations of (1.1).

The backend convex relaxation algorithms implemented in many general-purpose
solvers, including BARON, Couenne, and SCIP, are linear programming relaxations.
These solvers take advantage of the separability introduced in the rows of Az + Bg(x),
allowing them to relax and linearize nonlinear terms g; individually. In the solvers’
data structures, the problem (1.1) is transformed into an extended formulation:

1.2 i . 6. A By<d AN y= .
(1.2) Jmin e st At By<d A y=g()
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All the nonlinear terms are grouped within the nonconvex constraints y = g(x). These
constraints give rise to a nonconvex lifted set defined as:

(1.3) Siite = {(z,y) e R"** 1y = g(x)}.

The relaxation algorithms used by these solvers are based on factorable program-
ming [43, 55]: This approach treats the multivariate nonlinear terms g; as composite
functions. These algorithms typically factorize each g; into sums and products of a
collection of univariate functions. If convex and concave relaxations of those univari-
ate functions are available, these algorithms can linearize these relaxations, and yield
a linear relaxation for Eq. (1.1). Common lists of such univariate functions, that are
usually available to all sBB solvers, include t* (for a € N), %, logt, expt. Some solvers
also offer a choice of trigonometric functions, e.g. Couenne.

Most sBB solvers can handle signomial term ¢q(z) == 2 =[]y z?J , where
the exponent vector « is in R™, but in a way that yields poor relaxations (more about
this below). In this paper, we provide a deeper treatment of the signomial term w.r.t.
convexification and linearization within an sBB algorithm.

When all the terms in g are signomial terms, the problem (1.1) falls under the
category of signomial programming (SP). In this scenario, we refer to (1.1) as the
natural formulation of SP. The left-hand sides of the constraints in this formulation
are referred to as signomial functions. The lifted set Sy in the extended formulation
(1.2) is called a signomial lift.

Since negative entries may present in the exponent vector «, in general, variables
of SP are assumed to be positive. The point of restriction on SP over positive variables
is simply to make the theoretical treatment more readable and streamlined. We
remark that the techniques in this paper can also treat signomial terms in general
mixed-integer NLP problems.

In the case of SP, LP relaxations can be derived from polyhedral outer approxima-
tions of the signomial lift in its extended formulation. A typical relaxation algorithm
for SP involves factorizing the signomial term ), (x) into the product of n univari-
ate signomial terms x7*. After the factorization, the algorithm proceeds to convexify
and linearize the intermediate multilinear term and univariate functions. However,
this factorable programming approach can lead to weak LP relaxation and introduce
additional auxiliary variables that represent intermediate functions. These problems
have already been discussed in the context of pure multilinear terms [19, 26, 73].

We propose two cutting plane-based relaxation algorithms for SP. In contrast
to the conventional factorable programming approach, our method uses a novel re-
formulation of the signomial lift. We transform each nonlinear equality constraint
y; = gi(x) in (1.3) to an equivalent constraint ¢g(u) — 1), (v) = 0, where 3 > 0,7 > 0,
max(||3|1,[|7];) = 1, u, v are sub-vectors partitioned from (z,y), and g, ¥ are con-
cave functions. Thus, the nonlinear equality constraint is equivalent to two inequality
constraints: 15(u) — ¥ (v) < 0 and Yg(u) — ¢, (v) > 0, with u € R ,v € RE being
reassignments of (x,y). Our algorithms aim at generating convex relaxations of these
two inequality constraints. Due to the symmetry of these two constraints, we consider
convex relaxations for the first one. This reduction motivates us to construct linear
valid inequalities for the nonconvex signomial-term set:

(1.4) Sst = {(u,v) € RETF ¢ 9pg(u) — by (v) <0},

where the subscript st is an abbreviation for “signomial term”.
2
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89 Our first cutting plane algorithm is based on the intersection cut paradigm [24].
90 As shown in Sec. 2, one can approximate a nonconvex set S using its polyhedral
91 outer approximation. This requires the construction of S-free sets, i.e., closed convex
92 sets containing none of the interiors of S. The main insight about S-free sets for a
93 nonconvex set S is that they provide an explicit and useful description of the convex
94 parts of the complement of S. In Sec. 3 we extend several general results from the
95 literature on maximal S-free sets. In Sec. 4 we give the transformation procedure
96 leading to Sy and construct Sg-free sets from the transformation. We show that
97 these sets are also signomial-lift-free and maximal in the nonnegative orthant. We
98 also discuss the separation of intersection cuts.

99 To ensure convergence of the sBB algorithm, a common assumption for SP is that
100 all variables are bounded. Our second cutting plane algorithm aims to approximate
I Sg within a hypercube. In Sec. 5, we provide an extended formulation for the convex
2 envelope of the concave function g over the hypercube. This formulation yields
3 a convex set including Sy (which is a convex outer approximation of Sy ), so that
1 we can generate outer approximation cuts by projection. We prove that g is a
5 supermodular function. For h = 2 we provide a closed expression for its convex
6 envelope by exploiting supermodularity, which allows us to get rid of the projection
7 step.

8 For the computational part of this study, we note that signomials are one of the
109 four main types of nonlinearities found in the mixed-integer NLP library (MINLPLib)
110 [12, 18]. Our relaxation approach does not require factorization or the introduction of
111 intermediate functions, so implementing the proposed cutting planes in the general-
112 purpose solver SCIP is straightforward, and the outer approximation cut algorithm is
113 integrated in SCIP since version 9.0 [16]. In Sec. 6, we perform computational tests
114 with instances from MINLPLib and observe improvements to SCIP default settings
115 due to the proposed valid inequalities.

116 1.1. Related works. The majority of relaxations for SP are derived from its
117 generalized geometric programming (GGP) formulation, which is an exponential trans-Jj
118 formation [30] of its natural formulation. The exponential transformation replaces
119 positive variables x by exponentials exp(z), where z are real variables. The authors
120 of [54] show that signomial functions in GGP are difference-of-convex (DC) functions.
121 For the signomial function in each constraint of GGP, they construct linear underes-
122 timators of its concave part; the author of [71] constructs linear underestimators of
123 the whole function via the mean value theorem. The author of [78] proposes inner
124 approximations of GGP via the inequality of arithmetic and geometric means (AM-
5 GM inequality). The authors of [20, 29, 63] construct non-negativity certificates for
6 signomial functions via the AM-GM inequality, and propose a hierarchy of convex re-
7 laxations for GGP. Exponential transformations can be combined with other variable
128 transformations, such as power transformations, and the inverse transformations can
120 be approximated by piece-wise linear functions, see [46, 51, 52].

130 The solvers SCIP [14], BARON [75], ANTIGONE [58], and MISO [59] are able to solve
131 the natural formulation of SP or its extended formulation within a global e-optimality
132 using the sBB algorithm. More precisely, MISO is a specialized solver for SP, which
133 uses exponential transformations of some signomial terms only when necessary. For
134 the following reasons, exponential transformations can complicate general-purpose
135 solvers. First, in certain NLP problems, signomial terms may appear only as a subset
136 of the nonlinear terms of g(x). In such cases, solvers may need to force the inverse
137 transformation x; = In(z;), which requires additional processing for convexification
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algorithms. Second, when dealing with mixed-integer SP and some variables of x are
integer, exponential transformations cause certain components of z to become discrete
but not necessarily integer. As a result, the sBB algorithm must adjust its branching
rules.

While much attention has been paid to the construction of relaxations for GGP,
the literature on relaxations for the extended natural formulation of SP is relatively
limited. The convex relaxations used in the aforementioned solvers rely mainly on
factorable programming [44, 55]. Since exponential transformations are nonlinear
variable transformations, it is impossible to apply the relaxations developed for the
GGP formulation directly to the natural formulation.

Numerous research efforts have been devoted to improving relaxation techniques
for multilinear terms and univariate/bivariate functions commonly used in factorable
programming [8]. Multilinear terms over the unit hypercube are vertex polyhedral
and their envelopes over the unit hypercube admits simple extended formulations [68].
In particular, there are closed forms for the convex envelopes of bilinear functions
[3, 55] and trilinear functions [56, 57] over hypercubes. In [72], the author presents
convex envelopes for multilinear functions (sum of multilinear terms) over the unit
hypercube and specific discrete sets. For a comprehensive analysis of multilinear term
factorization via bilinear terms, we refer to [50, 73]. Additionally, [19] offers an in-
depth examination of quadrilinear function factorization through bilinear and trilinear
terms, while [26] presents a computational study on extended formulations.

Convexifying univariate/bivariate functions plays an important role in the field
of global optimization. In [45], convex envelopes for monomials with odd degrees are
derived. An approach presented in [49] enables the evaluation of the convex enve-
lope of a bivariate function over a polytope and separating its supporting hyperplane
by solving low-dimensional convex optimization problems. The convex optimization
problems are further reduced by solving a Karush-Kuhn-Tucker system [48]. In [47],
convex envelopes for bilinear, fractional, and other bivariate functions over a poly-
tope are constructed using a polyhedral subdivision technique. The relation between
triangulation and envelope construction has been observed in [74], and we refer to
[8, 9] computational studies on triangulation-based convexification of nonconvex qua-
dratic and multilinear terms. Additionally, [65] employ polyhedral subdivision and
lift-project methods to derive explicit forms of convex envelopes for various noncon-
vex functions, including a specific subclass of bivariate signomial terms. We refer to
[17, 40, 41] for results on convexification of sets involving mixed-integer convex cones,
as these works on convexification of such sets share some common techniques with
convexification of nonconvex functions.

