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Abstract. Many nonconvex nonlinear programming (NLP) problems of practi-
cal interest involve bilinear terms and linear constraints, as well as, potentially,
other convex and nonconvex terms and constraints. In such cases, it may be pos-
sible to augment the formulation with additional linear constraints (a subset of
Reformulation-Linearization Technique constraints) which do not affect the feasible
region of the original NLP but tighten that of its convex relaxation to the extent that
some bilinear terms may be dropped from the problem formulation. We present an
efficient graph-theoretical algorithm for effecting such exact reformulations of large,
sparse NLPs. The global solution of the reformulated problem using spatial Branch-
and Bound algorithms is usually significantly faster than that of the original NLP.
We illustrate this point by applying our algorithm to a set of pooling and blending
global optimization problems.

Keywords: Global optimization, bilinear, convex relaxation, NLP, Reformulation-
Linearization Technique, RRLT constraints.

1. Introduction

We consider the solution of Nonlinear Programs (NLPs) of the following
standard form:
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2 L. Liberti, C.C. Pantelides

[P ] : min
z

zl (1)

Az = b (2)

zi = zjzk ∀i, j, k ∈ B (3)

zi =
zj

zk

∀i, j, k ∈ F (4)

zi = fi(zj) ∀i, j ∈ N (5)

zL ≤ z ≤ zU (6)

where z = (z1, . . . , zp) ∈ Rp are the problem variables, l is an index in
the set {1, . . . , p}, A = (aij) is an M × p matrix of rank M , b ∈ RM ,
B, F are sets of index triplets {(i, j, k) | 1 ≤ i, j, k ≤ p}, N is a
set of index pairs {(i, j) | 1 ≤ i, j ≤ p}, fi : R → R are nonlinear
continuous univariate functions and zL, zU ∈ Rp are variable bounds.
Note that linear fractional terms (4) can be re-arranged to bilinear
ones (3); the converse is also true provided the range of the variable
appearing in the denominator does not include zero. In any case, the
above standard form is practically important as it can be shown that all
NLPs can automatically be reformulated to it using symbolic manipula-
tions (Smith and Pantelides, 1999; Smith, 1996). Therefore, theoretical
results, manipulations and solution algorithms derived on the basis of
this standard form are generally applicable.

Spatial Branch-and-Bound (sBB) algorithms (Tuy, 1998) are among
the most effective methods currently available for the global solution
of nonconvex NLPs. An important requirement for any sBB algorithm
is to be able to construct a tight convex underestimator of the NLP
within any given region of the space of the variables. For the standard
form [P ], the lower bound to the objective function can be generated
by replacing the nonconvex constraints (3), (4), (5) with their convex
relaxations; in this manner, a convex relaxation of the whole problem
can be obtained in a simple and completely automatic fashion.

Tight convex relaxations for the most common nonconvex terms are
available in the literature. One of the best known is that proposed
by (McCormick, 1976) (see Example 1.1) for the relaxation of bilinear
terms. Linear fractional terms like those appearing in constraint (4)
are reformulated to zizk = zj and replaced by the McCormick convex
relaxation. For the nonlinear terms in constraint (5), the convex relax-
ation depends on the function fi. When fi is wholly concave or wholly
convex, the function itself and its secant provide the tightest convex
relaxation. For functions fi which are partially concave and partially
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Reformulation Algorithm for Nonconvex NLPs 3

convex, like e.g. zi = z2k+1
j , where k ∈ N, building the convex relaxation

may not be so straightforward (Liberti and Pantelides, 2003).

1.1 Example

Consider the problem

min
x,y,z,w

z

z − x + w = 1

w = xy

(xL, yL, zL, wL) ≤ (x, y, z, w) ≤ (xU , yU , zU , wU )

in standard form. To obtain the convex relaxation, we replace the
nonconvex constraint w = xy with its McCormick convex relaxation:

w ≥ xLy + yLx − xLyL (7)

w ≥ xUy + yUx − xUyU (8)

w ≤ xUy + yLx − xUyL (9)

w ≤ xLy + yUx − xLyU . (10)

This paper presents a technique to automatically reformulate opti-
mization problems in standard form [P ] in such a way that some of
the nonlinear constraints (3) are replaced by linear constraints. This
is possible because, in certain instances, feasible regions described by
nonlinear constraints are, in fact, (linear) hyperplanes. We propose an
automatic algorithm to identify such instances in large scale problems.
The solution of the reformulated problems by sBB algorithms often
requires reduced computational effort, sometimes even by several orders
of magnitude.

