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Abstract

In this work we address the Anonymous Subgraph Problem (ASP). The
problem asks to decide whether a directed graph contains anonymous sub-
graphs of a given family. This problem has a number of practical applications
and here we describe three of them (Secret Santa Problem, anonymous rout-
ing, robust paths) that can be formulated as ASPs. Our main contributions
are (i) a formalization of the anonymity property for a generic family of
subgraphs, (ii) an algorithm to solve the ASP in time polynomial in the size
of the graph under a set of conditions, and (iii) a thorough evaluation of our
algorithms using various tests based both on randomly generated graphs
and on real-world instances.
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1. Introduction

Given a directed graph G = (V,A), many problems can be modelled
as the search for a subgraph S ⊆ A with specific properties. There are
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applications in which it is desirable to ensure S is anonymous, in the sense
described below. In this work we formalize an anonymity property for a
generic family of subgraphs and the corresponding decision problem. We
devise an algorithm to solve a particular case of the problem and we show
that, under certain conditions, its computational complexity is polynomial.
We also examine in detail several specific family of subgraphs.

This problem has not been previously studied in its general form, but
other anonymity-related problems have received great attention in the last
years. For instance, the rising popularity of on-line communities and social
networks has motivated the analysis of their structures. While this can ex-
plain interesting aspects of human social behavior, it also creates privacy
concerns. A social network is usually modelled as a graph, where vertices
represent individuals and edges correspond to relationships between individ-
uals. If such graph is released to the public, we must guarantee the privacy
of the users is preserved. The simplest graph-anonymization technique con-
sists in removing the identities of the vertices, replacing them with random
identification numbers. Recently Backstrom et al. [1] have shown that this
does not always guarantee privacy and that there exist adversaries able to
identify target individuals and the relationships between them by solving a
set of restricted graph isomorphism problems. Hay et al. [2] propose a defi-
nition of graph anonymity: a graph satisfies k-candidateanonymity if every
vertex shares the same neighborhood structure with at least k − 1 other
vertices. However, the authors concentrate on the formulation of anonymity
definitions and not on the design of algorithms that guarantee to obtain a
graph which satisfies them. Zhou and Pei [3] consider the following defini-
tion of graph-anonymity: a graph is k-anonymous if for every vertex there
exist at least k − 1 other vertices that share isomorphic 1-neighborhoods.
They also consider the problem of minimum graph-modification required
to obtain a graph that satisfies the anonymity requirement. Zheleva and
Geetor [4] study the problem of protecting sensitive links between individu-
als in an anonymized social network and propose simple edge-deletion and
vertex-merging algorithms to reduce the risk of sensitive link disclosure. In
[5] Frikken and Golle study the problem of privately assembling a graph
whose pieces are owned by different parties. They propose a set of protocols
that allow to reconstruct the graph without revealing the identity of the
vertices. Feder et al. [6] introduce another definition of graph anonymity: a
graph is (k, l)-anonymous if for every vertex in the graph there exist at least
k other vertices that share at least l of its neighbors. The authors propose
an algorithm to compute the minimum number of edges to be added so that
a given graph becomes (k, l)-anonymous.
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Another field of research is the development of techniques to measure
the level of anonymity provided by a system. Chaum [7] introduces the
notion of anonymity set as the set of participants who are likely to be
senders (or recipients) of a message. The larger is the set, the stronger
is the anonymity of its members. Serjantov and Danezis [8] show that the
size of the anonymity set is inadequate for expressing instances where not
all members are equally likely to have sent a particular message and they
propose an effective anonymity set size, based on the information theoretic
concept of entropy. They interpret it as the amount of additional informa-
tion the attacker needs to identify a user. A similar entropy-based metric
has been independently proposed by Diaz et al. [9]. Tóth and Hornàk [10]
introduce the notion of source-hiding and destination-hiding. A system is
source-hiding with parameter Θ if the attacker cannot assign a sender to
any message with probability greater than Θ. In a similar way, a system
is destination-hiding for a given parameter Ω if the attacker cannot deter-
mine the recipient of any message with probability greater than Ω. The
authors also show that a system may appear near optimal with respect to
the entropy-based metrics even if the attacker can identify the sender or the
recipient of some messages with high probability. Newman et al. [11] pro-
pose to use an entropy-based approach to evaluate the level of protection
provided by a Traffic Analysis Prevention system. Instead of computing
the size of the anonymity set for each message, Edman et al. [12] use a
combinatorial approach to obtain a metric that considers all messages si-
multaneously. Gierlichs et al. [13] generalize the ideas of Edman et al. to
take into account multiple messages sent or received by the same user and
propose an algorithm to compute this metric.