Convexifying high-order multivariate functions is a major challenge, and the avail-
able literature on convex underestimators for trivariate functions is relatively few. For
supermodular functions, there are several classes of valid inequalities for their convex
envelopes, see [2, 6, 36, 64]. In [37, 38|, the authors propose a novel framework for
relaxing composite functions in nonlinear programs. Another approach is to use the
intersection cut paradigm [24] to approximate nonconvex functions. This paradigm
can generate cutting planes to strengthen LP relaxations of NLP problems. Con-
structing intersection cuts involves finding an S-free set, where S represents a non-
convex set defined by nonconvex functions. The study of intersection cuts originated
in the context of NLP [77]. Gomory later introduced the concept of corner polyhedron
[35], and intersection cuts were explored in the field of integer programming [7]. The
modern definition of intersection cuts for arbitrary sets S is from [28, 34]. For more
comprehensive details, we refer to [4, 10, 25, 27, 28, 67]. Recent research has revealed
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S-free sets for various nonconvex sets encountered in structured NLP problems. Ex-
amples include outer product sets [15], sublevel sets of DC functions [69], quadratic
sets [62], and graphs of bilinear terms [33]. Intersection cuts have also been developed
for convex mixed-integer NLP problems [5, 11, 42, 60] and for bilevel programming
[32].

1.2. Notation. We follow standard notation in most cases. Let [n; : ng] stand
for {n1,...,n2}, and let [n] stand for [1 : n]. For a vector z € R™, z; denotes
the j-th entry of z; given J C [n], z; = (x;)jes denotes the sub-vector formed by
entries indexed by J. |-||, denotes the L,-norm (1 < p < 400). For a set X C R”,
conv(X), cl(X), int(X), bd(X), |X|, X¢ denote the convex hull, closure, interior,
boundary, cardinality, and complement of X, respectively. For a function f, dom(f)
and range(f) denote the domain and range of f, respectively; graph(f) denotes its
graph {(x,t) € R"™1 : f(z) = t}, epi(f) denotes its epigraph {(z,t) € R"*1: f(x) <
t}, and hypo(f) denotes its hypograph {(z,t) € R**!: f(x) > t}; if f is differentiable,
for a & € dom(f), Vf(Z) denotes the gradient of f at Z and

(1.5)

(1]

L@) = f(@) + V(@) (z - &).

The word linearization involves the replacement of a nonlinear function by its affine
underestimators or overestimators. For example, the affine underestimators of convex
functions f are given as E£ (z) for some Z.

2. Preliminaries. In this section we present an overview of S-free sets and
intersection cut theory. The process of constructing intersection cuts involves two
fundamental steps [23]: constructing S-free sets and deriving cutting planes from
these sets. Since maximal S-free sets yield tightest cutting planes, one can include an
optional step to check the maximality of S-free sets.

DEFINITION 2.1. Given a set S C RP, a closed set C is (convex) S-free if C is
convex and int(C) NS = @.

To construct an intersection cut, an essential requirement is the availability of
a translated simplicial cone R that satisfies two conditions: (i) R is generated by
linearly independent vectors, (ii) R contains S, and (iii) the vertex Z of R does not
belong to S.

Figs. 1la to 1lc give an example procedure to construct an S-free set C and an
intersection cut: in Fig. la; we find a convex inner approximation C of cl(§¢); and
we visualize the S-freeness of C in Fig. 1b; then, in Fig. 1c, a simplicial conic outer
approximation R of S is used to define the intersection cut.

We assume that R admits a hyper-plane representation {z € RP : B(z — 2) < 0},
where B € RP*P is an invertible matrix. For every j € [p|, let 7 denote the j-th
column of —B~!, then 7/ turns out to be an extreme ray of R. Thereby, R also
admits a ray representation {z € RP : Ju € RY z =2+, 7}, For every j € [p],
we define the step length from Z along ray r; to the boundary bd(C) as

(2.1) wi=sup {p;:Z+4pr’ €Ch
,u,jE[O,+OO]

Then, an intersection cut admits the form

(2.2) S Bz - )/ < -1,

j=1
5
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cut
(a) C as an inner approxima- (b) C as an S-free set. (c¢) Simplicial cone R and
tion of cl(S°). the intersection cut.

Fig. 1: An S-free set C, simplicial cone R, and intersection cut.

where Bj; is the j-th row of B. When all step lengths are positive, the above linear
inequality cuts off Z from S, see for an example of an intersection cut in Fig. lc.

We can obtain the sets C, R and the vertex Z by the following procedure. Suppose
that we have an LP relaxation min,cp c¢- 2z of an SP problem, where P is a polyhedral
outer approximation of the feasible set of the SP problem. If the solution to the LP
problem turns out to be infeasible for the SP problem, it means that the solution does
not belong to the signomial lift. In such cases, we can set Z as the solution obtained
from LP and let C be the signomial-lift-free (Syg-free) set. Moreover, we can extract
the cone R from the optimal LP basis defining Z, see [23].

One focus of our study is the construction of (maximal) S-free sets. The im-
portance of finding mazimal sets follows from the fact that if we have two S-free
sets called C and C*, where C is a subset of C*, then the intersection cut derived
from C* dominates the cut derived from C (see [24, Remark 3.2]). To give a precise
characterization, we present a formal definition of maximal S-free sets.

DEFINITION 2.2. Given a closed convex set G C RP such that S C G, an S-free
set C is (inclusion-wise) mazimal in G, if there is no other S-free set C' such that

cngcid'ng.

The above definition provides a generalization of the conventional concept of
maximal S-free sets, which is a special case when G = RP. Studying maximality
for S-free sets in RP can be challenging in certain scenarios. However, Defn. 2.2
allows us to examine the intersections of S-free sets within the ground set G. This
constraint is essential for our analysis, especially considering that all variables in SP
are non-negative.

Next, we show how to construct S-free sets from “reverse” representations of
sets defined by a particular type of nonconvex functions. A function f is said to
be difference-of-concave (DCC) if there exist two concave functions fi, fo such that
f = f1— f2. Any DCC function is also a difference-of-convex (DC) function, and vice
versa. We call a nonconvex set a DCC set, if it admits a DCC formulation, meaning
that it is defined by a non-negative/non-positive constraint on a DCC function. By
using the reverse-minorization technique, the following lemma provides a collection
of S-free sets for DCC sets.

LEMMA 2.3. [69, Prop. 6] LetS = {z € RP: f1(2)— fa(z) < 0}, where f1, f2 are
6

This manuscript is for review purposes only.



262
263
264
265
266
267
268
269

N NN
RER

N =

concave functions over RP. Then, for any 2 € RP, C = {2z e RP: fi(z) — E}; (z) > 0}
is S-free. Moreover, if Z € RPN S, Z € int(C).

The reverse-minorization technique involves reversing the inequality that defines
S and linearizing its convex component — f3 to —Eifz (z). Thus, the function fi(z) —
EJ;Q (2) minorizes f1(z) — f2(z) at any z. The point Z is referred to as the linearization
point. It is important to note that, when the shared domain G of f; and f5 is not
the entire space RP, the set S needs to be constrained to the ground set G. This
restriction ensures the applicability of the lemma.

3. General results on maximality. In this section, we present two results on
the maximality of S-free sets arising in general nonconvex NLP problems. The results
are used to construct maximal signomial-lift-free sets in non-negative orthants.

3.1. Lifted sets. We consider the extended formulation (1.2) of a general NLP
problem and focus on the associated lifted set S in (1.3). We show a lifting result
on constructing maximal Syg-free sets.

Let z := (x,y) denote the vector variable in the extended formulation (1.2), with
its index set being [n-+¢]. Consequently, we have zp,; = = and 2}, 1.,4+¢ = y. Consider
a closed subset X' of the domain [;c(, dom(g;) for z, and let )} be a closed subset
of the domain Xie[e] range(g;) for y. The ground set G can, thus, be set as X x ).
Consequently, the lifted set Sy in (1.3) admits the form {(z,y) € G : y = g(z)}.

Given that each g;(z) (for ¢ € [¢]) may only depend on a subset of variables
indexed by J; C [n], we can express g;(x) as a lower order function g}(z;,) defined
over R7i. Let I; := J; U {i + n}, and denote its complement by If := [n + £] \ I;. As
above, we consider a closed subset X of dom(g}) and Y* of range(g}). Consequently,
the graph, epigraph, and hypograph of g/ reside within sets G' = X' x V| e.g.,
epi(g;) = {(z7,,5:) € G : gi(x1,) < i}

We refer to X', Y, { X, y%}iem as the underlying sets of the lifted set Sy;. The sets
are said to be 1d-convex decomposable by a collection {D;} e[, 14 of closed convex sets
mR,if X = Xje[n] D;, Y = Xje[n+1:n+£] Dj, and, for all i € [{], X" = XjeJi D;, Vi =
Dr+i- This decomposability condition restricts the domains to Cartesian products of
real lines, intervals, or half lines, thereby excluding complicated domain structures.