The creation of new linear constraints via multiplication of exist-
ing linear constraints by problem variables was proposed in (Sher-
ali and Adams, 1986; Sherali, 2002) under the name “Reformulation-
Linearization Technique” (RLT). The RLT uses linear constraints built
in this way to provide a lower bound to 0-1 mixed-integer linear and
bilinear programming problems. In the case of continuous bilinear pro-
gramming problems (Sherali and Alameddine, 1992), the RLT gener-
ates all possible new linear constraints that can be obtained by multi-
plying together bound factors (zj − zL

j ≥ 0, zU
j − zj ≥ 0 for all j ≤ p)

and constraint factors (
∑

j aijzj − bi = 0 for all i ≤ M), and then
linearizing the resulting constraint.

The RLT is an effective tightening technique, its main drawback
being the excessive size of the resulting LP relaxation. In (Sherali and
Alameddine, 1992), three different methods for limiting the size of the
RLT constraint set were suggested, adopting a “dynamic generation”

red10.tex; 29/01/2006; 20:57; p.3



4 L. Liberti, C.C. Pantelides

approach that solves the LP without the RLT constraints and only
generates and includes those RLT constraints which are valid cuts with
respect to the relaxed optimum. A more advanced constraint filtering
technique is proposed in (Sherali and Tuncbilek, 1997), based on the
sign of the coefficient of the variable zi in the original constraint and
in the RLT constraint being generated.

The approach adopted in this paper is fundamentally different from
those mentioned above as it applies RLT-type multiplications directly
to the original NLP problem (and not its convex relaxation) deriving
an exact reformulation which has fewer bilinear terms and more linear
constraints — called “reduced RLT” (RRLT) constraints. This reformu-
lation is a pre-processing step, applied once only before the start of the
solution of the global optimization problem using branch-and-bound
algorithms.

The rest of this paper is organized as follows. In Section 2, we intro-
duce the basic concepts and ideas behind RRLT constraints. Section 3
considers the existence of RRLT constraints in a more formal manner.
This provides the basis of the fast algorithm for the identification of
RRLT constraints presented in Section 4. An example of the application
of the algorithm is presented in detail in Section 5. The effects of RRLT
constraints on the global solution of an important class of problems
with bilinear constraints, namely pooling and blending problems, are
considered in Section 6. Finally, Section 7 proposes an extension of the
algorithm of Section 4 that may result in better reformulations at the
expense of higher computational time and memory.

2. Basic concepts

This section introduces in an informal manner the motivation and gen-
eral ideas behind the work presented in this paper. Let y be a single
problem variable, and let w = (w1, . . . , wn) and x = (x1, . . . , xn) be
problem variables (with n < p) such that the following constraints
exist in the problem:

∀j ≤ n (wj = xjy). (11)

Now suppose that the problem also involves the linear constraint:

n
∑

j=1

aijxj = bi (12)
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Reformulation Algorithm for Nonconvex NLPs 5

Multiplying this constraint by y and making use of (11) leads to a new
linear constraint:

n
∑

j=1

aijwj − biy = 0. (13)

The linear constraint (13) is redundant with respect to the original
constraints. Indeed, it can be used to replace one of the bilinear con-
straints wj = xjy in problem [P ] without affecting the feasible region
of the problem. To see this, assume aik 6= 0 for some k ∈ {1, . . . , n} and
discard the nonlinear constraint wk = xky from the set (11) above. We
now replace bi in (13) with the left hand side of (12) to obtain:

n
∑

j=1

aijwj −
n
∑

j=1

aijxjy =
n
∑

j=1

aij(wj − xjy) = 0.

Since wj = xjy for all j 6= k, the above reduces to aik(wk − xky) = 0,
which implies wk = xky. We have thus recovered the discarded bilinear
constraint from the other n− 1 bilinear constraints and the new linear
constraint (13). We call the latter a reduced RLT (RRLT) constraint.

