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Low‑resolution description 
of the conformational space 
for intrinsically disordered proteins
Daniel Förster1, Jérôme Idier2*, Leo Liberti3, Antonio Mucherino4, Jung‑Hsin Lin5 & 
Thérèse E. Malliavin6,7

Intrinsically disordered proteins (IDP) are at the center of numerous biological processes, and attract 
consequently extreme interest in structural biology. Numerous approaches have been developed 
for generating sets of IDP conformations verifying a given set of experimental measurements. We 
propose here to perform a systematic enumeration of protein conformations, carried out using the 
TAiBP approach based on distance geometry. This enumeration was performed on two proteins, Sic1 
and pSic1, corresponding to unphosphorylated and phosphorylated states of an IDP. The relative 
populations of the obtained conformations were then obtained by fitting SAXS curves as well as 
Ramachandran probability maps, the original finite mixture approach RamaMix being developed for 
this second task. The similarity between profiles of local gyration radii provides to a certain extent 
a converged view of the Sic1 and pSic1 conformational space. Profiles and populations are thus 
proposed for describing IDP conformations. Different variations of the resulting gyration radius 
between phosphorylated and unphosphorylated states are observed, depending on the set of 
enumerated conformations as well as on the methods used for obtaining the populations.

Intrinsically disordered proteins (IDP) are at the center of the attention in the structural biology of proteins. 
Indeed, disordered residues are expected to constitute 35 to 50% of the human proteome and, depending on 
the organism type, the overall percentage of amino acids predicted to be disordered ranges from about 12% up 
to 50%1. In addition, the conformational plasticity of the disordered regions of proteins allows them to interact 
with numerous partners in the cell, as for example for the three intrinsically disordered domains of the tumor 
protein  P532. This  moonlighting3 behavior explains the strong impact of IDPs in cellular signaling, regulation, 
and control, and the differences observed in their interactomes with respect to globular  proteins4.

Intrinsically disordered proteins represent a challenge for structural biology for several reasons. In solu-
tion, the nuclear Overhauser effects measuring distance between hydrogens are usually not available. Moreover, 
crystallization processes are hampered by the conformational disorder, or the variability of conformations in the 
crystal or in the electron cryogenic maps makes impossible the observation of electronic density for disordered 
regions. Numerous approaches have been  proposed5–8 for the calculation of protein conformations, based on 
molecular dynamics or Monte Carlo simulations for generating molecular conformations.

We propose here to explore a new approach for the exploration of the conformational space of IDPs, based 
on a systematic enumeration of conformations in the frame of the distance geometry problem. We build on our 
previous work introducing TAiBP as a new tool to investigate structural ensembles of IDPs in a systematic way, 
by predicting populations and consequently selecting pools of representative conformations. This approach, 
initiated as the interval Branch-and-Prune (iBP) algorithm by Mucherino and  coworkers9, was adapted to the 
protein molecular modeling as threading-augmented interval Branch-and-Prune (TAiBP)10,11. Based on distance 
geometry, TAiBP explores the entire conformational space compatible with NMR chemical shifts, retaining 
conformations that are most different from one another, and thus yielding a diverse set of conformations to be 
analyzed further. This is in contrast to Monte Carlo methods which are informed by force fields and explore 
the part of the configurational space that is thermodynamically relevant in more detail. TAiBP was recently 
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 shown12 to allow the analysis of the conformational space of a tandem domain of protein whirlin, in which a 
disordered linker induces a large orientation variability of two PDZ  domains13. The application of TAiBP to the 
tandem domain was made possible by the analysis of unprocessed output of the neural network TALOS-N14, 
the Ramachandran likelihood maps. Indeed, drawing boxes on the most probable regions of these maps allowed 
the determination of intervals on backbone angles, which serve as inputs for the TAiBP algorithm. It should 
be noticed that the approach MERA has been  developed15 for the prediction of the φ , ψ distributions for IDPs.

In the present work, we apply TAiBP to a well-know example of  IDP16,17. The obtained IDP conformations 
will be filtered and their relative populations determined by  BioEn18 using SAXS data. In parallel, we propose 
an original method, RamaMix, to select the main conformations, as well as their populations, according the 
Ramachandran likelihood maps predicted by TALOS-N14. The principle of RamaMix is to fit a bivariate, periodic, 
finite mixture model to the output of TALOS-N. The N terminal fragment of the intrinsically disordered protein 
Sic1, as well as its phosphorylated form pSic1, each one spanning 90 residues, will be studied.

Sic1 prevents premature S-phase entry in the budding yeast Saccharomyces cerevisiae by inhibiting the com-
plex Cdk1-Clb. At the START point in the yeast cell cycle, Sic1 is phosphorylated on three Threonines (residues 
7, 35, and 47) and three Serines (residues 71, 78, and 82) in order to be degraded by the proteosome. Sic1 as well 
as pSic1 were  shown16,19 to contain significant amount of transient secondary structures.

The comparison of repeated runs of TAiBP on Sic1 and pSic1 reveals a good reproducibility of global con-
formational shape. Qualitatively similar but quantitatively different populations are obtained either by fitting 
distinct SAXS curves or Ramachandran maps. The sets of individual conformations selected from the fitting of 
various data are partially distinct, but better convergence is observed for the profiles of local gyration radius. 
These profiles could be proposed as a low resolution description of the IDP conformational space. Depending 
on the way the TAiBP conformations are generated, and on the processing method to obtain the populations, 
different patterns of variations are observed for the resulting gyration radius of Sic1 and pSic1.

Results
Enumeration of protein conformations. The TALOS-N14 prediction was obtained using the chemical 
shifts measured for the nuclei H α , HN, 15 N, 13Cα , 13Cβ of Sic1 and pSic1 residues, and was used to determine 
boxes of φ and ψ values, giving the limits in which the conformations will be enumerated. Indeed, from the NMR 
chemical shifts and the protein sequence information, the TALOS-N neural network predicts the likelihood 
that a given residue n has backbone torsion angles that fall in any of the 324 voxels, of 20◦ × 20◦ each, that make 
up the Ramachandran  map14. Following the approach proposed in Ref. 12, we define boxes (Figs. S1–S4) using 
Ramachandran regions displaying largest likelihood for the TALOS-N prediction, and corresponding suppos-
edly to protein conformations populated in solutions.

In order to probe the reliability of the ( φ,ψ ) boxes obtained from the TALOS-N likelihood maps, these boxes 
were compared to the predictions performed using the approach  MERA15, which predicts the residue-by-residue 
Ramachandran map distributions for disordered proteins using short-range NOEs, chemical shifts, J couplings 
and spectral density derived from the N 15 relaxation measurement. As only chemical shifts were available for Sic1 
and pSic1, the MERA prediction was performed putting all other possible inputs to zero. The MERA Ramachan-
dran map distributions are plotted for all successful predicted residues, along with the input boxes derived from 
the TALOS-N prediction (Figs. S5 and S6), showing a reasonable agreement between the two methods.