The decomposability condition allows the analysis of sets with fewer variables.
The construction of epi(g})-free sets and hypo(g;)-free sets is in general simpler than
the construction of Sy-free sets. We show that any maximal epi(g;)-free or hypo(g})-
free set can be transformed into a maximal Sy-free set.

THEOREM 3.1. Suppose the underlying sets of Syg are 1d-convex decomposable
and g is continuous. For some i € [¢], let C be a mazimal epi(g;)-free set or a mazimal
hypo(g.)-free set in G'. Then, the lifted set C == C x RYi is a mazimal Sy -free set in
G, where R is the |I¢|-dimensional Euclidean space indexed by I¢.

See the proof in the appendix. For any i € [f], we call the operation C x R
the orthogonal lifting of C with respect to g;. A similar lifting result for integer
programming is given by [24, Lemma 4.1]: given § = Z™ x R"2, any maximal
lattice-free set (i.e., Z™-free set) can be transformed into a maximal S-free set by
orthogonal lifting. Therefore, Thm. 3.1 serves as the NLP counterpart to this lemma
(whose proof is also similar). This theorem allows us to focus on low-dimensional
projections of the lifted set. We will show in Cor. 4.2 that the signomial lift satisfies
the prerequisites of Thm. 3.1. The following example illustrates the application of
Thm. 3.1.
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ExampLE 1. Consider a lifted set Sy defined as

{(@1, 2, 23, T4, y1,Y2,Y3) : Y1 = exp(z1 — x2/x3) A y2 = log(z1) Ays = sin(x1/z4)}.

One can verify that the 1d-conver decomposable condition holds for D1 = Ry,
D; =R (for j€[2:7]). Then G :=RL x RS. We use log(z1) to construct a Sy -free
set. A mazimal Sug-free set can be {(x1,22,23,%4,Y1,Y2,Y3) € G : y2 < log(z1)}.
Since log(x1) is defined over positive reals, this example gives a reason to restrict
mazimality over G.

3.2. Sufficient conditions on maximality. We provide sufficient conditions
for the maximality of S-free sets for two general classes of nonconvex sets S. At
the beginning, we give an overview of some basic results of convex analysis. Our
subsequent exposition relies on the use of support functions of convex sets. The
properties of support functions can be summarized as follows.

LEMMA 3.2. [39, Chap. C] For a full-dimensional closed convez set C C RP, let
oc :RP = R\ = sup,ce A -z be the support function of C. Then: (i) C ={z € RP:
VA € dom(oc) A -z < ge(N)}, (4@) int(C) = {z € RP : VA € dom(o¢) N {0} Az <
oc(N)}, (@) oc(pA) = poc(N) for any p > 0. Moreover, for any closed convex set C'
including C, o¢ < o¢r.

A valid inequality a-z < b of C is called a supported valid inequality, if there exists
a supporting point z' € bd(C) such that a -z’ = b. Geometrically, a closed convex set
is the intersection of half-spaces associated with supported valid inequalities.

OBSERVATION 1. It follows from Lemma 3.2 that every supported valid inequality
of C must admit the form X -z < o¢(\) for some A € dom(o¢), where the supremum
oc(A) is attained at its supporting points.

An inequality of the form A -z < o¢(A), for A € dom(o¢), is referred to as
an exposed valid inequality, if there exists an exposing point 2’ € bd(C) such that
Az =o0¢(A) and, for all X € dom(o¢) \ {pA}p>0, N - 2" < gc(N).

OBSERVATION 2. An exposed valid inequality must be a supported valid inequality.
Conversely, a supported valid inequality is an exposed valid inequality if the manifold
bd(C) is smooth at its supporting point. For example, C; = {(z,y) € R? : y = 2%} is
a smooth manifold, so any supported valid inequality of C1 is exposed; Co == {(x,y) €
R? : y = |z|} is smooth at x € [1,2], so any supported valid inequality of Co with
support point (z,y) (x € [1,2]) is also exposed by the same point; however, a supported
valid inequality of Co with supporting point (x,y) (x = 0) cannot be exposed, since there
are infinitely many supported valid inequalities at the same point.

The first lemma we present holds for full-dimensional nonconvex sets S. As shown
in Figs. 1a and 1b, we have observed the geometric equivalence between the closed
convex inner approximation of cl(§¢) and S-free sets. The lemma provides a sufficient
condition for the maximality of closed convex inner approximations.

LEMMA 3.3 (Adapted from Thm. 3.1 in [62]). Let F be a full-dimensional closed
set in RP, and let C C F be a full-dimensional closed convex set. If, for any z* €
int(F N C) and any A € dom(oc) such that X - z* > oc(X), there exists a point 2’ €
bd(F)Nbd(C) exposing A-z < oc(A), then C is a mazimal convex inner approximation
of F.

We call z* in Lemma 3.3 an outlier point, by which we try to enlarge an S-free
set, and let the scope L(z*) := {A € dom(o¢) : A - z* > o¢(A)} identify the strictly

8
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separating valid inequalities for z*. Thm. 3.1 in [62] has a different quantification
than Lemma 3.3: it does not quantify z*, and it requires the scope of A to be a
subset I' C dom(o¢), which is declared according to the context. Instead, Lemma 3.3
quantifies A explicitly, whose scope L(z*) depends on z*. Thus, Lemma 3.3 allows,
for each point z*, having different scope L(z*) of A. One can prove Lemma 3.3 by
adapting the proof for [62, Thm. 3.1]. For self-completeness, we give a proof in the
appendix using support functions.

We next focus on a specific type of function, namely positive homogeneous func-
tions. We summarize their properties as follows.

LEMMA 3.4. Let f be a positive homogeneous function of degree d € R, such that,
for any z € dom(f) C RP and any p € Ry, f(pz) = p?f(2). Then: (i) int(dom(f))
is a cone, and (ii) if d = 1, then for any Z € dom(f), EJ;(z) =V f(%)-z for z € dom(f)
and Eﬁ(z) = f(z2) for z = pZ with p € Ry4.

The proof is in the appendix. We recall that E£ in the above lemma is defined in
Eq. (1.5). Moreover, dom(f) is embedded in RP, so we call RP the ambient space of
f.

The second theorem we present offers a more structured result, specifically related
to nonconvex DCC sets §. [70, Thm. 5.48] provides a sufficient condition for the
maximality of the S-free set described in Lemma 2.3. However, to clearly distinguish
it from our result below, we translate the condition into our setting as follows: (i) the
functions f1 and fo are superlinear, i.e. they are positive homogeneous of degree 1 and
superadditive (note that superlinear functions are concave), (ii) they are separable and
act independently on different variables u and v, (iii) fi is negative everywhere except
at 0, (iv) the linearization point ¢ of fs is nonzero, and (v) the domains dom(f;) and
dom( f3) are Euclidean spaces.

Our second theorem provides an alternative condition for maximality that relaxes
condition (i) by requiring only that one of f; or f2 be positive homogeneous of degree
1, while imposing mild regularity conditions. Moreover, the domains can be full-
dimensional convex cones.

THEOREM 3.5. For every i € {1,2}, let f; be concave. Let S = {(u,v) €
dom(f1) x dom(f2) : fi(u) — fo(v) < 0}. Suppose that: (i) at least one of fi, fo
is positive homogeneous of degree 1, (i) f1,fa are both positive/negative over the
interiors of their domains, (iii) f1 is continuously differentiable over int(dom(f)),
and (iv) dom(f1),dom(f2) are full-dimensional in the ambient spaces of f1, f2, re-
spectively. Then, for any v € int(dom(fs)), C = {(u,v) € dom(f;) x dom(fs) :
filu) — 5'52 (v) > 0} is mazimally S-free in dom(f;) x dom(f3).

Proof. We first adapt Lemma 2.3 by restricting the domain of z to the convex
ground set G := dom(f;) x dom(f2). It follows from Lemma 2.3 that C is an S-free
set in G. Since dom(f;) x dom(f2) are full-dimensional, S,C,G are full-dimensional.
As §,C C G, the maximality of C in G is equivalent to that C is a maximal convex
inner approximation of F = cl(§°) NG = {(u,v) € G : fi(u) — fa(v) > 0}. Note
that F is full-dimensional. We then apply Lemma 3.3 to prove that C is a maximal
convex inner approximation of F. Let z* € int(F \ C) be any outlier point. It follows
from the separating hyperplane theorem that there exists a supported valid inequality
A-z < o¢(A) of C such that A - z* > g¢(A). Since F N C C G, int(F ~C) C G. Since
C C G, the inequality cannot be supported by a valid inequality at bd(G), so the
inequality must be a valid inequality supported at C ~ bd(G). It follows from the

=/

concavity of fi that the inequality must admit the form ='(u) — EgQ (v) > 0 for
9
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some % € dom(f;) (identical up to a positive multiplier). By the smoothness of fi,
w.l.o.g, we can perturb @ such that it is in int(dom(f;)). Let ¥ := ©. We now have
that @ € int(dom(f1)), o € int(dom(fz)). We will prove that E;’;l (u) — Egz (v) > 0is
exposed by a point (u/,v") € (bd(F) Nbd(C)) Nint(G). It suffices to show that the
following three equations hold:

! 0 (i.e., supported at (u,v")),
(31) fl (U/ - E'f2 (1)/) =0 (i'e'7 (ula U/) € C)a
0 (ie, (u/,0) €F).