The geometric significance of RRLT constraints is that, given any
i ≤ m, the set:

{(w, x, y) | ∀j ≤ n (wj = xjy) ∧
n
∑

j=1

aijxj = bi} (14)

is less nonlinear than might appear to be the case: in fact, provided
that aik 6= 0 for some k ≤ n, it is equal to the set:

{(w, x, y) | ∀j 6= k (wj = xjy) ∧
n
∑

j=1

aijxj = bi ∧
n
∑

j=1

aijwj − biy = 0}, (15)

where the kth bilinear constraint has been replaced by a linear con-
straint.

Below, we consider an extreme example of such a reformulation.

2.1 Example

Let (w, x, y) ∈ R3 and consider the set:

A1 = {(w, x, y) | w = xy ∧ x = 1}.

This set is defined as the intersection of the bilinear surface xy and
the vertical plane x = 1 (see Figure 1). By multiplying x = 1 by y, we
get the linear constraint w − y = 0 (the skew plane in Figure 1). It is
evident that the set

A2 = {(w, x, y) | x = 1 ∧ w − y = 0}
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Figure 1. Linearity embedded in a bilinear constraint.

is the same as the set A1. However, A2 is defined only by linear rela-
tionships whereas A1 is not. The convexification of A1 in the context
of an sBB algorithm (e.g. by introducing the McCormick relaxation of
xy) would be both unnecessary and counter-productive.

A limitation of the reformulation technique presented above is that
all constraints of the type wj = xjy have to exist in the problem (1)
before the linear constraint (13) can be created. Consider, however,
a problem that already includes bilinear constraints wj = xjy for all
j ≤ n − 1, and two linear constraints:

n−1
∑

j=1

aijxj + ainxn = bi (16)

n−1
∑

j=1

ahjxj + ahnxn = bh (17)
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where i, h ≤ m and ain, ahn are nonzero constants. On multiplying (16)
and (17) by y, we obtain the two linear constraints:

n−1
∑

j=1

aijwj + ainwn − biy = 0 (18)

n−1
∑

j=1

ahjwj + ahnwn − bhy = 0. (19)

where wn is a new variable defined via a new bilinear constraint wn =
xny. By forming a suitable linear combination of the two constraints,
the new variable wn can be eliminated, and we now have a linear
constraint similar to (13) which can be used to eliminate one of the
original bilinear constraints in the manner indicated earlier.

3. Fundamental properties

We now proceed to provide a more rigorous foundation for the ideas
introduced in section 2

Consider an optimization problem in standard form [P ] and subsets
of problem variables w, x ∈ Rn and y ∈ R. Suppose the problem
includes the set of m linear equality constraints Ax = b, where the
matrix A is of full row rank m.

Multiplying Ax = b by y, we create m RRLT constraints of the form
Aw−yb = 0, where the variable vector w ∈ Rn is defined as in Equation
(11). The following theorem shows that the RRLT constraints can be
used to replace m of the n bilinear constraints in (11) without changing
the feasible region of the problem.

3.1 Theorem

Let J ⊆ {1, . . . , n} be an index set of cardinality |J | = n − m and
consider the sets:

C = {(x, w, y) | Ax = b ∧ ∀j ≤ n (wj = xjy)} (20)

RJ = {(x, w, y) | Ax = b ∧ Aw − yb = 0 ∧ ∀j ∈ J (wj = xjy)}(21)

Then, there is at least one set J such that C = RJ .

Proof. The fact that C ⊆ RJ for any set J is straightforward: if
(x, w, y) ∈ C, then it also satisfies the constraints Aw − yb = 0, hence
(x, w, y) ∈ RJ .