In Meurdesoif et al. [14] a situation almost opposite to ours is tackled:
to find a minimum cost set of arcs that allows to completely identify any
path between fixed source and destination vertices.

This paper is organized as follows. In Section 2 we introduce the defini-
tion of an anonymous family of subgraphs and we formalize the Anonymous
Subgraph Problem. In Section 3 an algorithm to solve a restriction of the
problem is described. Two applications of this restriction of the problem
are illustrated in Sections 4 and 5; for a particular case of the latter, a more
efficient algorithm is also derived. In Section 6 we return to the general ASP
problem and we present an application of the general problem and an ad-hoc
algorithm is proposed for solving it. Finally we draw some conclusions in
Section 7.
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2. Characterization of anonymity

In this section we start by providing a formalization of the concept of
anonymity for a family of subgraphs of a graph G (Defn 1) and by intro-
ducing the corresponding decision problem (Defn 2). We then describe a
restriction of this problem (Defn 3) that can be solved in polynomial time.

Given a digraph G = (V,A), let |V | = n and |A| = m. We say that
G′ = (V ′, A′) is a subgraph of G when V ′ ⊆ V and A′ ⊆ A. Since a subset
of arcs of A uniquely induces a subgraph of G modulo isolated vertices, we
sometimes employ the word “subgraph” to mean a set of arcs inducing a
subgraph. We characterize anonymity of a subgraph S, meant as a subset
of arcs in G, so that no partial information about the topology of S may
be used to infer the information that another arc of A is in S. We do this
by requiring G to have a family Y of subgraphs, that includes S itself, such
that for every choice of partial information C ⊂ S and any arc a ∈ S r C,
there is always another member S′ 6= S of the family that includes C but
not a. Thus, C never uniquely determines S within the family.

We call C a partial view of S. Let P(A) denote the set of all subsets of
A, and let PV : P(A)× Y → {0, 1} be the function

PV (X,S) =

{

1 X is a partial view of S
0 otherwise

that defines which subsets are considered a partial view of a certain sub-
graph.

Intuitively, a family of subgraphs Y is anonymous if the knowledge of a
partial view C of any subgraph S of Y does not lead to infer the presence
of another arc b in S. We formalize this by means of the following:

Definition 1 (Anonymous family of subgraphs). Given a digraphG =
(V,A), a family of subgraphs Y ⊆ P(A) and a function PV : P(A)× Y →
{0, 1}, Y is anonymous in G if

∀S ∈ Y, ∀C ∈ {X|PV (X,S) = 1} , ∀b ∈ S \ C ∃T ∈ Y : C ⊆ T ∧ b /∈ T.

We call anonymous subgraphs the elements of an anonymous family Y.
Intuitively, Definition 1 captures the standard notion of ignorance described,
for instance, in [15]: an agent ignores a fact if, given its current information,
the agent cannot establish whether this fact is true or false. In Definition 1,
C is the information an agent has, and the definition of anonymity requires
that, given this information, the agent cannot infer anything about any arc
b not in C.
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Figure 1: Example of a graph and subgraph families.

Example 1. Consider the directed graph in Fig. 1 and the following partial
view function

PV (X,S) =

{

1 X ⊆ S ∧ |X| ≤ 1
0 otherwise

that is, at most one arc of the subgraph is known. For a subgraph S = {a, b}
there are three partial views to be considered: ∅, {a} and {b}. The family of
subgraphs X = {{a, b}, {b, c}, {a, d}} is clearly not anonymous: the partial
view {c} allows to determine that the subgraph contains also arc b. On
the contrary, the family Y = {{a, b}, {b, d}, {a, d}} satisfies the anonymity
conditions.

It is now possible to define the Anonymous Subgraph Problem (ASP)
as the decision problem of checking if a family of subgraphs contains an
anonymous family with respect to a given graph.

Definition 2 (Anonymous Subgraph Problem). Given a digraph G =
(V,A), a family F of subgraphs of G and a function PV : P(A)×F → {0, 1},
is there a non empty subset Y of F which is anonymous in G?