Since C C F and they are both full-dimensional, the last two equations imply that
(u',v") € bd(C) Nbd(F). As fi is continuously differentiable and concave in the
interior of its domain, the graph of f;(u) — Egz (v) over int(G) is a smooth manifold
embedded in int(G) x R. The intersection of a smooth manifold with a hyperplane
yields another lower-dimensional smooth manifold. This implies that the level set C
of fi(u) — E? (v) is also smooth at any point (u,v) € int(G) NC. By Obs 2, (u,v)
is an exposing point. Since (u/,v') € C Nint(G), (u/,v’) is an exposing point, and
the maximality of C is verified. We now proceed to construct (v',v’) from (u,¥) and
prove (3.1). Let p == fo(¥)/f1(@). Since @ € int(dom(f1)), o € int(dom(f2)), by the
assumption, p > 0. We consider the following two cases separately.

Case i. We first suppose that f; is positive homogeneous of degree 1. Let
(u',v") == (pu, V), which, by Lemma 3.4, is in int(G). We have that:

fl(ul) (Lzl) Egl (ul) (L:2) pfi (@) (L:3) 5(9) (Z~:4) fz(”l)/) (1-:5) Ef (’Ul),

where equations (i.1), (¢.2) follow from Lemma 3.4, (i.3) follows from the definition
of p, and (i.4), (i.5) follow from v’ = ®.

Case ii. We then suppose that fo is positive homogeneous of degree 1. Let
(u',v") == (4,0/p) € int(G). We have that:

ii.2) i4.5)

= (@d.1) ( oy (@.3) ooy, (i4) ( =

2 ) TS AW T A@) =T @)/ = o) =T ER W),

where equations (4i.1), (44.2) follow from @ = u’, (i4.3) follows from the definition of p,
and (i7.4), (ii.5) follow from Lemma 3.4. Therefore, (3.1) are satisfied in both cases.0

We present the motivation for restricting the maximality of the set C within
the ground set dom(f;) x dom(f2). The main reason for this restriction arises from
the difficulty of finding a nontrivial concave extension of f; over its ambient space
such that for all uw ¢ dom(f;), fi(u) > —oo. While such an extension can exist
geometrically, the construction of a closed expression remains unclear. In the next
section, we will examine a specific example to illustrate this point.

Moreover, we will apply the above theorem to develop DCC formulations for
a nonconvex set. In particular, the functions f; and f; must not simultaneously
have positive homogeneity of degree 1, and their domains are non-negative orthants.
Consequently, the relaxed condition for homogeneous degrees and domains in Thm. 3.5
becomes necessary. We give two examples for verification Thm. 3.5.

EXAMPLE 2. Let fi(u) == u with dom(f1) € R, and let fo(v) ==} ;e /Ui with
dom(f2) = R%. Note that fi1, f2 are concave, dom(f3) is a non-negative orthant, and
f1 is positive homogeneous of degree 1. Let G := R x R"t. One can verify that the
presupposition of Thm. 3.5 is satisfied. Then, S .= {(u,v) € G : U*Zz‘e[n] VUi <0} is

10
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a convex set. It is easy to see that C := {(u,v) € G : u—37, 1, (VUi + (vi—0:) /i) >
0} is mazimally S-free in G with © > 0.

EXAMPLE 3. FExchange the functions fi1, fa in the previous examples. Then, S =
{(u,v) € G+ Yicp Vvi —u < 0} is a reverse-convex set. It is easy to see that
C={(w,v) €G: 3 e VVi —u = 0} is the unique mazimal S-free set in G.

4. Signomial-lift-free sets and intersection cuts. In this section, we con-
struct (maximal) signomial-lift-free sets and generate intersection cuts for SP.

4.1. Signomial-lift-free and signomial-term-free sets. We introduce and
study new formulations of signomial-term sets. We transform signomial-term sets
into DCC sets. We also construct signomial term-free sets and lift them to signomial
term-lift-free sets. The maximality of these sets is studied, and a comparison is made
between signomial term-free sets derived from different DCC formulations.

We consider an n-variate signomial term ), (x) arising in the extended formulation
(1.2) of SP. The exponent vector « may contain negative/zero/positive entries. We
extract two sub-vectors a_ and a, from « such that a_ € R” _ (n-dimensional
negative orthant) and oy € RY | (k-dimensional positive orthant), and let z_ € R”
and x4 € R" be the corresponding sub-vectors of x. Entries z; with o; = 0 are
excluded from consideration, and so 1 + k may be smaller than n. Since ¥, (z) only
depends on z_ and x4, it can be represented in the form of 2~ xi* of lower order.

Let < (resp. <) denote < or > (< or >). We consider the signomial-term set as

_ o

. (0%
epigraph or hypograph of 2~z ":

(4.1) Sot = {(a—, x4, t) e RIS 2% 20}

We first give DCC reformulations of signomial-term sets. The interior of Sy in
(4.1) is

int(Syt) = {(z_,q,t) € RTT ot S 0@ a0+
Reorganizing the signomial terms and taking the closure of the set, we recover

Set = {(x—,q,t) € RITH g7 St}

Notably, the exponents associated with signomial terms on both sides are now
strictly positive. Let u = (t,z_),v = x4, let h == n+ 1, and let k = k. Then,
Vg (u) = te_*" and ¥/ (v) = 25", where f/ == (1,—a_) € R and v =y e RE .
After the change of variables, the set admits the following form:

(4.2) Sot = {(u,0) € RYFF 2 b (u) S 4y ()}

The formulation (4.2) exhibits symmetry between w and v. We can therefore
consider w.l.o.g. the inequality “<” throughout the subsequent analysis. Since the
signomial terms g (u), ¢ (v) are non-negative over R” | R¥ | we can take any positive
power p € Ry on both sides of (4.2). Finally, the signomial term set in (4.1) admits
the following form:

(4.3) St = {(u,v) € R 2 ghg(u) — 9y (v) <03,

where 8 := pf’, and v = uvy'.
11
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A signomial term 1, (z) is said to be a power function if « > 0, and ||of; < 1.
According to [61, 21], power functions are concave over the non-negative orthant; if
additionally ||a|l1 = 1, ¥a(z) is positive homogeneous of degree 1. Moreover, 1, ()
has an extended exponential cone representation [1], which gives another proof of its
convexity. Through an appropriate scaling of the parameter p, we obtain a family
of DCC reformulations (4.3) of signomial-term sets. We let G = Rf‘ﬁk, and use the
reverse-minorization technique to construct signomial-term-free sets. We recall that
the definition of the operator = is given in Eq. (1.5).

PROPOSITION 4.1. Let max(||B|1, [|v]1) < 1. For any v € Rk

(4.4) C = {(u,v) € R x R* : gs(u) — 2L (v) > 0}
is a signomial-term-free (S -free) set. If max (|51, ||v][1) = 1, then C is a maximal
signomial-term-free set in G.

Proof. Since max(||8|l1,[|v]l1) < 1, ¥g(u), ¥~ (v) are concave. By Lemma 2.3,
C is signomial-term-free. If max(||5||1,[v]l1) = 1, then at least one of ||8]1, |v|l
is 1. Therefore, one of 9g(u),,(v) is positive homogeneous of degree 1. More-
over, ¥3(u), 1 (v) are both continuously differentiable and positive over positive or-
thants R% | /R% . (the interiors of their domains). Since G = dom(t3) x dom(1),), by
Thm. 3.5,CNG = {(u,v) € G : Yg(u) ng)” (v) > 0} is a maximal signomial-term-free
set in G. Therefore, C is also a maximal signomial-term-free set in G. O

Given that max(||5]|1,]|7][1) = 1 results in a desirable DCC formulation for the
signomial-term set, we refer to this formulation as its normalized DCC' formulation.
Comparing Prop. 4.1 to Thm. 3.5, we extend the domain of ng (v) from RX to RF,
since it is an affine function. However, the further extension requires a non-trivial
concave extension of the power function 13, which we are unaware of.

We have reduced the n-variate signomial term 1, (z) to a signomial term x”~ :1:3‘_+
of lower order and constructed the corresponding signomial-term-free sets. A similar
reduction is observed for g; to g} in Subsec. 3.1, where we demonstrate the relationship
between Syg-free sets and epi(g;)-free/hypo(g;)-free sets.

Next, we let the lifted set Syg be the signomial lift, where all g; are signomial
terms. Each equality constraint y; = ¢;(z) defining the signomial lift is equivalent to
two inequality constraints y; § gi(z). Applying the normalized DCC reformulation
to these inequality constraints, we thus obtain a reformulation of the signomial lift,
which we call its normalized DCC reformulation.

COROLLARY 4.2. Let C be as in (4.4), where o, = g; for some i € [{] and
max(||5]|1, ||7][1) = 1. Then the orthogonal lifting of C w.r.t. g; is a mazimal
signomial-lift-free (Sig-free) set in the non-negative orthant.