Two replicates of boxes were generated for Sic1 and pSic1, using threshold values of 0.01 and 0.011 on the 
Ramachandran probability maps as described in Section “Extraction of boxes from Ramachandran likelihood” 
in the Supplementary Material. Using these sets of input boxes, five TAiBP runs were performed, named Sic11 , 
Sic12 , pSic11 , pSic12 and pSic13 . The run pSic13 was using the input boxes of pSic12 , but differs from the other 
runs by the procedure for selecting more extended representative conformations after the SOM clustering, as 
described in the section “Clustering of generated conformations” in the Supplementary Information.

The two replicates of TAiBP calculations introduced in the previous subsection were based on similar num-
bers of fragments: 14 and 13 for Sic11 and Sic12 , 17 for pSic11 and pSic12 and 18 for pSic13 (Table S1). The 
larger number of fragments used for pSic1 arises from the regions of residues 5-9, 33-37, 45-49, 69-73, 76-84 
for which TALOS-N was unable to give a prediction due to the phosphorylated residues and for which generic 
boxes (Table S2) were used. These boxes being formed of three components, they increase the combinatorics 
of the enumeration and shorter fragments have to be used, requiring a larger number of fragments to span the 
protein sequence.

The boxes used as inputs for the TAiBP runs (Figs. S1–S4) are quite similar. The loop region (positive φ ) is 
slightly more populated for runs pSic11 and pSic12 . For the iBP and assembly steps forming the TAiBP approach, 
the runs, marked in colors red, green and blue in Fig. 1, produce parameter values similar in most of the protein 
sequence.

For the iBP steps, three parameters were compared (Fig. 1, first and second lines) along the residue number 
located at the middle of each fragment: the number of individual iBP runs ( NiBPrun ), the number of saved con-
formations ( NiBPconf  ) and the number of obtained conformations after clustering ( NclustiBP ). The three analyzed 
parameters are located in similar ranges for all calculations. Nevertheless, NiBPrun displays the largest observed 
values (3888) around the positions of phosphorylated Threonines in agreement with the larger generic boxes 
used in these protein regions (Table S2). Such an increase is not observed for phosphorylated Serines due to 
shorter fragments used in the region 50-90 (Table S1). A decrease of NiBPrun is observed for pSic13 around the 
residue 40, due to the shorter peptide fragments used in this region. For every calculation, NiBPconf  is smaller 
than 109 , which is the input given for the maximum number of solutions: all individual iBP trees have thus been 
completely parsed. The NiBPconf  profiles display smaller values, mostly in the range 106-107 , for all calculations 
in the region of residues 60-90. Contrarily to NiBPconf , the numbers of clustered conformations ( NclustiBP ) display 
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relatively flat profiles for Sic1, but a decrease in the number of conformations of pSic1 in the region of residues 
60-90. This larger reduction of conformations due to the clustering is the sign that the conformations generated 
by iBP in the region 60-90 are more diverse in Sic1 than in pSic1. In all calculations, the C terminal fragments 
which are smaller than the others (Table S1) display smaller NiBP , NiBPconf  and NclustiBP . The results obtained for 
the run pSic13 (blue crosses) are quite similar to those of the run pSic2 , which is not surprising as the fragment 
definition are the same, except around residues 40-60 (Table S1).

Three parameters are plotted (Fig. 1, third and fourth lines) along the assembled fragments: the number of 
conformations rejected due to C α atoms closer than 1Å ( Nclashes ), the number of saved conformations ( Nsaved ) 
and the number of clustered conformations ( Nclust ). Looking at the relative ranges of values of Nclashes and Nsaved , 
between 10% and 15% of the assembled fragments are rejected due to the steric clashes. A smaller percentage of 
rejection is observed for pSic13 (blue crosses): the more extended conformations display a tendency to produce 
less clashes. The profiles of Nclust are different for Sic1 and pSic1, as the number of clustered conformations 
increases up to the last fragment, whereas this number already starts to decrease in the region of residues 60-90 
in pSic1. This effect can be put in parallel with the decrease of NclustiBP in the same region during the iBP step. 
The last fragments of proteins have strong decreasing effects on Nclust due to their smaller size (Table S1), which 
probably induces less variability in the generated conformations. The number of clustered and saved conforma-
tions for pSic13 is often larger than in other runs, which may be a consequence of the smaller numbers of clashes.
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Figure 1.  Parameters of the iBP and assembly steps of the TAiBP procedure. The signs red and green 
correspond respectively to the duplicated runs in which thresholds of 0.01 and 0.011 have been applied on 
the probability Ramachandran map. The blue crosses correspond to the run pSic13 producing more extended 
conformations. The positions of phosphorylated Threonines and Serines are marked with T and S for the runs 
on pSic1. The parameters are plotted along the number of the residue located at the middle of the fragment (iBP 
step) or at the middle of the last attached fragment (assembly step).
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After the distance geometry calculations, a refinement by molecular dynamics (MD), described in Section 
“Molecular dynamics refinement in implicit solvent” of Supplementary Material, was applied to the generated 
conformations. The protein conformations do not vary much during MD trajectories. Indeed, the cumulative 
sums of differences between initial and final values of backbone angles produce values in the range 4.2 to 4.9◦ 
for φ and 0.04 to 2.4◦ for ψ . Similarly, the average coordinate RMSD between the initial and final frames of the 
refinement trajectories are 0.6 Å for the four runs Sic11 , Sic12 , pSic11 and pSic12 . The drift is slightly larger for 
pSic13 , with backbone angle values in the ranges −24 to 6◦ for φ and −40 to −1◦ for ψ , and an average coordinate 
RMSD of 0.7 Å. The conformations displaying potential energy smaller than −50 kcal/mol for the runs Sic11 and 
Sic12 and smaller than −600 kcal/mol for the runs pSic11 , pSic12 and pSic13 , were selected for further analyses. 
This selection produces sets of 98 (Sic11 ), 133 (Sic12 ), 161 (pSic11 ), 121 (pSic12 ) and 148 (pSic13 ) conformations.

Comparison of the conformations between duplicate TAiBP runs. The distributions of gyration 
radii R g and maximal diameters D max (Fig. 2 two top rows) are quite similar for the duplicate runs on Sic1 and 
pSic1. The global envelope of generated conformation is thus reproducible between the replicated TAiBP runs. 
The distributions of gyration radii R g and maximal diameters D max have been plotted in magenta for the run 
pSic3 to display the larger extension of the obtained conformations.