We shall now prove the converse inclusion. By virtue of the fact that
Ax = b, the RRLT constraint system Aw − yb = 0 can be written as
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8 L. Liberti, C.C. Pantelides

Aw − (Ax)y = 0. If we now define uj = wj − xjy, ∀j ≤ n, this can
further be written as the linear homogeneous system Au = 0. Since
rank(A) = m, there exists a permutation π of the columns of A such
that:

(A0 A1)

(

u(0)

u(1)

)

= 0,

where A0 is a non-singular m × m matrix, and (u(0)T
, u(1)T

)T is a
permutation of u with u(0) ∈ Rm and u(1) ∈ Rn−m. Let J be the image
of {n−m + 1, . . . , n} under the permutation π, and let (x, w, y) ∈ RJ .
Since (x, w, y) satisfies wj = xjy for all j ∈ J , then u(1) = 0; since
(x, w, y) also satisfies the RRLT constraint system, we have Au = 0,
which implies u(0) = 0 as well. Hence wj = xjy for all j ≤ n. 2

The geometrical implications of the above theorem are that the
intersection in Rn of a set of bilinear terms like those described above,
and the linear form Ax = b is a hypersurface containing a degree of
linearity. By exploiting this linearity, we are able to replace some of the
bilinear terms with linear constraints.

There is an interesting analogy between the above result and some
of the RLT work carried out on persistency in MILPs with binary
variables (Adams et al., 1998). It has been shown, in particular, that,
if some of the binary variables attain integer values at the optimum of
the relaxation, the added RLT constraints guarantee that those vari-
ables will have the same values at the optimum of the integer problem.
Theorem 3.1 shows that enforcing a proper subset of the set of all
bilinear constraints and a particular set of RLT constraints implies
that the rest of the bilinear constraints are also satisfied. Propositions
8.11 and 8.12 in (Sherali and Adams, 1999) show a similar result to
our Theorem 3.1 but with stronger assumptions. In particular, they
show that the bilinear terms are automatically implied by the RLT
relaxation provided a certain subset of the problem variables is at
the range bound. Our result, on the other hand, does not make any
assumptions regarding the variable values.

As has been shown above, the bilinear terms that have been elim-
inated are redundant with respect to the remaining terms and the
newly introduced linear constraints. This does not, however, neces-
sarily imply that the McCormick relaxations (cf. Equations (7)-(10))
of these eliminated terms are also redundant as far as the problem’s
convex relaxation is concerned. It is instructive to examine this point in
more detail by considering a problem that involves a linear constraint
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written, without loss of generality, in the form:

zi =
∑

j∈P

αjzj +
∑

j∈N

αjzj + c (22)

for a certain variable zi, where the index sets P and N are such that
αj > 0,∀j ∈ P and αj < 0,∀j ∈ N . The problem also involves bilinear
terms wj = zjy, j ∈ P∪N ∪{i} where y is one of the problem variables.
The convex relaxation of this problem will involve the McCormick
relaxations (7)-(10) of all the bilinear terms wj .

In the spirit of the reformulations considered in this paper, we now
multiply (22) by y to obtain:

wi =
∑

j∈P

αjwj +
∑

j∈N

αjwj + cy (23)

and then use this constraint to eliminate the bilinearity wi = ziy from
the problem. The convex relaxation of this problem will not include the
McCormick constraints for wi, but will still include those for wj , j ∈
P ∪N .

Now consider multiplying the McCormick constraints (7) for wj , j ∈
P by αj , and the constraints (9) for wj , j ∈ N by αj , and adding all of
these together to obtain:

∑

j∈P

αjwj +
∑

j∈N

αjwj ≥





∑

j∈P

αjz
L
j +

∑

j∈N

αjz
U
j



 (y − yL) +





∑

j∈P

αjzj +
∑

j∈N

αjzj



 yL

By adding cy to both sides of the equation and making use of (22) and
(23), the above simplifies to:

wi ≥





∑

j∈P

αjz
L
j +

∑

j∈N

αjz
U
j + c



 (y − yL) + yLzi (24)

We now compare (24) with the McCormick constraint (7) for vari-
able wi, which can be written as:

wi ≥ zL
i (y − yL) + yLzi. (25)

We can see that constraint (25) will be tighter than (24) if:

zL
i >

∑

j∈P

αjz
L
j +

∑

j∈N

αjz
U
j + c (26)
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and, in such a case, the convex relaxation of the original problem (which
contains constraint (25)) will be tighter than that of the reformulated
problem (which does not).