We now consider a special case of Defn. 1 when the set of partial views
of each subgraph S is defined by {C| C ⊆ S ∧ |C| = 1}, i.e. only one arc of
the subgraph is known, obtaining the following definition of anonymity:

Definition 3. Given a digraph G = (V,A), a family of subgraphs Y ⊆
P(A) is anonymous in G if the knowledge of any edge a from any subgraph
S of Y can not lead to infer another edge b of S. This is the following
formula:

∀S ∈ Y, ∀a 6= b ∈ S ∃T ∈ Y : a ∈ T ∧ b /∈ T.

In other words, if we only know that a ∈ S, we cannot infer that also b ∈ S,
since there is a T ∈ Y such that a ∈ T but b 6∈ T . We will refer to ASP1
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to denote the Anonymous Subgraph Problem where Definition 3 is used to
characterize anonymity. As we show in the following sections, this restricted
version of ASP has a number of practical applications. In the next section
we propose an algorithm to solve ASP1 and we show that under certain
conditions its computational complexity is polynomial in the size of the
graph G.

3. A polynomial time algorithm for ASP1

Algorithm 1 is a recursive algorithm that solves ASP1: it returns an ele-
ment of Y, if an anonymous Y ⊆ F exists, and an empty set otherwise. The
algorithm is based on the following observation: if there exist two distinct
arcs a, b ∈ A such that no subgraph T ∈ F contains a but not b, then all the
subgraphs S ∈ F containing a form a non-anonymous family, since knowl-
edge of a will lead to infer b for every arc set in the family. Thus, we can
transfer the anonymity property from subgraphs to arcs. At the top level
of recursion, arcs in P play the role of the arc a. The algorithm iteratively
removes arcs from P . If no subgraphs can be found satisfying the additional
constraints given by P , then the family is not anonymous in G.

We define the subroutine FindSG(G,F , P,X) as follows:

FindSG(G,F , P,X) =















lexicographically smallest member of
{S ∈ F | X ⊆ S ⊆ P} if latter is nonempty

∅ otherwise.

Theorem 1. Alg. 1 correctly solves the ASP1.

Proof. First we observe that, if the algorithm returns a non-empty solution,
at Line 7 the set Y of subgraphs in F where every arc belongs to P is
anonymous in G. Let S ⊆ P be an element of Y, we know that ∀a, b ∈
S ∃T ∈ Y s.t. a ∈ T and b /∈ T , otherwise a would have been removed from
P in Line 4. Assume now there is a solution to ASP1 and Alg. 1 returns ∅.
The existence of a solution implies the existence of a non-empty anonymous
set Y. If Alg. 1 reached Line 7 with Y ⊆ P(P ), then by definition of
FindSG(G,F , P,X) , Alg. 1 would not have returned ∅. Thus we know
that the algorithm reached Line 7 with Y \ P(P ) 6= ∅. Consider the first
time an arc a ∈ A used in at least one element of Y was removed from
P . At that time Y ⊆ P(P ), so a should not have been removed because
∀b 6= a ∈ P ∃T ∈ Y s.t. a ∈ T and b /∈ T . Moreover, since initially |P | = m
and at every recursive call the cardinality of P is decreased by one, we are
sure that the number of recursive calls is bounded by m.
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At each call the subroutine FindSG (which solves the subproblem) is
executed up to m2 times. Thus, if FindSG has computational complexity
O(γ), the worst case complexity of the overall algorithm is O(m3γ). In
conclusion, if we are provided a polynomial algorithm (in the size of |G|) to
solve the subproblem, we can solve ASP1 in polynomial time.

Algorithm 1 Algorithm for solving the ASP1. The first call has P = A.

1: FindAnonymousSG(G,F , P ):
2: for all a 6= b ∈ P do
3: if FindSG(G,F , P \ {b}, {a}) = ∅ then
4: return FindAnonymousSG(G,F , P \ {a})
5: end if
6: end for
7: return FindSG(G,F , P, ∅)

Definition 2 holds for a generic family F of subgraphs of G, which might
have non-polynomial size in terms of |G|. In real applications we usually
have to deal with a family F characterized by specific properties, such as,
for example, sets of disjoint cycles. By exploiting these properties, we can
describe F implicitly and, in some useful cases, obtain polynomial proce-
dures to solve FindSG independently of |F|.