The individual conformations generated for the duplicated runs of Sic1 and pSic1 were then compared by cal-
culating the two-by-two coordinate root-mean-square deviation (RMSD, Å). The distributions of the minimum 
RMSD values (Fig. 2 two bottom left panels) observed for each conformation of one run to the conformations 
of the other run are quite reproducible whatever is the performed comparison. They display sets of values in 
the ranges of 8-16 Å for both proteins, with a maximum around 11 Å for Sic1 and around 10 Å for pSic1. This 
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Figure 2.  Four panels on top: Distribution of the gyration radii R g and of maximal diameters D max values in 
the two sets of TAiBP obtained during the first runs Sic11 and pSic11 (solid line) and the second runs Sic12 and 
pSic12 (dashed line) runs. The R g and D max distribution obtained for the run pSic13 are plotted in magenta. 
Four panels on bottom: Distribution of the minimum RMSD values (Å) and of the minimum distances (Å) 
between profiles for the duplicate runs performed for Sic11 and Sic2 and for pSic11 and pSic12 . full line: first run 
with respect to the second one, dashed line: second run with respect to the first one.
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range 8-16 Å means that the individual conformations of a given run are not reproducible in the replicated run. 
This excludes a high resolution determination of representative conformations, which is not surprising due to 
the enormous size of the conformational space to explore and the heavy clustering procedure used along the 
TAiBP approach.

By analogy to the cross-sectional gyration radius, we propose here the profiles of local gyration radii to 
describe the local variation in the shape of conformations. These profiles Pq of local gyration radii are calculated 
along residue number n for each conformation q in the following way:

where Xi represents the vector of atomic coordinates for the backbone atoms of residue i in the range n− Nwin , 
n+ Nwin , and Nwin = 5 is the residue window around n on which a local gyration radii is calculated, Nn being 
the number of backbone atoms located in this window. Xave

n  is the coordinate vector of the centroid of the atomic 
coordinates of the backbone atoms of residues in the range n− Nwin , n+ Nwin.

The profiles Pq of local gyration radii were compared two-by-two between conformations using Euclidean 
distance. The shapes of distributions for minimal distances between Pq (Fig. 2 bottom right panels) are similar to 
those observed for minimal RMSD values (Fig. 2 two bottom left panels), but are drifted toward ranges of 4-11 
Å. The comparison between local gyration profiles shows that one half of the obtained conformations displays a 
distance between profiles located between 1/6 and 1/3 of the average gyration radius. The profile distance smaller 
than the average gyration radius is the sign of a reduced variation of the profiles Pq with respect to the coordinate 
RMSD. The Pq profiles, inspired by the cross-sectional gyration radius, seems thus to capture a better convergence 
between the duplicate runs than the coordinate RMSD. In the following, the conformations selected by the fitting 
of SAXS curves and Ramachandran maps will be compared through their Pq profiles.

Quite similar global shape of conformations are populated in the duplicated TAiBP runs. The profiles Pq 
of local gyration radii display also some similarity. But, the comparison of atomic coordinates reveals a large 
variability of the individual conformations selected by the TAiBP approach, which is not surprising due to the 
enormous considered conformational space.

Validation of the finite mixture model on synthetic data. Once a set of conformations have been 
selected using TAiBP, one needs to detect the conformations significantly populated and to evaluate their relative 
populations. Indeed, the systematic enumeration along all possible combination of the φ/ψ boxes induces the 
generation of conformations spanning a space possibly larger than the conformations effectively populated. The 
populations were determined, from one side, using  BioEn18 on SAXS data, and on the other side, using on the 
Ramachandran maps, a finite mixture model, RamaMix, specially developed for this purpose. We first present 
in this section a validation of RamaMix on synthetic data. The details of RamaMix computation are presented in 
the section “Determination of the populations from Ramachandran maps” in Methods and in the Supplemen-
tary Material.

A pseudo Ramachandran map has been generated by randomly choosing up 15 couples of φ , ψ values located 
in most populated regions of the Ramachandran map (Fig. S7). Several sets of more or less scattered values, 
represented by different colors, have been generated, to investigate the effect of conformational superimposition 
on the population determination. Corresponding populations were also chosen randomly (see caption of Fig. S7). 
Noise levels of 0.2, 1, 2, 3, 5 and 10 were added to the histogram obtained from the pseudo Ramachandran map, 
the maximum value of the histogram being around 15. The starting points for each RamaMix run was the φ0 , 
ψ0 values from the synthetic Ramachandran plot, and random population values. During each RamaMix run, 
several upper limits were imposed to the drift of the backbone angles during the optimization, with values of: 1 ◦ , 
10◦ , 20◦ , 30◦ , 40◦ and 50◦ . For each Ramachandran synthetic map, each noise level and each drifting limit value, 
one hundred runs are performed producing sets of backbone angles ( φ0 and ψ0 ) (Eq. 7), von Mises parameters 
(Eq. 8) ( κ 1, κ 2 and ρ ) and populations γq (Eq. 2). Over the 12600 individual RamaMix runs, only 275 runs were 
terminated without convergence of the optimization. Averages and standard deviations were calculated from the 
sets of obtained parameters. The differences between the averaged and the input values, as well as the standard 
deviations (Fig. 3) are used to evaluate RamaMix.

The differences between average and initial populations (Fig. 3E) as well as the standard deviations of popula-
tions are mostly smaller than 30%. Thus, the determination of populations is not much influenced by the level 
of noise, but the population values are rather qualitative. Interestingly, the standard deviation is of the order of 
value of the difference.

The efficiency of the determination of backbone angles (Fig. 3A–D) for noise levels of 0.2, 1, 2, 3 and 5, is not 
much influenced by the scattering of synthetic Ramachandran maps, but rather by the drifting limit imposed 
on the φ , ψ values. Increasing the allowed drift induces larger differences and standard deviations: this would 
support not allowing large drift for the calculations. Interestingly, for the large scattered Ramachandran map 
(bullets in Fig. 3), the effect of a large drift is more pronounced than for other synthetic Ramachandran maps. 
For most of the cases, the standard deviations display larger values than the difference: allowing a drift induces 
more error on the precision of the calculation than on the average value of angles.

The parameters describing the von Mises distribution (Fig. 3G–L) display contrasted results: the differences 
are larger for ρ than for κ 1 and κ 2. For κ 1 and κ 2, the standard deviations are much larger than the differences 
whereas they are similar for ρ . The differences between ρ and κ 1 and κ 2, arise from the definition of these param-
eters (Eq. 8) in which ρ occupies a different place than κ 1 and κ2.