Proof. We verify that the conditions of Thm. 3.1 are satisfied by the signomial
lift. For any ¢ € [¢], the signomial term g; is continuous, and its domain and range
are Ry,. Let J; be the index set of variables of its reduced signomial term g;. Let
X = Xem R+ = X Rey. Forall j € [n 4 ], let D; == Ri;. For all
1€ [l], let Xt = Xz, Ry, V' =Ry, The underlying sets of the signomial lift are
X, P, {X¢, yi}iem that are 1d-convex decomposable by {D;};cint¢- By Prop. 4.1, C
is a maximal hypo(g})-free set in X* x Y*. By Thm. 3.1, its orthogonal lifting w.r.t.
g is a maximal signomial-lift-free set in positive orthant. By continuity of g, 1, we
change the ground set (the positive orthant) to its closure, i.e., non-negative orthant.O

12
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The following examples show signomial term-free sets from different DCC formu-
lations.

EXAMPLE 4 (Comparison of DCC formulations). Consider Sg = {(u,v) € R2 :
u < v}, which is already in normalized DCC formulation. It is easy to see that
C1 = {(u,v) € Ry xR :u > v} is a mazimal Sy -free set in R2 given by Prop. 4.1.
Let © € Ryy be a linearization point. Consider the set Sl = {(u,v) € RZ :log(u) <
log(v)}. We find that S, C Sst, but two sets almost coincide except for some boundary
points of Ss;. Since 8., admits a DCC formulation, applying the reverse-minorization
technique at v yields Co == {(u,v) € R% : log(u) — (log(?) + (v — ©)/0) > 0}, which
is also an Sst-free set. For any 0 < p < 1, S¢ = {(u,v) € Ri cut < otlois a
DCC set, applying the reverse-minorization technique at v yields C3 = {(u,v) € R% :
ut —((1—p) o 4+ po*~1v) > 0}, which is also an S -free set. However, C2,Cs cannot be
maximal in Rﬁ_, because their intersections with Rﬁ_ are not polyhedral. These sets are
visualized in Fig. 2 with a linearization point v = 0.5 and scaling parameter p = 0.7.

Sst Sst

Cl Lo annn-Bat

0.0 05 10 15 20 00 05 10 15 20 00

(a) Ss¢ and Cs. (b) Sst and Cs. (¢) Sst and Cs.

Fig. 2: Sg-free sets from Example 4.

EXAMPLE 5. Consider the hypograph of signomial term x7 *23 and Sg, = {(z,y) €
R3 @y < 2723}, For (z,y) € RY,, y < z7%23 if and only if Y3233 < 4213
The following set is mazimal Sy -free in G = R3: Cy == {(z,y) € RY : yl/smf/g >
ig/s + %:%2_1/3(:52 — I9)}, where Ty € Ryy. See Fig. 3a for &o = 0.2.

EXAMPLE 6. Consider the epigraph of signomial term x3xy and Sy = {(x,y) €

R3 @y > afas}. For (z,y) € R3,, y > zdas if and only if y'/* > 3:?/430;/4. The
following set is mazimal Ss;-free in G = R3: C5 = {(z,y) € R : g/4 + 15=3/4(y —

7) < x‘;’/4x;/4}, where § € Ry4. See Fig. 3b for § = 0.2.

4.2. Intersection cuts. We focus on the separation of intersection cuts for
the extended formulation of SP. In Sec. 2 we presented a method to construct a
simplicial cone R from an LP relaxation. The vertex of this cone is a relaxation
solution Z = (&, 7). We choose % as the linearization point for applying the reverse-
minorization technique.

We assume that the LP relaxation includes all linear constraints from (1.2). If 2
is infeasible for (1.2), then Z does not belong to the signomial lift. Thus, there is a
signomial term g; such that g; # ¢;(Z). Given the reduced form g}, we obtain a set of

13
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(a) Sst and C4 from Example 5. (b) Sst and Cs from Example 6.

Fig. 3: Sg¢ and Sg¢-free sets from Examples 5 and 6.

signomial terms Sg: If g;(Z) > ¢;, we choose Sy to be the epigraph of g.; otherwise,
we choose it to be the hypograph of g/. This signomial-term set yields a signomial
term-free set C in (4.4) containing (@, ¥) in its interior (Lemma 2.3). Using orthogonal
lifting of Cor. 4.2, we can transform C into a signomial-lift-free set C.

We next show how to construct an intersection cut in (2.2). It suffices to compute
step lengths 4} in (2.1) along extreme rays rJ of R. Each step length W corresponds
to a boundary point Z 4 p5r/ in bd(C). The left-hand-side ¢3(u) — Eg’” (v) of the
inequality in (4.4) is a concave function over (u,v) € R% x R*. Its restriction along
the ray Z + p;r’ (p; € Ry) is a univariate concave function:

7j i Ry = Rty o 7(y) = (4 rp) — 57 (0 + 1),
where rJ and rJ are the projections of 7 on u and v respectively. Let ji; =
sup,, >o{p; * @+ rip; > 0}. Therefore, w; is the first point in [0, fi;] satisfying
the boundary condition: either 7; (u’;) =0 or pj = ;. Since 7; is a univariate con-
cave function and 7;(0) > 0, there is at most one positive point in Ry where 7; is
zero. We employ the bisection search method [66] to find such u}.

5. Convex outer approximation. In this section we propose a convex non-
linear relaxation for the extended formulation (1.2) of SP. This relaxation is easy to
derive and allows us to generate valid linear inequalities, called outer approximation
cuts, for SP. Unlike intersection cuts, outer approximation cuts do not require an LP
relaxation a priori, so solvers can employ them to generate an initial LP relaxation
of (1.2).

With notation from Subsec. 4.1, we additionally assume that the domain of u
(resp. v) is a hypercube U (resp. V) in R’}r (resp. Ri) The assumption fits with the
common practice of MINLP solvers. We construct the convex nonlinear relaxation by
approximating each signomial-term set of the signomial lift within the hypercube.

For brevity, we still call the intersection of the set in (4.3) and the hypercube
Uxy:

(5.1) Sst = {(u,v) €U xV : Yg(u) — 1y (v) <0},

a signomial-term set. As long as max(||8||1, ||7]l1) < 1, Ss is in a DCC formulation
(in terms of the inequality constraint).

14
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We consider the normalized DCC formulation that has max(||5]1, [|v]1) = 1.
In Subsecs. 5.3 and 5.4, we will explain the reason for choosing the normalized DCC
formulation. The signomial-term set is usually nonconvex, so our construction involves
convexifying the concave function g in (5.1). This procedure yields a convex outer
approximation of Sy, which is non-polyhedral. Consequently, replacing Sg by its
convex outer approximation, we obtain the convex nonlinear relaxation of (1.2).

Next, we introduce the procedure of relaxation. We should import the formal
concepts of convex underestimators and convex envelopes. Given a function f and a
closed set D C RP, a convex function f’ : conv(D) — R is called a convex underesti-
mator of f over D, if for all x € D f'(x) < f(x). The convex envelope of f is defined
as the pointwise maximum convex underestimator of f over D, and we denote it by
convenvyp(f).

In principle, the envelope construction procedure is similar to the convexifica-
tion procedure of multilinear terms [74]. The following lemma gives an extended
formulation of the convex envelope of a concave function over a polytope, where the
formulation is uniquely determined by the function values at the vertices of the poly-
tope.

LEMMA 5.1. [31, Thm. 3] Let P be a polytope in R™, let f : P — R be a
concave function over P, and let Q be vertices of P. Then, convenvp(f)(z) =
min{quQ Af(q): 3N € Rf, ZqEQ Ag=1, 2= quQ Aqd}

Based on the lemma above, we observe that the concave function f is convex-
extensible from its vertices (i.e., convenvp(f)(z) = convenvg(f)(x) for x € P), and
convenvp(f) is a polyhedral function.

For the case of P =U = Hje[h] [u;, ;] and f =15, Q ={q € R":Vj € [h] ¢j =
w; Vg = U, } is the set of vertices of the hypercube ¢. The lemma yields an extended
formulation of convenvy(¢g). Replacing ¢g by its convex envelope convenvy (1), we
obtain the convex outer approximation of Sy in (5.1):

(5.2) Sst = {(u,v) €U x V : convenvy (¢g)(u) < ¥y (v)}.

By using this extended formulation, our convex nonlinear relaxation of SP con-
tains additional auxiliary variables. In particular, we need 2" variables Aq to represent
each convex envelope. For most SP problems in MINLPLib where the degrees of the
signomial terms are less than 6 and h is less than 3, the convex nonlinear relaxation
is computationally tractable.

5.1. Outer approximation cuts. The extended formulation is not useful, so we
propose a cutting plane algorithm to separate valid linear inequalities in (u, v)-space
from the extended formulation of the convex outer approximation. This algorithm
generates a low-dimensional projected approximation of Sy;. Moreover, the projection
procedure converts the convex nonlinear relaxation into an LP relaxation, which is
suitable for many solvers.