4. Secret Santa Problem

In this section we present a first application of ASP1 to a practical
problem that requires to reason about knowledge in a system formalized
as a graph. More in detail, when in Defn. 3 the family F of subgraphs of
a graph G is the set of all Vertex Disjoint Circuit Covers (VDCCs — see
Defn. 4), we obtain the Secret Santa Problem described in [16] (notice that
the definitions of anonymity used here are slightly different from those given
in [16]).

The basic concept of the Secret Santa ritual is simple. All of the partici-
pants’ names are placed into a hat. Each person picks randomly a recipient’s
name from the hat, keeps the name secret, and buys a gift for the named
recipient. The label on the gift wrapping indicates the recipient’s name but
not the buyer’s. All the gifts are then placed in a general area for opening
at a designated time.

Additional constraints are considered in the definition of the problem: it
may be required that self-gifts and gifts between certain couples of partici-
pants (e.g. siblings) should be avoided. The problem can be modelled with
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a digraph, where vertices represent the participants and arcs (u, v) the fact
that participant u is eligible to select v as a recipient’s name. We want to de-
termine if the topology of the graph allows an anonymous exchange of gifts,
i.e. one having the property that nobody can discover any gift assignment
knowing the graph topology and their own recipient names.

The problem can be formulated as an ASP1 where F is the family of all
the VDCCs of the graph.

Definition 4. A Vertex Disjoint Circuit Cover (VDCC) for G = (V,A)
is a subset S ⊆ A of arcs of G such that: (a) for each v ∈ V there is a
unique u ∈ V , called the predecessor of v and denoted by πS(v), such that
(u, v) ∈ S; (b) for each v ∈ V there is a unique u ∈ V , called the successor
of v and denoted by σS(v), such that (v, u) ∈ S. We denote by C the set of
all VDCCs in G.

Since gifts must be exchanged anonymously, not all VDCCs are accept-
able: e.g. when V = {1, 2} and A = {(1, 2), (2, 1)}, there is a unique VDCC,
so each person knows that the other person will make her a gift. Informally,
we define a graph G as a Secret Santa graph if it admits at least one VDCC
ensuring anonymity.

Definition 5. A graph G is a Secret Santa graph (SESAN) if there exists
an anonymous family Y of VDCCs in G. Elements of Y are called acceptable
solutions.

By the definition of anonymity (Def. 3), even if a participant knows
his/her own gift assignment a, he/she does not gain any knowledge with
respect to any other gift assignment b.

4.1. Examples

Consider the graph obtained by replacing each edge in K4 (the leftmost
graph in Fig. 2) with two anti-parallel arcs. This graph is SESAN: the 6
subgraphs on the right in Fig. 2 are an anonymous family of VDCCs in K4.

Consider now the graph on the left in Fig. 3. By replacing each edge
with two anti-parallel arcs we obtain another SESAN graph. It is enough
to combine two independent solutions for the K4 components. However,
not all VDCCs are acceptable solutions. The right hand side of Fig. 3 is a
VDCC, but it does not guarantee anonymity: if the arc a is used, we are
forced to include the arc b.
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Figure 2: K4 and an anonymous family of VDCCs.

a

b

Figure 3: Example of SESAN graph and a non anonymous VDCC.

4.2. Solving the Secret Santa problem

As stated above, the secret Santa problem can be formulated as an ASP1
and, therefore, it is solved by Alg. 1. In this case FindSG(G,F , P, {(i, j)})
requires to find a VDCC with restrictions on the arcs that can be used. As
shown in [16] it can be done in O(n

1

2m) by solving an assignment problem
on a bipartite graph B = (U1, U2, A

′), where U1 = U2 = V \ {i, j} and
A′ = P .

We generated groups of 20 random graphs with |V | ∈ {10i|1 ≤ i ≤ 5}
and arc generation probability p ∈ {0.05i|1 ≤ i ≤ 8}. The plot in Fig. 4
shows, for each |V | and p the number of graphs out of 20 that are SESAN.
We also used randomly generated power law graphs because they are a more
realistic model of the structure of a social network [17]. In these graphs
the expected degree of the i-th vertex is αn(i−t), where n is the number
of vertices. Hence, an arc is created between the vertices i and j with

probability (αni−t)(αnj−t)∑
n

k=1
αnk−t . We generated graphs with α = 0.5, t in the range

[0.1, 0.4] and |V | ∈ {10i|1 ≤ i ≤ 5}. The plot in Fig. 5 shows, for each |V |
and t, the number of graphs out of 20 that are SESAN. The results confirm
the intuition that the SESAN property becomes more common as the size
and the density of the graph increase.
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Figure 4: Proportion of SESAN random graphs with p ranging in [0.05, 0.4].
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5. Anonymous routing

In this section we first provide two example of anonymous routing proto-
cols. We then provide a formalization of anonymous routing in Section 5.2.