(1)Pq(n) =

√

√

√

√

1

Nn

n+Nwin
∑

i=n−Nwin
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n )2
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Determination of populations. The TAiBP conformations were fitted to the SAXS curves and Ramachan-
dran probability maps using  BioEn18 and RamaMix. The following sets of conformations were processed: the 
conformations obtained from runs Sic11 , Sic12 , pSic11 , pSic12 and pSic13 , as well as two mixed sets of confor-
mations obtained by pooling the conformations from pSic11 and pSic13 and the conformations from pSic12 and 
pSic13 . These mixed sets of conformations will be denoted pSic113 and pSic123 and encompass respectively 309 
and 269 conformations.

BioEn calculations were performed using each of the three SAXS curves available (Tables 1, 2 and S5). The 
populations larger than 1% found for a given TAiBP run and the fitting of a given SAXS curve, reveal that the 
same conformations are repeatedly selected: the conformation numbers selected more than once have been 
written in bold in the Tables. Most of the conformations selected only once, display populations smaller than 
15%. But the populations vary significantly from one analysis to another as for example for the conformation 
109 from the run Sic12 (Table 1B) which display populations of 26.6, 40.9 and 43.8% for the three SAXS curve 
processing. Normalized χ2 values smaller than one are found for each calculation along with null final S KL values, 
in agreement with the definition of S KL as the Kullback-Leibler  divergence18,20.

Tables 3 and S6 present the populations obtained by RamaMix from the fitting of the Ramachandran prob-
ability maps on the same sets of conformations. The variations of backbone angles φ and ψ during the RamaMix 
optimization are smaller than 0.25◦ for φ and 0.1◦ for ψ during all considered calculations. These variations are 
smaller for pSic13 with 0.12◦ and 0.03◦ for φ et ψ , and even smaller for the mixed pools of conformations with 

Figure 3.  Efficiency of RamaMix for determining the φ0 , ψ0 positions (A–D: Eq. 7), the von Mises shape 
parameters κ 1, κ 2 and ρ (G–L: Eq. 8), and the populations γq (E–F: Eq. 2) using synthetic data and various 
noise levels described in Fig. S7. The results obtained for large, medium and narrow scattered synthetic 
Ramachandran maps are drawn as bullets, triangles and squares.
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Table 1.  Conformations and populations selected using BioEn 0.1.118 on the three sets of SAXS curves. 
The conformations were generated by the runs Sic11 and Sic12 . For each SAXS curve and set of protein 
conformations, after ten runs starting from random values of populations and performed on the whole set 
of conformations, all conformations for which the sum of populations over the ten runs was larger than 
0.01 were gathered, and a second run of ten additional BioEn calculations was performed on this reduced 
set of conformations. The average and standard deviation values of populations obtained for each selected 
conformation from the second set of BioEn runs, are given in the Table, along with the final average values of 
reduced χ2 and of entropy SKL . The labels of conformations selected in at least two runs are written in bold. 
The conformations displaying average populations smaller than 1% were removed from the final set.

A. Sic11

Conformation  
numbers

Populations 
percentages Conformation numbers

Populations 
percentages Conformation numbers

Populations 
percentages

100 15.5 ± 2.2 100 19.8 ± 0.2 100 21.7 ± 0.1

105 1.4 ± 2.7 106 15.0 ± 1.6 105 5.0 ± 0.1

106 13.0 ± 1.7 19 25.6 ± 0.2 106 18.2 ± 0.6

19 18.3 ± 2.2 58 24.4 ± 0.4 19 21.8 ± 0.1

56 6.7 ± 3.4 87 9.5 ± 0.3 58 23.9 ± 0.3

58 4.4 ± 2.2 91 5.5 ± 1.8 87 7.0 ± 0.0

5 6.4 ± 2.6 91 2.3 ± 0.8

70 14.6 ± 5.6

87 19.1 ± 2.8

Average final χ2 0.4 0.4 0.3

Average final S KL −1.7e-9 −7.9e-10 −5.0e-10

B. Sic12 Conformation numbers
Populations 
percentages Conformation numbers

Populations 
percentages Conformation numbers

Populations 
percentages

106 17.2 ± 1.0 38 13.7 ± 4.6 109 43.6 ± 1.3

107 7.1 ± 0.3 109 41.7 ± 7.6 128 15.2 ± 1.5

109 27.1 ± 0.9 128 12.5 ± 1.4 133 10.4 ± 3.5

128 6.6 ± 0.5 129 9.1 ± 3.0 38 19.9 ± 0.7

133 17.3 ± 1.2 133 1.2 ± 3.5 60 10.4 ± 0.2

38 6.9 ± 0.3 160 1.3 ± 3.3

56 5.7 ± 0.3 54 3.0 ± 4.9

60 11.7 ± 0.3 60 16.1 ± 1.1

Average final χ2 0.4 0.4 0.3

Average final S KL −1.0e-8 −1.7e-8 −3.1e-9

Table 2.  Conformations and populations selected using BioEn 0.1.118 on the three sets of SAXS curves. The 
conformations were generated by the runs pSic11 and pSic12 . The Table caption is the same than for Table 1.

A. pSic11 Conformation numbers
Populations 
percentages Conformation numbers

Populations 
percentages Conformation numbers

Populations 
percentages

117 16.1 ± 0.6 117 21.2 ± 0.6 117 9.1 ± 4.6

119 2.7 ± 0.9 119 2.1 ± 1.3 159 35.9 ± 3.6

159 32.1 ± 0.1 159 22.2 ± 0.6 42 7.3 ± 7.6

52 18.9 ± 0.4 42 4.4 ± 2.5 52 11.0 ± 4.3

58 16.9 ± 0.5 52 10.9 ± 0.9 56 2.2 ± 4.3

98 13.2 ± 0.3 58 23.0 ± 0.9 58 8.1 ± 4.1

98 16.2 ± 1.6 98 26.4 ± 3.4

Average final χ2 0.9 1.1 0.7

Average final S KL −1.9e-9 −2.5e-9 −2.3e-10

B. pSic12 Conformation numbers
Populations 
percentages Conformation numbers

Populations 
percentages Conformation numbers

Populations 
percentages

124 42.3 ± 0.6 102 13.9 ± 7.4 124 24.8 ± 1.6

6 39.7 ± 0.4 124 37.1 ± 8.4 125 10.2 ± 3.4

74 13.4 ± 0.2 6 30.3 ± 4.3 139 30.5 ± 1.3

89 2.0 ± 0.3 74 13.8 ± 0.7 6 13.1 ± 0.7

99 2.1 ± 0.7 95 1.3 ± 3.6 95 20.2 ± 1.2

99 3.6 ± 2.5 99 1.2 ± 1.8

Average final χ2 0.8 0.9 0.7

Average final S KL −3.8e-9 −1.8e-8 −3.8e-10
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0.06◦ and 0.02◦ . Among six of the seven sets of TAiBP conformations (marked in bold), already repeatedly 
selected by BioEn, were also selected by RamaMix (Tables 1, 2, 3 and S5, S6).

