
Reformulations in Mathematical

Programming: Definitions

Leo Liberti 1

Key words: Opt-reformulation, narrowing, relaxation, approximation.

1 Introduction

The mathematical programming formulation language is a very powerful tool
used to formalize optimization problems by means of parameters, decision
variables, objective functions and constraints. Such diverse settings as combi-
natorial, integer, continuous, linear and nonlinear optimization problems can
be defined precisely by their corresponding mathematical programming formu-
lations. Its power is not limited to its expressiveness, but usually allows hassle-
free solution of the problem: most general-purpose solution algorithms solve
optimization problems cast in their mathematical programming formulation,
and the corresponding implementations can usually be hooked into language
environments which allow the user to input and solve complex optimization
problems easily. It is well known that several different formulations may share
the same numerical properties (feasible region, optima) though some of them
are easier to solve than others with respect to the most efficient available al-
gorithms. Being able to cast the problem in the best possible formulation is
therefore a crucial aspect of any solution process.

When a problem with a given formulation P is cast into a different formulation
Q, we say that Q is a reformulation of P . Curiously, the term “reformulation”
appears in conjunction with “mathematical programming” over 400,000 times
on Google; yet there are surprisingly few attempts to formally define what
a reformulation in mathematical programming actually is [7,1]. Furthermore,
there is a remarkable lack of literature reviews on the topic of reformulations in
mathematical programming [3]; and even more importantly, very few solution
methods consider reformulation-based algorithmic steps (usually, the refor-
mulation is taken to be a pre-processing step) [6]. Although some automatic
relaxation software exists [2], there is no equivalent for general reformulations.

In this paper we propose a data structure for storing and manipulation math-
ematical programming formulations, and several definitions of different types

Email address: liberti@lix.polytechnique.fr (Leo Liberti).
1 LIX, École Polytechnique, F-91128 Palaiseau, France

Preprint submitted to CTW 2008 15 February 2008

of reformulations, all based on transformations carried out on the proposed
data structure. A (non-exhaustive) list of known reformulations based on these
definitions can be found in [4].

2 A data structure for mathematical programs

We refer to a mathematical programming problem in the most general form:

min{f(x) | g(x) Q b ∧ x ∈ X}, (1)

where f, g are function sequences of various sizes, b is an appropriately-sized
real vector, and X is a cartesian product of continuous and discrete intervals.
We let P be the set of all mathematical programming formulations and M be
the set of all matrices.

Definition 1 Given an alphabet L consisting of countably many alphanumeric
names NL and operator symbols OL, a mathematical programming formulation
P is a 7-tuple (P ,V , E ,O, C,B, T), where:

• P ⊆ NL is the sequence of parameter symbols: each element p ∈ P is a
parameter name;

• V ⊆ NL is the sequence of variable symbols: each element v ∈ V is a variable
name;

• E is the set of expressions: each element e ∈ E is a Directed Acyclic Graph
(DAG) e = (Ve, Ae) such that:

(a) Ve ⊆ L is a finite set
(b) there is a unique vertex re ∈ Ve such that δ−(re) = ∅ (such a vertex is

called the root vertex)
(c) vertices v ∈ Ve such that δ+(v) = ∅ are called leaf vertices and their set is

denoted by λ(e); all leaf vertices v are such that v ∈ P ∪ V ∪ R ∪ P ∪M
(d) for all v ∈ Ve such that δ+(v) 6= ∅, v ∈ OL
(e) two weightings χ, ξ : Ve → R are defined on Ve: χ(v) is the node coefficient

and ξ(v) is the node exponent of the node v; for any vertex v ∈ Ve, we let
τ(v) be the symbolic term of v: namely, v = χ(v)τ(v)ξ(v).

Elements of E are sometimes called expression trees; nodes v ∈ OL represent
an operation on the nodes in δ+(v), denoted by v(δ+(v)), with output in R;

• O ⊆ {−1, 1}× E is the sequence of objective functions; each objective func-
tion o ∈ O has the form (do, fo) where do ∈ {−1, 1} is the optimization
direction (−1 stands for minimization, +1 for maximization) and fo ∈ E;

• C ⊆ E × S × R (where S = {−1, 0, 1}) is the sequence of constraints c of

the form (ec, sc, bc) with ec ∈ E , sc ∈ S, bc ∈ R: c ≡

ec ≤ bc if sc = −1

ec = bc if sc = 0

ec ≥ bc if sc = 1;

• B ⊆ R|V| × R|V| is the sequence of variable bounds: for all v ∈ V let B(v) =
[Lv, Uv] with Lv, Uv ∈ R;

• T ⊆ {0, 1, 2}|V| is the sequence of variable types: for all v ∈ V, v is called

2

a continuous variable if T (v) = 0, an integer variable if T (v) = 1 and a
binary variable if T (v) = 2.

We write T (z) and respectively B(z) to mean the sequences of types and
respectively bound intervals of the sequence of variables in z ⊆ V . We some-
times refer to a formulation by calling it an optimization problem or simply
a problem. Consider a function x : V → R|V| (called point) which assigns val-
ues to the variables. A point x is type feasible if: x(v) ∈ R when T (v) = 0,
x(v) ∈ Z when T (v) = 1, x(v) ∈ {Lv, Uv} when T (v) = 2, for all v ∈ V ; x is
bound feasible if x(v) ∈ B(v) for all v ∈ V ; x is constraint feasible if for all c ∈ C
we have: ec(x) ≤ bc if sc = −1, ec(x) = bc if sc = 0, and ec(x) ≥ bc if sc = 1.
A point x is feasible in P if it is type, bound and constraint feasible. Denote
by F(P) the feasible points of P . A feasible point x is a local optimum of P
with respect to the objective o ∈ O if there is a non-empty neighbourhood N
of x such that for all feasible points y 6= x in N we have dofo(x) ≥ dofo(y). A
feasible point x is a global optimum of P with respect to the objective o ∈ O if
dofo(x) ≥ dofo(y) for all feasible points y 6= x. Denote the set of local optima
of P by L(P) and the set of global optima of P by G(P). If O(P) = ∅, we
define L(P) = G(P) = F(P).