5.1. Examples of anonymous routing

In many contexts it is desirable to hide the identity of the users in-
volved in a transaction on a public telecommunication network. Anonymous
routing consists of guaranteeing anonymity and anti-localization of sender
and/or receiver of messages in a communication network. It protects user
communication from identification by third-party observers According to
the specific application, we may be interested in:

• sender anonymity at any node (using local node information), at the
receiver node (using receiver node information) or for a global attacker
(who can monitor traffic on every link in the network);

• receiver anonymity at any node, at the sender node or for a global
attacker;

• sender-receiver unlinkability (i.e. knowing that u sent a message and
v received one is not sufficient to establish that u sent a message to v)
at any node or for a global attacker.

In order to obtain anonymous routing, a protocol of communication must
be defined among the users of the network. Several protocols have been
proposed in the literature to provide anonymous routing features [18, 19, 20].
We now briefly describe two such protocols, Onion Routing and Crowds, to
show how anonymous routing can be achieved. Then we show how ASP1
can be used to identify if the topology of a network is unsuitable to support
an effective anonymous routing.

Onion routing is a general-purpose protocol [19] that allows anonymous
connection over public networks. Messages are routed through a number of
nodes called Core Onion Routers (CORs). In order to establish a connec-
tion, the initiator selects a random path through the CORs and creates an
onion, a recursively layered data structure containing the necessary informa-
tion for the route. Each layer is encrypted with the key of the corresponding
COR. When a COR receives an onion, a layer is “unwrapped” by decrypting
it with the COR’s private key. This reveals the identity of the next router
in the path and a new onion to forward to that router. Since inner layers
are encrypted with different keys, each router obtains no information about
the path, other than the identity of the following router. There are two
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possible configurations for an end-user. They can either run their own COR
(local-COR configuration) or use one of the existing ones (remote- COR).
The first option requires more resources, but provides better anonymity.

Crowds is a system proposed by Reiter and Rubin [20] that aims to
increase the privacy of web transactions by providing sender anonymity.
The idea is to hide sender’s actions within the actions of many others. To
execute a web transaction a user first joins a “crowd” of other users. The
request is first passed to a randomly selected member of the crowd. That
member can either submit the message to the end server or forward it to
another randomly chosen member of the crowd. Thus, when the request
eventually reaches the end server, it is submitted by a random member of
the crowd, preventing the end server from identifying its true initiator. Even
the other members of the crowd cannot identify the sender, because it is not
possible to distinguish a newly generated message from a forwarded one.

5.2. A formalization of anonymous routing

Attacks against anonymous routing protocols are usually based on traffic
analysis. This means monitoring some of (or all) the links of the network
and then try to correlate information in order to rebuild the path followed
by messages. In some circumstances knowledge about a path can also be
derived from the topology of the network. As an example, consider the
graph in Fig. 6: there are several paths from vertex s to vertex t, but the
presence of the arcs (1, t) or (2, t) in a path forces the presence of the arc
(s, 1) as well. We call this a “forced path”, which we formalize as follows:

Definition 6 (Forced paths). A digraph G = (V,A), contains a forced

path if there exist two vertices s, t ∈ V and two edges a, b ∈ A s.t. if b
belongs to a path from s to t, then also a belongs to the same path.

The presence of a forced path can be exploited by an attacker monitoring
the traffic on those links to restrict the set of potential senders for the
message. We introduce the notion of strong path anonymity to characterize
topologies that do not have forced paths:

Definition 7 (Strong path anonymity). A digraph G = (V,A) has the
strong anonymity path property iff it does not contain forced paths (in the
sense of Defn. 6).

Verification that a graph has the strong anonymity property can be re-
duced to solving an instance of ASP1 for each pair of nodes (s, t) of the
network, where G is the graph representing the network and S is the family
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s t

1

2

Figure 6: Example of non-anonymous family of paths.

of all paths of length at least 2 between the two nodes. We exclude paths
involving only one arc because they naturally fail in providing anonymity.
The subproblem FindSG(G,F , P \ {b}, {(i, j)}) requires, in this case, to
find two paths: one from s to i and one from j to t. This can be done in
O(n+m) using a graph traversing algorithm.