Similarly to the populations obtained by BioEn between the different SAXS data, the populations found 
using RamaMix are quite different than the ones determined by BioEn. Another difference between BioEn 
and RamaMix processing is the smaller number of conformations selected by RamaMix, it can arise from the 
essential difference between the data, as the SAXS curves describe a global picture of the conformations whereas 
the Ramachandran maps give a local information. A smaller number of conformations are selected from the 
sets where more extended conformations were included: this may be due to the important conformational drift 
induced by the systematic choice of extended conformations during the clustering step (see Supplementary 
Material section “Clustering of generated conformations”).

In order to compare the conformations selected by BioEn on the three SAXS curves, several curves super-
impositions have been realized. The superimposition of SAXS curves reconstructed from the conformations 
selected from Tables 1 and 2 to the corresponding fitted SAXS curves (Fig. S8) displays a reasonable agreement 
with χ2 in the range 0.6-2.06. These values are larger than the ones given in the Tables 1 and 2, due to the fact 
that conformations displaying populations smaller than 1% have been removed. Besides, a comparison of all 
sets of BioEn conformations with all SAXS curves (Table S3) reveals that the conformations and populations 
determined from the fit of one SAXS curve display χ2 values with another SAXS curve going up to 4.42. The 
variability between the three SAXS curves induces thus a drift between conformations and populations selected 
from the fit of each curve.

A similar comparison has been performed between the SAXS curves and the conformations and popula-
tions determined with RamaMix (Fig. S9). In this comparison, the χ2 values are in the range 0.98-4.24 which 
is similar to what is observed for BioEn selected conformations in Table S3. The variability between the fits to 
Ramachandran maps and SAXS curves is thus similar to the variability of fit between different SAXS curves.

In order to investigate the possible convergence between the different conformations and populations detected 
using BioEn and RamaMix, systematic comparison of Euclidean distances between profiles of local gyration Pq 
(Eq. 1) was performed (Figs. 4, S10 and S11) The Euclidean distances within each set of conformations selected by 
BioEn reveal (Fig. 4, three left columns) that, for several cases, distances smaller than 8 Å are observed between 
different conformations. In many cases, such small distances are observed between conformations (labeled with 
asterisk in Fig. 4) for which populations smaller than 10% are observed. The comparison of profiles Pq (Eq. 1) 
between conformations selected by RamaMix (Fig. 4, right column) reveals two features. When few conforma-
tions have been selected (as for Sic12 and pSic12 ), the distances between their profiles Pq are larger than 8 Å. 
When more conformations are selected (as for Sic11 and pSic11 ), profile distances smaller than 8 Å are observed. 
The small Pq distances reveal a certain convergence of the profiles Pq.

The comparison of conformations selected by BioEn and RamaMix as well as the comparison between con-
formations selected from the fit of the various SAXS curves is displayed in Figs. S10 and S11. A close inspection 
of these distance matrices for BioEn conformations (Fig. S10) shows that, if one excludes the conformations 
populated less than 10%, there are only three conformations displaying profile distances larger than 8 Å and 

Table 3.  Conformations and populations selected by fitting of the Ramachandran maps using RamaMix. For 
each set of protein conformations, 100 runs were performed starting from random values for the populations. 
The few converged optimizations which did not converge, were discarded: 6 for Sic11 , 2 for Sic12 , 3 for 
pSic11 and 3 for pSic12 . The backbone angles φ and ψ were allowed to move up to 15◦ . The populations of 
conformations for the converged runs were averaged and these mean values are given as percentages in the 
Table along with the corresponding standard deviation values. The labels of conformations also selected by 
BioEn are written in bold.

A. Sic11 Conformation numbers Populations percentages

79 44.7 ± 0.5

77 23.4 ± 0.6

67 21.7 ± 0.4

46 10.2 ± 0.4

B. Sic12 Conformation numbers Populations percentages

109 67.8 ± 2.9

138 32.1 ± 0.8

C. pSic11 Conformation numbers Populations percentages

98 23.2 ± 1.4

154 22.7 ± 2.0

101 21.2 ± 0.7

135 19.2 ± 3.3

16 13.7 ± 1.0

D. pSic12 Conformation numbers Populations percentages

6 59.2 ± 3.7

102 40.7 ± 3.0
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selected in two distinct BioEn runs: (i) for Sic12 , the conformation 106 selected on the SAXS curve BioEn1 
compared to the conformations selected on the two other SAXS curves; (ii) for pSic12 , the conformation 74, 
selected in the runs BioEn1 and BioEn2, and compared to the conformations selected from the run BioEn3; (iii) 
for pSic12 , the conformation 139 selected from the run BioEn3, and compared to the conformations from the 
run BioEn1. Overall, most of the conformations populated more than 10% from the fitting of different SAXS 
curves display profile distances smaller than 8 Å, supporting a convergence of the profiles in the different fits.

On the other hand, the comparison between BioEn and RamaMix fitting (Fig. S11) displays contrasted 
behaviors between the duplicated TAiBP runs. For Sic12 and pSic12 , all RamaMix conformations display pro-
files closer than 8 Å to the profiles of BioEn conformations. For pSic11 , this is also the case for three RamaMix 
conformations (16, 98, 101) over five. For Sic11 , only the conformation 79 displays profile distances smaller than 
8 Å for the three comparisons.

Examples of profiles Pq superimposition have been chosen accordingly to the values of their distances (Fig. 5) 
and give an estimation of the connection between the information related to atomic coordinates and the distance 
between the profiles. These examples represent distances in the 4.05–7.88 Å range. The examination of Fig. 5 
reveals that the profile peaks are mostly located at similar places in the protein sequence. This gives a qualitative 
description of the conformations separated in extended regions (profile maxima) and in aggregated regions 
(profile minima).

The description of IDP conformations by Pq profiles permits to detect some convergence between the vari-
ous Bioen fits and also between RamaMix and BioEn fit. This is extremely encouraging due to the enormous 
conformational size and to the heterogeneity of the measurements (SAXS, NMR) used for fitting the populations. 
Nevertheless, this comparison remains extremely qualitative, and far from any high resolution description. It 
could represent a starting point for deeper investigation of IDP conformations.

Figure 4.  Distances between the profiles Pq (Eq. 1) of local gyration radii between the conformations selected 
from the fit of SAXS curves (BioEn1,BioEn2, BioEn3) or Ramachandran maps (RamaMix). The conformations 
for which populations smaller than 10% were calculated, are labeled with an asterisk. The diagonals correspond 
to the comparison of the same conformations and are thus not annotated with distance value. The limit of 8 Å 
used to display superimposed plots of profiles Pq (Fig. 5) is drawn in red on the scale of distance.
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Comparison with PED conformations and link with biological activity. The sets of Sic1 and pSic1 
conformations selected from the fitting of SAXS curves and of Ramachandran probability maps, were compared 
to the sets of protein conformations deposited in the Protein Ensemble Database protein ensemble.org21.