Inequality criteria similar to (26) may be obtained for the other
three McCormick constraints relating to the eliminated bilinear term
wi, as shown in Table I. Thus, the McCormick constraint for wi shown
in column 3 will be tighter than that implied by the McCormick con-
straints for wj for j ∈ P and j ∈ N shown in the first two columns
respectively, provided the inequality criterion shown in column 4 holds.

Table I. Comparison of tightness of convex relaxations for original and reformulated
problems

McCormick McCormick McCormick Original convex relaxation

constraints constraints constraint tighter than

for wj , j ∈ P for wj , j ∈ N for wi reformulated one if

(7) (9) (7) zL
i >

∑

j∈P
αjz

L
j +

∑

j∈N
αjz

U
j + c

(8) (10) (8) zU
i <

∑

j∈P
αjz

U
j +

∑

j∈N
αjz

L
j + c

(9) (7) (9) zL
i >

∑

j∈P
αjz

L
j +

∑

j∈N
αjz

U
j + c

(10) (8) (10) zU
i <

∑

j∈P
αjz

U
j +

∑

j∈N
αjz

L
j + c

The inequalities in the last column of Table I may hold because of
the original bounds imposed on the problem variables, but this may
cease to be true after a certain degree of branching on the zj , j ∈
P∪N variables during the solution of the reformulated problem. Thus,
the inequalities are likely to stay (or become) true primarily due to
branching on the variable zi; of course, the reformulated problem will
not normally branch on zi as this no longer appears in a bilinear term.

In summary, some of the bilinear terms are redundant with respect
to the nonlinear problem in its reformulated form but not necessarily
in the corresponding convex relaxations. However, the additional tight-
ness induced by this non-redundancy can be realized primarily at the
expense of additional branching on the eliminated bilinear terms. In
any case, as will be shown formally in section 4.1, the addition of the
RRLT constraints always tightens the NLP’s convex relaxation.

4. An algorithm for the identification of valid RRLT

constraints

Section 3 has established that, in principle, RRLT constraints exist for
any NLP involving bilinear terms and linear constraints. Here we are
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concerned with two more practical questions. Section 4.1 introduces a
criterion for determining whether the introduction of RRLT constraints
is likely to be beneficial. Then Sections 4.2 and 4.3 present an efficient
algorithm for the identification of such RRLT constraints based on
the above criterion; this is particularly important in the case of large
NLPs for which neither identification by inspection nor indiscriminate
multiplication of linear constraints by problem variables are practical
propositions.

4.1. Valid RRLT constraint sets

Given an NLP in the standard form [P], consider a subset L of its linear
constraints (2). Let the set of variables that occur in these constraints
be denoted by V(L), i.e. V(L) ≡ {k | ∃l ∈ L (alk 6= 0)}.

Now consider multiplying the linear constraint set L by a problem
variable zl. This will create bilinear terms of the form zlzk,∀k ∈ V(L).
Some of these terms will already occur in the NLP, i.e. ∃i : (i, l, k) ∈ B.
For each variable index l, let K(l,L) be a subset of V(L) that leads to
new bilinear terms, i.e.:

K(l,L) ≡ {k | k ∈ V(L) ∧ ∄i : (i, l, k) ∈ B}

The theorem of Section 3 indicates that we can now construct a
problem that has the same feasible region as [P ] by replacing |L| bi-
linear constraints by linear constraints. The latter are said to form a
valid RRLT constraint set if the substitution leads to a reduction in the
overall number of bilinear constraints in comparison with the original
problem [P ], i.e. if:

|K(l,L)| < |L| (27)

Valid RRLT constraints do not modify the feasible region of the orig-
inal NLP, but they do reduce the size of the feasible region of its convex
relaxation. We prove this in Theorem 4.1 below. Here the bounds zL, zU

are assumed to be the tightest possible, i.e. for any index i = 1, ..., p

and value z∗i ∈ [zL
i , zU

i ], the set {z|Az = b ∧ z ∈ [zL, zU ] ∧ zi = z∗i ]} is
non-empty.