Given a point (1, %) € U x V, the algorithm determines whether it belongs to Ss.
This verification can be done by checking the sign of convenvy(¥g) (1) — ¥~ (0). If
convenvy () (@) — 1~ (9) < 0, then (i, D) € Sy

Since convenvy (1) is a convex polyhedral function, our cutting plane algorithm
evaluates the function by searching for an affine underestimator a-u+b of convenvy, (u)
such that a - @ + b = convenvy (@), which is achieved by underestimating algorithms.
If (@,0) ¢ S, then a-u+b < 9,(v) is a valid nonlinear inequality of Ss. Subse-
quently, our cutting plane algorithm linearizes this inequality, resulting in an outer

15
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approximation cut a - u + b < Eg’” (v): we recall that Eg}” (v) is the linearization of
1y (v) at O defined in Eq. (1.5).

We present our first LP-based underestimating algorithm, which is used in our
experiments. Due to Lemma 5.1, we can solve the following LP to find the affine

underestimator:

(5.3) max a-U+b s.t.VgeQa-qg+b<1,(q),

a€RP beR
where we omit the linear constraints that bound (a, ). The maximum value resulting
from this LP is exactly convenvy(1)(@). The affine underestimator a - u+b is called
an facet of the envelope convenvy(13), if a-u+b < t is a facet of epi(convenvy (¥3)).
We note that the solution of the LP is not necessarily a facet, and the number of
constraints is 2".

We next give another enumeration-based underestimating algorithm. As g is
also concave, we recall the characterization [74] of the convex envelopes of concave
functions f over hypercubes. A set of h-dimensional polyhedra Pi,..., P, CU forms
a triangulation (i.e., simplicial covers) of U, if: (1) U = Ui Py (i) PN Pj is a
(possibly empty) face of both P; and Pj; (iii) each P; is an (h-)simplex. This means
that each P; is the convex hull of h + 1 affine independent points (denoted as S;).
We restrict our interests in triangulations that do not add vertices, i.e., every S; is a
subset of the vertices @ of . We know that an appropriate triangulation gives the
convex envelope of f.

LEMMA 5.2 (Thm. 2.4 of [74]). For any concave function f, there exists a tri-
angulation {P;};c of U such that the convex envelope of f over U can be computed
by interpolating f affinely over each simplex P;.

However, it is non-trivial to find such an “appropriate” triangulation. To explain
Lemma 5.2, any set S = {u',...,u"*1} C Q of h + 1 affine independent points
determines a function over R via the following affine combination:

(54)  fs(w) =19 Y Nf):IeRM N N =1A > Ml =u

jE[h+1] JE[h+1] JE[h+1]

Because of the affine independence of S, the barycentric coordinate A is unique for
any w in the above affine combination. We can consider fg as a single-valued affine
function and call it the interpolation function induced by S. Since fg interpolates f
at S, we can solve the linear system a - u+b = f(u) (for v € S) to compute a,b that
define fg. It follows from that [74, Cor. 2.6], if fg underestimates f at any point of
Q, then fg is a facet of convenvy(f). We call such an S facet-inducing.

This result implies that we can focus on h-simplices instead of triangulations,
since we want to find an affine underestimator for f = 3. Our enumeration-based
underestimating algorithm finds the set of h + 1 affine independent points in @ such
that the interpolation function fg is an underestimator of f. The algorithm outputs
the greatest interpolation function at the point .

Finally, we explore another property of g that may help us reduce the search
space. To simplify our representation, we translate and scale the domain of 13 to
[0,1]". This leads to a new function s(w) = tg(u), where for all j € [h], u; =
uj + (; —u;)w;. After these transformations, @ becomes w, the transformed domain
U of u becomes [0, 1], and we denote the set of its vertices by the binary hypercube
Q = {0,1}". W.Lo.g., we focus on the study and computation of facets of convenvy,(s).
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A set D C R" is called a product set, if D = Xcm Di for D; C R. Moreover,
a function f : D — R is supermodular over D ([76, Sec. 2.6.1]), if the increasing
difference condition holds: for all w!,w? € D,d € R such that w! < w? and w' +
d,w? +d € D, f(w' +d) — f(w') < f(w? +d) — f(w?). We find that the following
operations preserve supermodularity.

LEMMA 5.3. Let w' € R p € RL_, and let D' be a product subset of D. The
following results hold: (restriction) f is supermodular over D’;(translation) f(w+w")
is supermodular over D — d; (scaling) f(p * w) is supermodular over D/p, where
+,—, %,/ are taken entry-wise.

Proof. The results follow from the definition. ]
We note that when D = @Q = {0,1}", d is in Q. We observe a useful property of

PROPOSITION 5.4. The function s is supermodular over Q (i.e., {0,1}"*). More-
over, convenvy(s) = convenvg(s).

Proof. According to [76, Example 2.6.2], the signomial term ¢, with « > 0 is
supermodular over Ri. This implies that the power function 3 is supermodular
over R". By Lemma 5.3, s is supermodular over & = [0,1]". As @ = {0,1}" is a
product subset of U, s is supermodular over ). After the scaling and translation, s
is still concave. By Lemma 5.1, convenvy,(s) = convenvg(s). O

Finding facets of s could be reduced to a more genera problem of finding facets
of supermodular functions over binary hypercubes. We note that a similar argument
can show that both power functions and multilinear terms over any product subset
of Ri are supermodular.

One may exploit the increasing difference property to determine candidate sets
of affine independent points when searching for facets. When h = 2, we provide
explicit projected formulations of convex envelopes of power functions. As a result,
our cutting plane algorithm can efficiently separate outer approximation cuts for low-
order problems. For h = 1, the only facet is s(0) + (s(1) — s(0))ws.

5.2. Projected convex envelopes in the bivariate case. We present a gen-
eral characterization of projected convex envelopes of supermodular functions f that
is a restriction of a concave function. This gives a closed-form expression of the convex
envelope of s in the bivariate case. We can use a bit representation to denote binary
points in {0,1}2. For example, 10 denotes the point w that w; = 1 and w = 0. For
an affine function a - w + b, we call binary points in {0, 1}? where a-w + b equals f(w)
its interpolating points.

Using the above result, we can construct an envelope-inducing family for bivariate
supermodular functions. Let

(5.5) S? = {00, 10,01}, 57 := {11,10,01}.

One can find that conv(S?) = {(w1,ws) € [0,1]? : w1 + wy < 1}, conv(S3) =
{(wy,w3) € [0,1]% : w1 +wy > 1} are two triangles in [0, 1]2. We have that

fsf (w)

fsg (w)

We show that these two affine functions define the convex envelope of f.
17

f(00) + (f(10) = £(00))wy + (f(01) — f(00))ws,
A1)+ (f(01) = f(11)) (1 —w1) 4 (F(10) — f(11))(1 — w2).
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THEOREM 5.5. Given f:[0,1]2 — R a concave function that has a supermodular
restriction over {0,1}%, {SE}rep) as in (5.5) gives a triangulation of [0,1]* and induce
facets of convenvig 1)2(f).

Proof. We know that convenvig 1j2(f) = convenvyg 132(f). It is easy to see that,
for all k € [2], S} is affinely independent and {conv(S})}kep is a triangulation of
[0,1]2. Therefore, it suffices to show that {S7},ep is facet-inducing, i.e., fsz, fsz are
affine underestimators of f.

Case i. We note that, for all w € S7 = {00,10,01}, fs2(w) = f(w). Note that
{0,1}* ~ 8¢ = {11}. Tt follows from the definition of the affine function fg2 that

fs2(11) = f52(10) + (£52(01) = f52(00)) = f(10) + (f(01) — f(00)).

It follows from the supermodularity of f that

f(10) + (f(01) = £(00)) < £(10) + (f(11) — £(10)) = f(11).

Thereby, fsf underestimates f.
Case ii. We note that, for all w € S5 = {11,10,01}, fsz(w) = f(w). Note that
{0,1}2 \ 52 = {00}. It follows from the definition of the affine function fsz that

[fs3(00) = fs2(10) = (fs2(11) = f52(01)) = f(10) 4 (f(11) — f(01)).

It follows from the supermodularity of f that

f(10) = (f(11) = f(01)) < f(10) — (f(10) — f(00)) = £(00),
which concludes the proof. ]

5.3. Alternative convex outer approximations. According to Subsec. 4.1,
we can have infinitely many DCC formulations of Sg; parametrized by a scalar 6:

Sh = {(u,v) €U x V1 Pys(u) — g, (v) < 0},

where max(||8]]1,[[7][1) = 1 and 0 < § < 1. Notice that S} is used to construct
the convex outer approximation of Ss. Alternatively, we have other convex outer
approximations derived from SY:

Sft = {(u,v) €U XV : convenvy (¢eg)(u) — g (v) < 0}.

For any 0,0" € (0,1], S% = 8%, but 8 could be different from Sf . To generate the
tightest outer approximation cuts, one may ask which 6 yields the smallest convex
outer approximation S%. We show that § = 1 is optimal in this sense.

We express S% as follows:

S = {(u,v) €U x V : (convenvy (Ygp)(u))/? < 1., (v)}.