The values of the resulting gyration radii were calculated (Table 4) from the populations determined by BioEn 
and RamaMix, and using the individual gyration radii of selected conformations. Globally, the resulting gyration 
radii display orders of values agreeing with the measurements reported in Fig. 2E of Ref. 17. For the conforma-
tions extracted from the data-sets Sic11 and Sic12 , the resulting gyration radii agree with the measurement of 
3.0 ± 4.1 Å given in Fig. 2E of Ref. 17. But, for pSic11 and pSic12 , the resulting gyration radii are smaller than 
the measurements of Ref. 17: this is particularly true for the BioEn processing, while the RamaMix processing 
displays values closer to those of Gomes et al17. On the more extended conformations (pSic13 ), all resulting gyra-
tion radii are significantly closer to Gomes et al17 measurements, for BioEn and RamaMix processing (Table 4). 
Pooling pSic13 with the conformations of pSic11 or pSic12 (sets pSic113 and pSic123 ) produces different effects 
for BioEn and RamaMix processing. For these mixed data-sets, the resulting gyration radii obtained from the 
BioEn processing (range 27.2-28.1 Å) decrease to reach a level just slightly larger than the one obtained for 
pSic11 and pSic12 (range 26.1-27.9 Å). On the contrary, the gyration radii obtained by RamaMix processing are 
the same than the ones obtained for pSic13 . Overall, the BioEn processing is more sensitive than RamaMix to 
the presence of conformations with lower gyration radii. The discrepancy of the results obtained here on pSic1 
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Figure 5.  Superposition of profiles Pq (Eq. 1) displaying distances smaller than 8 Å extracted from Figs. 4 and 
S8, S9. The name of the run (Sic11 , Sic12 , pSic11 , pSic12 ) is given, along with the name of the considered fits 
(BioEn1, BioEn2, BioEn3, RamaMix, RamaMix/BioEn) and the conformations numbers. The labels RamaMix/
BioEn correspond to the comparison of conformations selected by BioEn on one side and RamaMix on the 
other side. The labels BioEn1/2 and BioEn2/3 correspond to the comparison of conformations selected by BioEn 
from two different SAXS curves.
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with those shown in Ref. 17 arises in part from a tendency to obtain smaller gyration radii by processing of the 
whole SAXS curve with respect to the larger gyration radii obtained by using the Guinier approximation within 
the low-q region of the SAXS data.

The selected TAiBP conformations were also compared to the PED conformations by realizing a principal 
component analysis (PCA) of the atomic coordinates. The coordinates projected on the first and second or on 
the second and third component (Fig. 6) reveal that most of the TAiBP conformations are located in similar 
space regions than the PED conformations.

The presence of phosphorylated residues decreases obviously the global charge of pSic1 with respect to Sic1. It 
was pointed out that the induced variation in long-range electrostatic interactions plays a role in the electrostatic 
interaction of pSic1 with its target  Cdc1422. However, the variations of charges also gives various opportunities 
for the formation of hydrogen bonds, which were analyzed for the whole set of conformations from the TAiBP 
runs as well as for the PED sets of conformations. All PED conformations were submitted to the same refine-
ment than the one used on TAiBP conformations described in the Section “Molecular dynamics refinement in 
implicit solvent” of the Supplementary Material, using positional restraints on protein backbone atoms with a 
constant force of 50 kcal/mol. The cumulative variations of ψ and φ angles during the refinement were in the 
range 0.8-1.2◦ for φ and in the range 0.3-0.8◦ for ψ , and the coordinate RMSD around 0.1 Å. All hydrogen bonds 
were detected on the refined PED conformations as well as on the TAiBP conformations. Cumulative contact 
maps (Fig. S12) display these hydrogen bonds, according to the involved residues, the hydrogen bonds involving 
phosphorylated residues being colored in magenta. The inspection of these contact maps reveals that the PED 
and TAiBP conformations display distinct tendencies. Long range hydrogen bonds involving phosphorylated 
residues are more present in the less extended set of TAiBP conformations pSic11 and pSic12 than in pSic13 . 
On the other hand, the conformation set PED161 of pSic1 displays the largest number of long-range hydrogen 
bonds involving the sidechains of phosphorylated residues. Thus, the presence of phosphorylated residues can 
induce the appearance of long-range hydrogen bonds whatever is the variation of resulting gyration radius.

Discussion
The TAiBP approach enumerating the protein conformations in the frame of the distance geometry problem has 
been used for describing the conformational space of two IDPs, Sic1 and pSic1, corresponding to the unphospho-
rylated and phosphorylated states of a disordered region involved in the control of S phase in the cellular cycle. 
The present study represents a test for a new approach able to systematically enumerate protein conformations 
in the frame of a distance geometry approach. Indeed, up to now, most of the approaches for calculating IDP 
conformations are based on Monte Carlo  approaches8,23,24 which do not guarantee an exhaustive exploration of 
the conformational space.

One should notice that TAiBP overcome the exponential complexity of the branch-and-prune algorithm, 
due to the parallel calculations on fragments, to the rejection of too close solutions, and to the systematic use 
of clustering. A major advantage of this approach is the availability of a systematic procedure. Nevertheless, the 
obtained conformations are only representative conformations, and the represented conformational space has 
still to be defined.

The use of TAiBP approach permits to avoid the question of the convergence of solutions for protein confor-
mations. The introduction of the profiles of local gyration radii Pq along with their relative populations allows 
the reintroduction of a convergence criterion into the problem, and this is essential for validation purposes. In 
the present work, the validity of this convergence criterion has been assessed by the comparison of the profiles Pq 
obtained from independent fits. In that frame, the profile of local gyration radii could be proposed for describ-
ing the IDP conformational space: the knowledge, even qualitative, of the profiles should provide geometrical 
restraints allowing a more precise exploration of the conformational space. The profiles are closer between the 
conformations selected by the various fits of SAXS curves, than between the conformations selected by BioEn 
and RamaMix. This is expected as the various fits of SAXS curves use homogeneous information. More surpris-
ingly, similar profiles are observed between conformations selected by RamaMix and BioEn, for the runs Sic12 
and pSic12 , and for many conformations of the runs Sic11 and pSic11.

Table 4.  Resulting gyration radii (Å) calculated from the individual gyration radii of the conformations 
selected by the BioEn and RamaMix analyses. The data-sets Sic11 , Sic12 and pSic11 , pSic12 , pSic13 were 
obtained using the approach TAiBP on the proteins Sic1 and pSic1. The data-sets pSic113 and pSic123 were 
obtained by pooling together the conformations of pSic11 and pSic13 or the conformations of pSic12 and 
pSic13.