4.1 Theorem

Let l ≤ p be a variable index, and let Az = b be a subset L of ν ≤ M

linear constraints (2) which satisfies (27). Consider the following sets:

Cl ≡ {(z, w) | Az = b ∧ z ∈ [zL, zU ] ∧ wi = zlzj ∀(i, l, j) ∈ B

∧ zU
l > zL

l ∧ zU
j > zL

j }

Rl ≡ Cl ∩ {(z, w) | Aw = zlb}.
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12 L. Liberti, C.C. Pantelides

Suppose that Cl is non empty, and let C̄l, R̄l be the corresponding
convex relaxations obtained by replacing the bilinear constraints with
the respective McCormick envelopes. Then R̄l is a proper subset of C̄l.

Proof. By definition we have R̄l ⊆ C̄l. We have to prove that R̄l 6= C̄l.
The system Az = b can be written in the form:

A′z′ + A′′z′′ = b′

where the partitioning is such that the bilinear terms w′ ≡ zlz
′ already

occur in the original NLP, while w′′ ≡ zlz
′′ do not. Since condition (27)

holds, we must have z′′ ∈ Rν′

where ν ′ = |K(l,L)| < ν, and we can
apply Gaussian elimination with row pivoting on A′′ to bring the above
system to the form:

(

Ã′

Ā′

)

z′ +

(

Ã′′

0

)

z′′ =

(

b̃′

b̄′

)

. (28)

By multiplying the bottom block row of the above equation by zl, we
obtain:

Ā′w′ = zlb̄
′. (29)

where the matrix Ā′ must have full rank, otherwise the assumption of
full rank of the original set of linear constraints (2) would be contra-
dicted.

Consider a point (z, w) ∈ R̄l; naturally, it satisfies (29) and we also
have that (z, w) ∈ C̄l. By definition of Cl, each of the variables zl

or zj involved in bilinear products has a non-zero range. Therefore,
the McCormick envelopes for each and every element of the vector
w′ (where w = (w′, w′′) as above) are non-empty, compact and of
positive volume. Consequently, there exists a direction in which w′ can
be perturbed by a non-zero amount and still be feasible in C̄l. In other
words, there must be an index i such that, if w′

[i] is the vector obtained

by w′ by perturbing the i-th component by a non-zero amount, the
vector (z, w′

[i]) is in C̄l. Let us now assume that also (z, w′
[i]) ∈ R̄l, i.e.:

Ā′w′
[i] = zlb̄

′. (30)

By subtracting (29) from (30), we obtain:

Ā′(w′
[i] − w′) = 0. (31)

However, equation (31) cannot hold for all i, as this would imply
that Ā′ is the zero matrix. Therefore, starting from a point w′ ∈ R̄l,
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Reformulation Algorithm for Nonconvex NLPs 13

we can always construct a perturbed vector w′
[i] such that w′

[i] ∈ C̄l but

w′
[i] 6∈ R̄l, which implies that R̄l is a proper subset of C̄l. 2

The above theorem makes use of the fact that bilinear envelopes
are loose everywhere other than at the variable bounds (Al-Khayyal
and Falk, 1983) to show that valid RRLT constraint sets are always
useful, since they tighten the convexification of the original problem.
However, despite the apparent simplicity of criterion (27), applying
it in a brute force manner as a means of identifying RRLT constraint
systems is impractical: for an NLP containing M linear constraints, one
would have to examine 2M − 1 subsets L for each candidate multiplier
variable zl.

4.2. A graph-theoretical representation of linear

constraints

Here we consider a fast graph-theoretical algorithm for the identifica-
tion of linear constraint subsets L that satisfy (27) for a given multiplier
variable zl. We start by constructing a bipartite graph (Korte and
Vygen, 2000; Goodaire and Parmenter, 1998; Harary, 1971) Gl where
the set of nodes is partitioned into two disjoint subsets NL and N V

l .
The former correspond to the set of linear constraints in [P ] while the
latter correspond to those problem variables which do not appear in
any bilinear term (3) multiplied by zl, i.e.:

N V
l ≡ {k|∄i : (i, l, k) ∈ B}

The set of edges El in graph Gl is defined as:

El ≡ {(λ, k)|λ ∈ NL ∧ k ∈ N V
l ∧ aλk 6= 0}

Thus, edge (λ, k) exists if variable zk occurs in linear constraint λ.
Suppose, now, that L is a subset of the nodes NL. Let K̄(l,L) denote

the subset of nodes N V
l that are connected to nodes in L, i.e.:

K̄(l,L) ≡ {k|k ∈ N V
l ∧ ∃λ ∈ L : (λ, k) ∈ El}

In can be verified that, in view of the definitions of sets V, N V
l and

El, the two sets K(l,L) and K̄(l,L) are, in fact, identical. Consequently,
a valid RRLT constraint set (i.e. one that satisfies criterion (27)) will
correspond to a dilation in graph Gl, i.e. a subset L of, say, ν nodes
of NL that are connected to fewer than ν nodes of N V

l . This provides
a practical basis for the identification of valid RRLT constraint sets
using efficient existing algorithms for the determination of dilations in
bipartite graphs.
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4.3. Efficient identification of dilations

Given a candidate multiplier variable zl, the algorithm shown in Fig-
ure 2 returns the corresponding valid RRLT constraint set Ll. The
algorithm works by constructing the bipartite graph Gl for each can-
didate multiplier variable zl, and then identifying dilations in this
graph. Dilations in bipartite graphs are closely related to matchings,
i.e. subsets µ of the edges such that no node is adjacent to more than
one edge in µ. Given a (possibly empty) matching µ, a matching of
larger cardinality may be obtained if one can identify an alternating
augmenting path p, i.e. one whose first and last nodes are not adjacent
to any edge in µ, and whose edges alternate between not belonging
and belonging to µ. If such a path can be found, then a matching
of cardinality |µ| + 1 can be obtained from µ by replacing all edges
in µ ∩ p by edges p\µ (Hopcroft and Karp, 1973; Korte and Vygen,
2000). A recursive procedure for the identification of an augmenting
path emanating from a node λ is described in (Duff, 1981).

The theoretical complexity of the algorithm is at most of the order
(number of constraint nodes × number of edges). However, as observed
by (Duff, 1981), the computational complexity of such algorithms in
practice is usually nearer to (number of constraint nodes + number of
edges). This results in an efficient algorithm that is practically appli-
cable to large problems.

5. A detailed example

In order to illustrate the operation of the algorithm proposed in Section
4, we consider the following bilinear optimization problem in standard
form:

minz z24

z24 = cT z

Az′ = b

zi = zjzk ∀(i, j, k) ∈ B

0 ≤ z ≤ 10,



























(32)

where:

cT = (0, 0, 0, 0, 0, 0, 1, 1, 3, 1, 2, 2, 1, 2, 1,−1, 2,−1, 4, 3, 6, 9, 1),

z = (z1, . . . , z23)
T , z′ = (z1, . . . , z6)

T , b = (1, 2,−1, 1)T ,

A =









1 2 1 1
2 −1 1 3

1 6 2 −3
2 1 3
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1 PROCEDURE ValidReducedRLTConstraints(l, Ll)

2 Set Ll := ∅
3 Construct bipartite graph Gl as described in Section 4.2

4 FOR each variable node k DO

5 Set Assigned[k] := 0
6 END FOR

7 FOR each constraint node λ DO

8 FOR each constraint node λ′ DO

9 Set ConstraintV isited[λ′] := FALSE

10 END FOR

11 FOR each variable node k DO

12 Set V ariableV isited[k] := FALSE

13 END FOR

14 Search for augmenting path from node λ

15 IF path not found THEN

16 Set Ll := Ll ∪ {λ′|ConstraintV isited[λ′] = TRUE}
17 END IF

18 END FOR

19 END ValidReducedRLTConstraints

Figure 2. Algorithm for identification of set of valid RRLT constraint set L for
variable zl.

and:

B = {(7, 1, 1), (8, 2, 2), (9, 4, 4), (10, 5, 5), (11, 6, 6), (12, 1, 4),
(13, 1, 5), (14, 1, 6), (15, 2, 4), (16, 2, 5), (17, 2, 6), (18, 3, 4),

(19, 3, 5), (20, 3, 6), (21, 4, 5), (22, 4, 6), (23, 5, 6) }
(33)

The above is, effectively, a bilinear programming problem involving 6
variables z1, . . . , z6 which are, in turn, related via 4 linear constraints.
The problem involves all bilinear combinations (including simple squa-
res) of these 6 variables apart from z1z2, z1z3, z2z3, z2

3 . New variables
z7, . . . , z23 have been introduced to represent these bilinear terms, and
these are linearly combined to form the objective function represented
by variable z24.