Since the right hand side 1 (v) of the inequality does not depend on 6, we check the
value of the left hand side (convenvy(¢ps)(u))'/? at every point u € Y. We have the
following observation on the bound of (convenvy,(1gs)(u))'/?.

PROPOSITION 5.6. Given u € U, for any 6 € (0,1], (convenvy (1gg)(u))/? is not
greater than convenvy (yg)(u).

18
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Proof. According to Lemma 5.2, convenvy(1g)(u) = fg(u), where S is the set
of h + 1 affine independent points u’ in the vertices ) of U, and the interpolation
function f(u) is taken as tg(u). Given the combination form (5.4) of fg, we express
convenvy (¥5)(u) = fs(u) = 3 jcmin Ajvs(u?). Note that all A; > 0 (because
u € U), thus, the expression is indeed a convex combination form. Due to Lemma 5.1,
convenvy (Ygg)(u) is the minimum of all convex combinations > o A¢¥es(q). Thus,
convenvy (Ygp)(u) is at most the particular convex combination ¢, 1) Ajtes(u;).-

As 1/6 > 1, t1/% is convex and non-decreasing w.r.t. the indeterminate ¢. It follows
from the Jensen’s inequality of convex function that

(convenvy (1hgg) (u))/? < Z A (u? )0 < Z g (u?),

JEh+1] JE[h+1]

where the last convex combination is exactly convenvy () (u). 0
We then arrive at the conclusion on the optimality of § = 1.
COROLLARY 5.7. For any 0 € (0,1], S¢s = S € S5,
Proof. Tt is because (convenvy,(1gs)(u))'/? underestimates convenvy (1) (u). O

This explains why we choose § = 1 for our DCC formulation. Note that the
convex outer approximation derived from this formulation may not be the convex
hull of Sg;.

5.4. Convexity and reverse-convexity. Our cutting plane algorithm can de-
tect convexity /reverse-convexity of signomial-term sets. The detection is easily done
by the normalized DCC formulation, which gives another advantage.

Denote by ek and eh the j-th unit vector in R” and R*, respectively. Then, we
have the follovvmg observatlons

i) if |B|l; = 1,7 =0, i.e., ¥g is concave and 1) is 1, then Sy is reverse-convex;
i) if ||p]l; < 1,7y = ef for some j € [k], i.e., ¢g is concave and 1, is a linear
univariate function, then Sy is reverse-convex;

iii) if B = el ||v[l; <1 for some j € [h], i.e., 1p is a linear univariate function

and 1., i 15 concave, then Sg; is convex;

iv) if [|B]l; =0, ||vll; =1, i.e., g is 1 and v, is concave, then Sy is convex.

We note that similar results are found in [22, 53]. The results in [22] are proved by
checking the negative/positive-semidefiniteness of the Hessian matrix of a signomial
term. According to the normalized DCC formulation, the results are evident.

6. Computational results. In this section, we conduct computational experi-
ments to assess the efficiency of the proposed valid inequalities.

The MINLPLib dataset includes instances of MINLP problems containing signo-
mial terms, and some of these instances are SP problems. To construct our benchmark,
we select instances from MINLPLib that satisfy the following criteria: (i) the instance
contains signomial functions or polynomial functions, (ii) the continuous relaxation of
the instance is nonconvex. Our benchmark consists of a diverse set of 251 instances in
which nonlinear functions consist of signomial and other functions. These problems
come from practical applications and can be solved by general purpose solvers.

Experiments are performed on a server with Intel Xeon W-2245 CPU @ 3.90GHz,
126GB main memory and Ubuntu 18.04 system. We use SCIP 8.0.3 [14] as a frame-
work for reading and solving problems as well as performing cut separation. SCIP is
integrated with CPLEX 22.1 as LP solver and IPOPT 3.14.7 as NLP solver.
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We evaluate the efficiency of the proposed valid inequalities in four different set-
tings. In the first setting, denoted disable, none of the proposed valid inequalities
is applied. In the second setting, denoted oc, only the outer approximation cuts
are applied. The third setting, denoted ic, applies only to the intersection cuts.
The fourth setting combines both the oc and ic settings by applying both cuts.
We let SCIP’s default internal cuts handle univariate signomial terms and multilin-
ear terms. Our valid inequalities only handle the other high-order signomial terms.
The source code, data, and detailed results can be found in our online repository:
github.com/lidingxu/ESPCuts.

Each test run uses SCIP with a particular setting to resolve an instance. To solve
the instances, we use the SCIP solver with its sBB algorithm and set a time limit of
3600 seconds. In our benchmark, there are 150 instances classified as affected in which
at least one of the settings oc, ic, and oic settings adds cuts. Among the affected
instances, there are 86 instances where the default SCIP configuration (i.e., disable
setting) runs for at least 500 seconds. Such instances are classified as affected-hard.
For each test run, we measure the runtime, the number of sBB search nodes, and the
relative open duality gap.

To aggregate the performance metrics for a given setting, we compute shifted
geometric means (SGMs) over our test set. The SGM for runtime includes a shift of 1
second. The SGM for the number of nodes includes a shift of 100 nodes. The SGM for
relative gap includes a shift of 1%. We also compute the SGMs of the performance
metrics over the subset of affected and affected-hard instances. The performance
results are shown in Table 1, where we also compute the relative values of the SGMs
of the performance metrics compared to the disable setting. Our following analysis is
based on the results of the affected and affected-hard instances. Moreover, we display
the absolute value of the averaged separation time versus the absolute value of the
averaged total runtime of each setting. We find that the separation time is much
shorter than the total runtime.

Setting All (#251) Affected (#150) Affected-hard (#86)

& solved nodes time gap |solved nodes time gap [solved nodes  time gap
. absolute . 6510 0/122 4.7% 15592 0/253 5.7% 175973  0/3600 26.7%
disable tive | B 10 10 10| ' 10 10 10| 7 1.0 1.0 10
absolute 140 5954 1/118 4.5% 73 13443 2/241 5.4% 10 115262 9/2872 23.3%

oc relative 091 0.97 097 0.86 0.95 0.95 0.65 0.8 0.87
. absolute 140 6144 1/122 4.4% 73 14081 2/252 5.2% 10 128072 5/2994 22.0%

e relative 094 1.0 095 09 099 091 0.73 0.83 0.82
. absolute 139 5934 1/117 4.6% 7 13275 3/236 5.6% 10 118054 10/2758 23.0%
O relative 091 096 0.99 085 093 098 0.67 077  0.86

Table 1: Summary of performance metrics on MINLPLib instances.

First, we note that the proposed valid inequalities lead to the successful solution
of 2 additional instances compared to the disable setting. The oc setting solves 2
more instances than the disable setting.

The reductions in runtime and relative gap achieved by the oc setting are 5% and
5%, respectively, for affected instances and 20% and 13%, respectively, for affected-
hard instances. The ic setting solves 2 more instances than the disable setting. The
reduction in runtime and relative gap achieved by the ic setting is 1% and 9% for
affected instances and 17% and 14% for affected-hard instances, respectively. The
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oic setting resolves 1 additional instance compared to the disable setting. The
reduction in runtime and relative distance achieved by the oic setting is 7% and 2%,
respectively, for affected instances and 23% and 14%, respectively, for affected-hard
instances.

We note that the runtime does not provide much information about affected-
hard instances, since only 10 instances can be solved within 3600 seconds. For these
instances, the gap reduction is more useful to measure the reduction of the search space
by the proposed valid inequalities. However, for all affected instances, the runtime is
still important because it measures the speedup due to the valid inequalities.

Second, we find that all cut settings have a positive effect on SCIP performance,
although the magnitude of the reduction varies. When we compare the oc and ic
settings, we find that the oc setting leads to a larger reduction in runtime. This
difference in runtime is due to the fact that computing intersection cuts requires
extracting a simplified cone from the LP relaxation and applying bisection search
along each ray of the cone. These procedures require more computational resources
compared to the construction of outer approximation cuts.

On the other hand, the ic setting shows better performance in terms of reduc-
ing gaps. Intersection cuts approximate the intersection of a signomial-term set with
the simplicial cone, while outer approximation cuts approximate the intersection of a
signomial-term set with a hypercube. Around the relaxation point, the simplicial cone
usually provides a better approximation than the hypercube. Therefore, ic achieves a
greater reduction in the relative gap. However, the better simplicial conic approxima-
tion does yield a significant improvement compared to the hypercubic approximation.

Finally, the oic setting combines both the oc and ic settings and achieves the best
reduction in runtime. However, for affected and affected-hard instances, the setting
shows different gap reduction results. In fact, the results for affected-hard instances
give more insight, since the goal of the valid inequalities is to speed up convergence
for hard instances. In this sense, the oic setting achieves almost the best result, so
it carries the best of both valid inequalities. However, the improvement compared to
each setting is not significant.

We next look at instance-wise results on affected instances that are not solved by
the disable setting. The scatter plots in Fig. 4 compare the relative gaps of such
instances obtained by different settings. We find that, many data points (of gaps less
than 20%) are around the diagonal line, and these unbiased results mean that they
are not affected much by cutting planes. However, there are some data points (of
gaps more than 40%) above the diagonal line, especially noticing those far in the top,
so cutting planes achieve much smaller gaps than the disable setting on these hard
instances.