Data-set BioEn1 BioEn2 BioEn3 RamaMix

Sic11 27.8 28.7 28.5 31.3

Sic12 27.7 28.4 28.4 27.1

pSic11 26.7 26.1 27.2 28.0

pSic12 27.4 27.1 27.9 30.0

pSic13 30.4 30.6 30.5 32.4

pSic113 27.4 27.2 28.0 32.5

pSic123 27.4 27.4 28.1 32.5
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One specific advantage of the mixture method RamaMix for determining populations of conformations from 
the likelihood Ramachandran maps is that it has a larger domain of applicability that the BioEn method based on 
the SAXS curves. Indeed, polydispersity in protein solutions can make difficult to extract conformational infor-
mation from the SAXS curve. In addition, the chemical shifts from which the likelihood Ramachandran maps are 
extracted, can be measured in solution as well as in in-cell NMR or for a sequence inserted in a larger  protein25.

The comparison of the resulting gyration radii obtained from the BioEn and RamaMix processing with the 
values measured in Ref. 17 showed (Table 4) that various ranges of gyration radii are obtained, depending on the 
clustering procedure in TAiBP, as well as on the method for SAXS processing. In particular, the processing of 
the whole SAXS curve with BioEn displays a tendency to underestimate the gyration value with respect to the 
processing of the Guinier curve. The determination of populations from the Ramachandran probability maps, 
using RamaMix, seems to be less prone to the underestimation of the gyration radius.

The discrepancy between resulting gyration radii obtained by processing the whole SAXS curve (BioEn) 
or restricting the analysis to the low-q region (Guinier  approximation17) agrees with independent calculations 
performed using coarse-grained protein  model26, in which various distribution of gyration values produce very 
similar SAXS spectra (Fig. 10a of Ref. 26) or different disordered ensembles produce similar Kratky plots (Fig. 13 
of Ref. 26).

Methods
Origins of the data. Three sets of conformations for Sic1 and pSic1 were available from the Protein Ensem-
ble Database (PED) proteinensemble.org21: PED159 and PED160 for pSic1 and PED161 for  Sic117. The 
residue numbering used here is the one proposed in the PED. The NMR chemical shifts were downloaded from 
the Biological Magnetic Resonance Data Bank (BMRB)27 as entries: 16657 for  Sic117 and 16659 for  pSic119. The 
SAXS data-sets recorded as triplicate sets in the conditions described in Ref. 17 were provided by Tanja Mittag.
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Figure 6.  Projections of the Sic1 and pSic1 conformations along the three largest components of their principal 
component analysis (PCA). On these projections, the TAiBP conformations selected by BioEn or RamaMix are 
colored in magenta and the conformations stored in  PED21 are colored in black.
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Enumeration of conformations using TAiBP. The protein conformations have been enumerated using 
the recently proposed TAiBP  approach10–12, which generalizes the interval branch-and-prune (iBP)  algorithm9,28–31 
so as to overcome the combinatorial barrier arising from the enormous space of IDP  conformations32. TAiBP 
is composed of two steps: (i) the enumeration of conformations for peptide fragments (Table S1) spanning the 
studied protein using individual iBP calculations; (ii) the enumeration of Sic1 and pSic1 conformations by sys-
tematic assembly of fragment conformations in a way similar to what is used in the field of protein  prediction33.

The boxes of backbone angles φ and ψ used as inputs for the iBP step were determined from the Ramachan-
dran likelihood maps predicted by TALOS-N14 (see section “Extraction of boxes from Ramachandran likelihood 
maps” and Figs. S1–S4 in Supplementary Material). The φ/ψ boxes were systematically combined by permutation 
to prepare individual iBP calculations as in  Ref11. The enumeration of conformations is realized by the building 
of a tree, each node of the tree corresponding to an atomic position. The tree building allows the enumeration 
of the various possibilities for atom positions (branching step) whereas additional geometric information is 
used to accept or reject a newly built branch (pruning step). As the angles φ and ψ are straightforwardly related 
to distances between atoms C and N of residues successive in the  sequence11,12, the discretization of intervals 
of these angles is used in the branching step. In the iBP step, the pruning was applied by preventing atoms to 
be closer than the sum of their van der Waals radii and by checking that the improper angle values are correct. 
In addition, each solution displaying a coordinate root-mean-square deviation (RMSD) smaller than 2 Å with 
the previously stored solution, is rejected. The details of the iBP step calculation are described in the section 
“Enumeration of conformations” of the Supplementary Material.

The assembly step is also performed with a branch-and-prune approach using as elementary blocks, not the 
atoms, but the fragment conformations previously determined during the iBP step. Two peptide fragments are 
assembled by superimposing the three last and initial residues of the fragments successive in the protein sequence. 
The fragments are then merged in the following way: the atom at which the smallest distance was observed 
between corresponding atoms in the two peptides was used to decide where to stop with the first peptide and to 
continue with the second one. The assembled conformations in which C α atoms closer than 1 Å are observed, 
were pruned from the calculation. The fragment assembly was implemented using python scripting based on 
the  MDAnalysis34,35 and numpy 1.7.136 packages.

To scale down the combinatorial explosion of the calculation, a clustering approach based on Self-Organizing 
Maps (SOM)37–40 was systematically applied to the generated sets of conformations larger than 100 during the 
iBP and assembly steps. The details of this approach are described in the section “Clustering of generated con-
formations” of the Supplementary Material.

After the assembly step, the sidechains have been added to the conformation backbones, and the conforma-
tions were refined by molecular dynamics simulations as described in the section ”Molecular dynamics refine-
ment in implicit solvent” in the Supplementary Material.

Determining the population from Ramachandran maps. The approach RamaMix, based on a finite 
mixture model, was designed to determine the populations of conformations by fitting on the Ramachandran 
probability maps. The setting-up of this approach is based on the hypothesis that the likelihood maps describing 
the likelihood of the TALOS-N  prediction14 can be transformed by normalization into the probability density of 
the presence of φ and ψ values in the set of conformations populated in solution.