In this case we can also provide a more efficient algorithm. Checking the
anonymity property for all pairs of distinct vertices s, t ∈ V is equivalent to
verify the existence of two different elementary paths between every pair of
vertices. If the latter condition is not satisfied by a pair of vertices i, j ∈ V ,
then the family of paths between i and j cannot be anonymous. Vice-versa,
if for all i, j ∈ V there exist two paths, it is always possible to substitute the
arc (i, j) with another path from i to j and thus the anonymity condition is
satisfied for every pair of vertices. The computational complexity of verifying
the existence of two paths for all pairs of nodes is O(n2(n + m)), which is
less than O(n2m3(n+m)) required by n2 executions of Alg. 1.

The plot in Fig. 7 reports the result obtained on randomly generated
graphs, with the same parameters used for the secret Santa problem. Again
the strong anonymity path property becomes more common as the number
of vertices and the density of the graph increase.

Anonymous routing protocols usually generate pseudo-random paths
in order to maximize the level of anonymity provided and the robustness
against traffic analysis attacks. This introduces delays in the transaction
(e.g. in onion routing we have to apply a layer of cryptography for each
node in the path) that cannot be tolerated in certain applications, i.e. when
the content of the message is part of an audio or video stream, or in finan-
cial market transactions. In these situations we may want to give up some
anonymity in exchange for performances. We may, for example, force the
routing protocol to choose paths whose length is close to the shortest path,
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Figure 7: Proportion of random graphs with p ranging in [0.05, 0.4] which do not contain
forced paths.

instead of random ones. Ideally, we would like the topology of the graph
to allow them to be strongly anonymous in the sense of Defn. 7. We can
check this property in a similar way, but this time the family F will contain
only the s-t paths whose length is not greater than α times the length of the
shortest path from s to t, where α ≥ 1 is a given parameter. We have tested
this scenario on randomly generated graphs, with 10 or 20 vertices and arc
generation probability p = 0.4. The plot in Fig. 8 shows, for different values
of α, the number of graphs out of 10 that satisfy the strong anonymity path
property.

6. Robust path

In this section we describe a third application that makes use of the
general version of the ASP (see Defn. 2) to verify that paths in a graph are
“robust”. Intuitively, given a graph, a path from s to t is said to be robust
if from any vertex touched by the path it is always possible to reach t, no
matter which arc of the graph becomes unavailable. This is particularly
useful in defining routes for emergency services: suppose one needs to travel
from a location A to another location B and wants to be sure that in case
a street becomes unavailable (e.g. because of a traffic accident) he will not
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Figure 8: Proportion of random graphs with p = 0.4 and 10 or 20 vertices which do not
contain forced paths for values of α between 3 and 7.

be stuck. Formally,

Definition 8 (Robust paths). Given a digraph G = (V,A), G has the
robust path property if, for every path P between two nodes s, t ∈ V and for
all edges a ∈ P , there exists another path P ′ between s and t s.t. P and P ′

have the same prefix up to edge a, and a does not appear in P ′.

We can model the corresponding decision problem as an ASP where F is
the family of all paths between 2 fixed nodes s and t and, given a path
S, we consider any initial subpath of length at most |S| − 1 a partial view
of S. For example, if S = {a, b, c, d} (see Fig. 9) it has 4 partial views:
∅, {a}, {a, b}, {a, b, c}.

s t
a b c d

Figure 9: A path and its partial views. A path S = {a, b, c, d} has 4 partial views:
∅, {a}, {a, b}, {a, b, c}.

Consider the network in Fig. 10. The path {s, 4, 3, t} is not robust: if arc
(4, 3) becomes unavailable while one is traversing arc (s, 4), there is no way
to complete the path. From the point of view of anonymity, the partial view
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s t

0

1

2

3

4

Figure 10: Example of robust, but not anonymous network

{(s, 4)} implies that the selected subgraph contains also the arc (4, 3). The
path {s, 0, 2, t}, on the contrary allows at every step to switch to a different
path in case of failure of one of the arcs.

This case of the ASP can be solved particularly efficiently. First we
observe that for each partial view the last arc is the only one that matters
in order to obtain information on the unknown subpath. Moreover the only
condition for a vertex v ∈ V to be safe is the existence of paths that use
different outgoing arcs of the vertex v itself.