3 Reformulations

The generic term we employ for a problem Q related to a given problem P by
some form of transformation carried out on the formulation of P as defined
in Defn. 1 is auxiliary problem. Among the several possible auxiliary problem
types, four are specially interesting and used quite commonly: transformations
preserving all optimality properties (opt-reformulations); transformations pre-
serving at least one global optimum (narrowings); transformations based on
dropping constraints, variable bounds or types (relaxations); transformations
that are one of the above types “in the limit” (approximations).

Opt-reformulations are auxiliary problems that preserve all optimality infor-
mation. We define them by considering local and global optima. A local re-
formulation transforms all optima of the original problem into optima of the
reformulated problem, although more than one reformulated optimum may
correspond to the same original optimum. A global reformulation transforms
all global optima of the original problem into global optima of the reformu-
lated problem, although more than one reformulated global optimum may
correspond to the same original global optimum.

Definition 2 Q is a local reformulation of P if there is a function ϕ : F(Q) →
F(P) such that (a) ϕ(y) ∈ L(P) for all y ∈ L(Q), (b) ϕ restricted to L(Q)
is surjective. This relation is denoted by P ≺ϕ Q. Q is a global reformulation
of P if there is a function ϕ : F(Q) → F(P) such that (a) ϕ(y) ∈ G(P) for
all y ∈ G(Q), (b) ϕ restricted to G(Q) is surjective. This relation is denoted
by P �ϕ Q. We write P ≺ Q (resp. P � Q) if there is a ϕ such that P ≺ϕ Q

3

(resp. P �ϕ Q). Q is an opt-reformulation of P (denoted by P < Q) if P ≺ Q
and P � Q.

Opt-reformulations can be chained (i.e. applied in sequence) to obtain other
opt-reformulations.

Lemma 3 The relations ≺, �, < are reflexive and transitive.

Narrowings are auxiliary problems that preserve at least one global optimum.
They come in specially useful in presence of problems exhibiting many sym-
metries: it may then be the huge amount of global optima that is prevent-
ing a search from being successful. An example of narrowing is given by the
local cuts obtained from the symmetry group of the problem [5]. All opt-
reformulations are a special case of narrowings; narrowings can be chained to
obtain more complex narrowings. Chaining an opt-reformulation and a nar-
rowing results in a narrowing.

Definition 4 Q is a narrowing of P if there is a function ϕ : F(Q) → F(P)
such that (a) ϕ(y) ∈ G(P) for all y ∈ G(Q).

Loosely speaking, a relaxation of a problem P is an auxiliary problem of P with
fewer constraints. Relaxations are useful because they often yield problems
which are simpler to solve yet they provide a bound on the objective function
value at the optimum. The “fundamental theorem” of relaxations states that
relaxations provide bounds to the objective function. Opt-reformulations and
narrowings are special types of relaxations. Relaxations can be chained to
obtain other relaxations; chaining of relaxations with opt-reformulations and
narrowings results in other relaxations.

Definition 5 Q is a relaxation of P if F(P) (F(Q).

Approximations are auxiliary problems dependent on a numerical parameter,
which approximate as closely as desired other auxiliary problems for some lim-
iting value of the parameter. Since approximations can be defined for all types
of auxiliary problems, we can have approximations to opt-reformulations, nar-
rowings, relaxations and approximations themselves. In general, approxima-
tions have no guarantee of optimality, i.e. solving an approximation may give
results that are arbitrarily far from the optimum. In practice, however, ap-
proximations manage to provide solutions of good quality. Opt-reformulations,
narrowings and relaxations are special types of approximations. Chaining ap-
proximations and other auxiliary problems yields an approximation.

Definition 6 Q is an approximation of P if there is a countable sequence of
problems Qk (for k ∈ N), a positive integer k′ and an auxiliary problem Q∗ of
P such that: (a) Q = Qk′; (b) for all expression trees f ∗ ∈ O(Q∗) there is a
sequence of expression trees fk ∈ O(Qk) that represent functions converging

4

uniformly to the function represented by f ∗ (c) for all c∗ = (e∗, s∗, b∗) ∈ C(Q∗)
there is a sequence of constraints ck = (ek, sk, bk) ∈ C(Qk) such that: (i) the
functions represented by ek converge uniformly to the function represented by
e∗; (ii) sk = s∗ for all k; (iii) bk converges to b.

References

[1] C. Audet, P. Hansen, B. Jaumard, and G. Savard. Links between linear bilevel
and mixed 0-1 programming problems. Journal of Optimization Theory and
Applications, 93(2):273–300, 1997.

[2] E.P. Gatzke, J.E. Tolsma, and P.I. Barton. Construction of convex relaxations
using automated code generation techniques. Optimization and Engineering,
3:305–326, 2002.

[3] L. Liberti. Reformulation and Convex Relaxation Techniques for Global
Optimization. PhD thesis, Imperial College London, UK, March 2004.

[4] L. Liberti. Reformulation techniques in mathematical programming, November
2007. Thèse d’Habilitation à Diriger des Recherches.

[5] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical
Programming, 94:71–90, 2002.

[6] N. Mladenović, F. Plastria, and D. Urošević. Reformulation descent applied to
circle packing problems. Computers and Operations Research, 32(9):2419–2434,
2005.

[7] H. Sherali. Personal communication. June 2007.

5