Consequently, for each residue n, the Ramachandran probability map is denoted as a 2D probability density 
pn(φ,ψ) , modeled as a mixture of probability densities pnq(φ,ψ) determined on each conformation q:

where γq ≥ 0 is the population of conformation q in solution.
RamaMix intends to decompose the probability map pn(φ,ψ) according to Eq. (2) along the following lines: 

(i) the total number Q of conformations is taken from output of TAiBP; (ii) for each conformation q and each 
residue n, pnq(φ,ψ) is a periodized Gaussian density characterized by averaged values of backbone angles (φn

q ,ψ
n
q ) 

and by a 2× 2 covariance matrix Cn
q ; (iii) the populations γq have to be adjusted in order to maximize the fit 

between the Ramachandran probability maps and the mixture model (Eq. 2).
The Ramachandran probability maps pn(φ,ψ) are jointly fitted to the finite mixture model (Eq. 2) using a 

discrepancy measure between both probability maps given by the Kullback-Leibler divergence:

Calculations detailed in the Supplementary material (Sections “Determination of the populations from the 
Ramachandran maps” and “Maximum likelihood estimation for bivariate sine mixtures”) show that using the 
Kullback-Leibler divergence is equivalent to the maximization of the log-likelihood of the  data41:

For the sake of clarity, let us first introduce a standard, non-periodized Gaussian density pnq(φ,ψ) for the residue 
n in conformation q:

(2)pn(φ,ψ) =
Q
∑

q=1

γqp
n
q(φ,ψ)

(3)DKL(p1||p2) =
∫

p1(x) ln
p1(x)

p2(x)
dx.

(4)L(y; θ) =
N
∑

n=1

M
∑

m=1

ln pn(φm,ψm).
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where Vn
q (φ,ψ) represents the free energy surface for the basin around the conformation q. The free energy 

surface is described in the frame of an elastic network model on the backbone dihedral  angles42–45:

where: θq = (φ − φn
q ,ψ − ψn

q )
t , φn

q and ψn
q  are the values of dihedral angles of the residue n in the conformation 

q and Cn
q is the corresponding covariance. The software  IMOD42 was used for determining the full Hessian (N, N) 

(N is the total number of residues in the protein) matrix Hq along the backbone dihedral angles. The Hessian 
matrix is then inverted to produce: Cq = H−1

q  . The covariance matrix Cn
q of the angles φ and ψ of the considered 

residue n is the (2,2) sub-matrix of Cq , centered on the two φn
q and ψn

q  angles. The inverse of this matrix [Cn
q ]−1 

is used in Eq. (6).
As the protein conformations are described by couples of angles, we must consider that the support of the 

probability densities pnq(φ,ψ) is a torus, i.e., that they are doubly circular.  Following46–48, we replaced Eq. (6) by a 
bivariate extension of the von Mises distribution, as being more easily tractable than a Gaussian density wrapped 
on the torus. More precisely, we adopt a bivariate periodic sine  model46:

with

κ1, κ2 ≥ 0 and �2 < κ1κ2 . According to Ref. 46, the integration constant T is expressed as an infinite series, 
depending on parameters (κ1, κ2, �):

where Im denotes the modified Bessel functions of the first kind of order m49.
In Ref. 46, expressions of (κ1, κ2, �) are given as functions of the parameters (σ 2

1 , σ
2
2 , ρ) of a bivariate Gaussian 

where ρ ∈ (−1, 1) denotes the normalized correlation coefficient between the two components of the bivariate 
Gaussian:

These expressions are valid only in the case where σ 2
1  and σ 2

2  are small. They are easily inverted as

Using (11), we can replace a Gaussian mode pnq by a periodized version, with approximately the same location 
and the same spread. In the following, we will describe basin shapes around conformations using the triplets 
of parameters (κ1, κ2, ρ) rather than (κ1, κ2, �) , since ρ2 < 1 is a simpler constraint than its counterpart on �.

A well-known local optimization scheme to identify finite mixture models by maximum likelihood is the 
Expectation-Maximization (EM)  algorithm50,51. Unfortunately, the M step of the EM has no analytical expression 
in the case of mixtures of bivariate Von-Mises densities. Therefore, we have performed local optimization based 
on L-BFGS-B52 instead, given that both the likelihood and its gradient can be evaluated efficiently, and that some 
parameters are subject to box constraints. The implementation details and equations are given in the sections 
“Determination of the populations from the Ramachandran maps” and “Maximum likelihood estimation for 
bivariate sine mixtures” of the Supplementary Material.

By optimization of the log-likelihood, the RamaMix approach will thus produce the Q normalized popula-
tions γq , the Q × N couples of backbone angles φn

q and φn
q , as well as the Q × N triplets (κn1 , κ2, ρn

q ) describing 
the von Mises distributions. The calculations were performed starting from the φ and ψ values observed in the 
set of TAiBP conformations, complemented by von Mises parameters allowing us to approximate the Gaussian 
distributions determined by IMOD. Moreover, the variation of φ and ψ values was limited by a threshold of 15◦ 
during the optimization in order to avoid inappropriate drift.

The RamaMix approach was implemented in Fortran90, and the software is available at github.com/
tmalliavin/RamaMix.

Determining the populations from SAXS data. The software BioEn 0.1.118 was used in order to deter-
mine the populations from SAXS data. On each considered conformation, theoretical SAXS curves were cal-
culated using  CRYSOL53 available in the package ATSAS 3.0.354 with 847 points, a maximum scattering vector 
of 0.503 nm−1 and a maximum order of harmonics of 18. A 1D cubic  interpolation55 was used to obtained the 
theoretical SAXS values at the same sets of scattering vectors q than the ones at which the experimental SAXS 
curve was recorded.

(5)pnq(φ,ψ) =
1

2π
det(Cn

q )
−1/2 exp(−Vn

q (φ,ψ))

(6)Vn
q (φ,ψ) =

1

2
θ tq[C

n
q ]

−1θq

(7)p(φ,ψ) =
1

T
exp(W(φ − φ0,ψ − ψ0))

(8)W(φ,ψ) = κ1 cosφ + κ2 cosψ + � sin φ sinψ ,

(9)T = 4π2
∞
∑

m=0

(

2m
m

)(

�
2

4κ1κ2

)m

Im(κ1)Im(κ2)

(10)σ 2
1 =

κ2

κ1κ2 − �2
, σ 2

2 =
κ1

κ1κ2 − �2
, ρ =

�
√
κ1κ2

.

(11)κ1 =
1

σ 2
1

1

1− ρ2
, κ2 =

1

σ 2
2

1

1− ρ2
, � =

1

σ1σ2

ρ

1− ρ2
.
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The processing with BioEn was performed in the following way. For each TAiBP run and each SAXS curve, 
the optimization was run for 1000 steps using the GSL  library56. Ten runs were performed independently on all 
considered conformations, and the subset of conformations for which the sum of observed populations is larger 
than 0.01, was selected. Ten additional BioEn runs were performed on the subset of conformations, and from 
the results of these ten repetitions, average values and standard deviations were computed for the populations.

Data availability
The datasets used for producing the Figures of the main text as well as the generated IDP conformations are 
available at: 10.5281/zenodo.7198645. Other datasets used or/analyzed during the current study are available 
from the corresponding author on reasonable request.
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