In summary, the performances of the oc and ic settings are comparable. They
can lead to smaller duality gaps, which is desirable for solvers, and one can use either
of them. Moreover, the combination of both cuts enhances performance slightly.

7. Conclusion and discussions. In this paper we study valid inequalities for
SP problems and propose two types of valid linear inequalities: intersection cuts
and outer approximation cuts. Both are derived from normalized DCC formulations
of signomial-term sets. First, we study general conditions for maximal S-free sets.
We construct maximal signomial term-free sets from which we generate intersection
cuts. Second, we construct convex outer approximations of signomial-term sets within
hypercubes. We provide extended formulations for the convex envelopes of concave
functions in the normalized DCC formulations. Then we separate valid inequalities
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Fig. 4: Relative gaps (in percentage) between pairs of settings for affected and un-
solved (by the disable) instances

for the convex outer approximations by projection. Moreover, when h = 2, we use
supermodularity to derive a closed-form expression for the convex envelopes.

We present a comparative analysis of the computational results obtained with the
MINLPLib instances. This analysis demonstrates the effectiveness of the proposed
valid inequalities. The results show that intersection cuts and outer approximation
cuts have similar performance and their combination takes the best of each setting.
In particular, it is easy to implement outer approximation cuts in general purpose
solvers.

In the following, we have some further discussions that lead to some open ques-
tions and possible extensions of the proposed cutting plane algorithms.

7.1. Signomial aggregation. We currently deal with signomial terms explic-
itly present in the signomial terms, but our results can be extended to deal with
multiple signomial terms. In the future, the proposed valid inequalities can approx-
imate nonlinear aggregations of constraints that define the signomial lift. Specifi-
cally, given signomial constraints {1i(z) = i }ic[y) With any exponent vector ¢ €
R”, we can employ signomial aggregation to generate a new signomial constraint:
w(ziem ¢;at)(x) = ¥¢(y). This constraint is valid for the signomial lift and encodes
more variables and terms. Next, we can apply the DCC reformulation to the con-
straints w(ziem cai) (@) < Ye(y) and Q/J(Zie[r] ¢ai)(®) > Ye(y). Finally, we can sep-
arate the proposed valid inequalities. As far as we know, the signomial aggregation
operator is not yet used for polynomial programming, since it outputs a signomial
constraint.

7.2. Signomial constraints. Through lifting signomial terms, we have studied
the extended formulation of SP. The proposed methods could be used for relaxing
signomial constraints in the projected formulation of SP, but this may require a global
transformation of variables. We can always write a signomial constraint as follows:

(71) Z bﬂ/)ai (iﬂ) < Z biwa"' (IB),

i€l i€l

where, for all i € [ :== I U I3, b; > 0 and «a; € R™. We want the signomial terms to
have only positive exponents. As the both sides of the signomial constraint (7.1) are
non-negative, we can multiply both sides by a signomial term %0 (x) with a® > 0,
which should yield all 3¢ := o' + a® > 0. This reformulates the signomial constraint
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(7.1) as follows:

(7.2) Z bipgi(x) < Z bithgi ().

i€l i€l

Note that vi () only have positive exponents, but they are not necessarily power
functions. For the constraint in reformulated signomial-term set in (4.3), we applies
powers on two signomial terms to rescale their exponents, and we obtain a DCC
constraint. However, this power rescaling generally does not produce a DCC refor-
mulation of (7.2), because the rescaled term (>, ; bithgi(x))* for p > 0 could be
nonconvex. Instead, we can use power transformation to overcome this difficulty.
Given v € R |, denote z = (xJ%)], and we note that g (x) = ¥gi/y(2), where / is
taken entry-wise. When all [|3*/~]|; < 1, every v5:(2) is a power function. Therefore,

the signomial constraint (7.2) is equivalent to the following DCC constraint:

(7.3) > bithgisy(2) <) bithgiss (2).

i€l i€ly

Note that the SP can have other signomial constraints in z, and this global power
transformation reformulates SP in the variable space of z. We should choose an ap-
propriate parameter v that transforms all signomial constraints into DCC constraints
in z as well, and such a v should satisfy that ||5/v||; < 1 for all exponents 3 appearing
in the reformulated signomial constraints as (7.2). Then, we could apply the proposed
cutting planes on this space. However, it is not easy to implement this global power
transformation in current solvers, or such a transformation does not exist for prob-
lems mixed with signomial terms and other nonlinear functions. We pose some open
problems here. Which ~ yields DCC constraints that result in maximal S-free sets
(S is taken as the feasible set defined by the constraint (7.3))? As Thm. 3.5 requires
at least one part of the DCC function to be positive homogeneous of degree 1, could
we reuse Thm. 3.5 to find v? We conjecture that such a -y does not exist in general,
because we have to ensure several |3 /7| = 1.
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Appendix.

Proof of Thm. 3.1. It suffices to consider the case that C is a maximal epi(g;)-free
set in G*. W.l.o.g., we can assume that C, G’ are full-dimensional in R%i. Since epi(g’)
includes graph(g;), C, as an epi(g;)-free set, is also graph(g;)-free. First, we prove that
C is a maximal graph(g})-free set in G*. Assume, to aim at a contradiction, that ' is a
graph(g})-free set that CNG* C C'NG". Suppose that epi(g])Nint(C’NG?) is not empty
and contains (z';,y;). As C is epi(gj)-free, there exists a point (z,,y;) € int(CNG") C
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int(C’ N G%) such that (z,,y;) € hypo(g:). It follows from the continuity of g} that
there exists a point (27 ,y;) € graph(g;) in the line segment joining (x,,y;) and
(7, 9;). As int(C’' N G') is convex, we have that (¢% ,yF) € int(C' N G*), which leads
to a contradiction to graph(g})-freeness of C’. Therefore, epi(g})Nint(C’NG*) must be
empty, so C' N G* C hypo(g:). This means that C’ is also epi(g.)-free. However, note
that CNG* C C’' NG, this contradicts with the fact that C is a maximal epi(g])-free
set in G°. Therefore, C is a maximal graph(g’)-free set in G’. Secondly, we prove
that C is a maximal Sjg-free set in G. Assume, to aim at a contradiction, that there
exists an Syg-free set D in G such that CN G - DNG. We look at their orthogonal
projections on R’i. It follows from the decomposability that CNG? = CNprojgr, (G) =
projgz (C N G) C projgr, (DN G). Denote D := cl(projgr, (D N G)), which is a closed
convex set in G¢. Since C = C x R\, D must strictly include C N G*. Note that
D is graph(g})-free. Since C is a maximal graph(g})-free set in G, this implies that
CNG* =D, which leads to a contradiction. 0

Proof of Lemma 3.3. Let C be a set satisfying the hypothesis. Suppose, to aim
at a contradiction, that there exists a closed convex set C* such that C C C* and C*
is an inner approximation of F. Then, there must exist an open ball B such that
B C F~Cand B CC*. Let z* be the center of B, so z* € int(F ~ C). W.lo.g., we
let C* = conv(C U {z*}), which is a closed convex inner approximation of F. Since
z* ¢ C, by the hyperplane separation theorem, there exists A € dom(o¢) such that

(7.4) A-2F > oc(N).
For any such A, by the hypothesis, there exists a point 2z’ € bd(F) Nbd(C) such that
(7.5) A2 = ae(N),

and 2’ is an exposing point of C. We want to show that, for any X' € dom(oc~),
N2 < ge«(AN). We consider the following three cases. First, we consider the case
A = \. Because z* € C*, by the definition of support functions, we have that

(7.6) A-z2" < sup Az = oex ().
zEeC*

It follows from (7.4), (7.5), and (7.6) that
(7.7) A2 =oc(N) < A-z" <oe«(A) ZUC*()\/).

Second, we consider the case X' = pA for some p > 0. Since o¢+ is positively homo-
geneous of degree 1, it follows from (7.7) that X' - 2" = pA -2’ < poe«(A) = oe=(N).
Last, we consider the case X € dom(o¢+) \ {pA},>0. By Lemma 3.2, o¢ < o¢-. By
the hypothesis that 2’ is an exposing point of C, provided that X' # pA, we have that
N2 < oe(N) < oex(N). In summary, we have proved that for any A’ € dom(oc-),
N2 < oe«(N). So by Lemma 3.2, 2’ € int(C*). We find that 2’ € bd(F) N int(C*).
This finding means a point near 2z’ exists, which is in C*, but not in F. Hence, C* is
not an inner approximation of F, which leads to a contradiction. O

Proof of Lemma 3.4. Given z € dom(f), f(pz) = p?f(z) is a real number for any
p € Ry, soint(dom(f)) is a cone. Suppose that f is positive homogeneous of degree
1. For any z € dom(f), E;(z) = f(2)+Vf(2) (= %) = Vf(%) - z, where the second
equation follows from Euler’s homogeneous function theorem: f(%) = Vf(%) - 2z. For
any z = pZ with p € Ry, Eﬁ(z) =Vf(Z) pz= pE];(Z) = pf(%) = f(p2), where the
first and second equations follow from the previous result, the third follows from that
Eg has the same value as f at Z, and the last equation follows from the homogeneity.O
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