We propose Algorithm 2 to solve this problem. It incrementally discards
unsafe vertices until it obtains a graph G′ = (V ′, A′), with V ′ ⊆ V and
A′ ⊆ A, such that the family of s − t paths in G′ is anonymous. Going
back to the network in Fig. 10, Alg. 2 removes the unsafe vertex 4 and then
returns an affirmative answer. In fact, any s− t path not visiting the vertex
4 is robust.

Theorem 2. Alg. 2 correctly solves the robust path decision problem.

Proof. Let G′ = (V ′, A′) be the restricted graph obtained at the end of
Alg. 2. If the algorithm returns a non empty path, for all vertices v ∈ V ′

there exist two paths from v to t which use different outgoing arcs form v.
Hence, any initial sub-path ending in a vertex v ∈ V does not allow to predict
any following arc of the path. Thus, the (ordered) set of all the s− t paths
visiting only vertices in V ′ is an anonymous family of subgraphs and all of
them are robust. Assume now there is a solution and Alg. 2 returns ∅. The
existence of a solution implies the existence of a non empty anonymous set
Y of paths between s and t. Since at line 16 FindPath(V,A, s, t) returned
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∅ for every path S ∈ Y at least one visited vertex has been removed from V .
Consider the first time a vertex v, visited by at least one path S ∈ Y was
removed from V . Since S is an anonymous path, Y must contain another
path T sharing with S the initial sub-path ending at vertex v, but leaving
v through a different arc. Thus the algorithm cannot remove the vertex.
Finally, since at each recursive call the cardinality of V decreases by one,
the number of recursive calls is bounded by the number of vertices of the
original graph.

The subroutine FindPath requires a visit of the graph, hence its com-
putational complexity is O(m). The number of recursion levels is bounded
by the number of vertices and in each level FindPath is executed at most
two times for each vertex. Thus the overall complexity of Alg. 2 is O(n2m).

The algorithm has been tested on two real-world instances. The first
graph is a large portion of the directed road network of the city of Rome
(Italy). It contains 3353 vertices and 8870 edges. The second one is the
directed road network of the city of Milan (Italy) and contains 12442 vertices
and 26373 edges. We randomly selected 100 pairs of vertices and run the
algorithm to verify the existence of a family of robust paths. In the graph of
Rome we obtained a positive result in 70% of the cases. The length of the
shortest robust path is on average only 5% greater than the shortest path
and in 30 cases over 100 the shortest path is a robust path. The same test
gave quite different results on the graph of Milan: a family of robust paths
exists only for 5 pairs out of 100 and the average increase of length with
respect to the shortest path is 46%. The reason for this wide discrepancy
is probably a different level of detail in the description of the road network.
Indeed, the way crossroads, traffic circles and slip roads are mapped into
the graph can deeply influence the existence of a robust path.

7. Conclusions

In this paper we studied a notion of anonymous subgraph and anony-
mous family of subgraphs. We formally defined the Anonymous Subgraph
Problem that, given a directed graph, a family of subgraphs and a par-
tial view function, asks to decide if the given family of subgraphs contains
an anonymous one. We described a restriction of the problem, when only
one arc of the subgraph is known, and proposed an algorithm to solve it.
We studied the condition for the algorithm to be polynomial in the size of
the graph. We described examples of applications from different fields that
can be modelled as ASP: the first concerning the anonymous exchange of
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Algorithm 2 Algorithm for solving the ASP for robust path on graph
G = (V,A). FindPath(V,A, v, t) returns a path S ⊆ A from v to t in graph
(V,A). It returns ∅ if such path does not exist. Si denotes the i-th arc in
path S.

1: FindRP(V,A, s, t)
2: for all v ∈ V do
3: S = FindPath(V,A, v, t)
4: if S = ∅ then
5: V = V \ {v}
6: return FindRP(V,A, s, t)
7: end if
8: A = A \ {S1}
9: if FindPath(V,A, v, t) = ∅ then

10: V = V \ {v}
11: return FindRP(V,A, s, t)
12: else
13: A = A ∪ {S1}
14: end if
15: end for
16: return FindPath(V,A, s, t)
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gifts among a group of people, the second related to anonymous routing in
telecommunication networks and the last one in the field of transportation.
For each of these we have provided a detailed experimental evaluation using
both randomly generated and real-life instances of graphs.
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