In this problem, it is quite easy to see that only variables z1, . . . , z6

can possibly give rise to RRLT constraints when multiplied by the
linear constraints Az′ = b. We consider each of these 6 variables in turn,
applying to it procedure ValidReducedRLTConstraints of Figure 2.
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c 1
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Figure 3. Generation of valid RRLT constraints for multiplier variable z1.

5.1. Valid RRLT constraints by multiplication with

variable z1

The bipartite graph G1 constructed as described in Section 4.2 for
variable z1 is shown in Figure 3a. Nodes c1, . . . , c4 correspond to the
four linear constraints. Edges correspond to the creation of new bilin-
ear terms if a particular constraint were to be multiplied by z1. For
example, edges (c1, z1) and (c1, z3) exist because, if constraint c1 were
to be multiplied by z1, then this would give rise to new terms z2

1 and
z1z3 respectively.

As there are initially no assignments of variable nodes to constraint
nodes, all edges are shown as dotted lines in Figure 3a. We now consider
each constraint node in turn (lines 7-18 of Figure 2), attempting to
construct an augmenting path emanating from it (line 14).

Starting from constraint node c1, an augmenting path is found im-
mediately to its adjacent variable node z3. This is assigned to c1; this
assignment is indicated as a solid line in Figure 3b.

Considering constraint c2 also results in an augmenting path be-
ing found immediately, this time assigning z2 to c2. The resulting
assignment is also shown as a solid line in Figure 3b.

So far, we have not identified any dilations. However, if we now
attempt to construct an augmenting path emanating from constraint
node c3, we note that c3 is adjacent to only one variable node, namely
z2 which is already assigned to node c2. Thus, there are no augmenting
paths starting from c3, visiting nodes c3, c2 in the process. Conse-
quently, line 16 of Figure 2 adds c2 and c3 to the set of linear constraints
L1 to be multiplied by z1.

Finally, constraint node c4 is completely isolated in G1, i.e. there are
no edges incident to it. Thus, c4 is also added to set L1.

As there are no more constraint nodes to be considered, we con-
clude that L1 = {c2, c3, c4}. Essentially, the algorithm has identified
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automatically that multiplying constraints c2:

2z1 − z2 + z4 + 3z6 = 2

and c3:
z2 + 6z4 + 2z5 − 3z6 = −1

by z1 creates only one new bilinear term, namely z1z2, beyond those
that already exist in the problem. Consequently, if we define a new
variable z25 ≡ z1z2, we end up with two linear constraints:

2z7 − z25 + z12 + 3z14 = 2z1

and
z25 + 6z12 + 2z13 − 3z14 = −z1

respectively that can be used to eliminate two bilinear terms from the
problem.

Moreover, the algorithm has also detected that multiplying con-
straint c4:

2z1 + z4 + 3z5 = 1

by z1 does not generate any new bilinear terms. The new linear con-
straint:

2z7 + z12 + 3z13 = z1

obtained by this multiplication can be used to eliminate one more of the
problem’s bilinear terms. Overall, the number of bilinear terms in the
problem can be reduced by two via the use of valid RRLT constraints.

5.2. Valid RRLT constraints by multiplication with

variables z2 or z3

The bipartite graphs G2 and G3 are shown in Figures 4 and 5 respec-
tively, together with a graphical depiction of the application of the
algorithm steps to them. In these figures, solid lines indicate edges that
belong to the current matching. Dashed arrows show an alternating
augmenting path being traced from a constraint node; a thicker dashed
line (going from a z to a c node) indicates edges on this path that are
part of the current matching, while thin dashed lines (going from a c

to a z node) are edges that do not belong to the current matching.
It turns out that L2 = {c2, c3, c4}. In this case, the algorithm has

detected that c3 can be multiplied by z2 without generating any new
bilinear terms. Also, the multiplication of c2 and c4 by z2 leads to the
creation of only one new bilinear term, z1z2 and two linear constraints.

The algorithm also determines that L3 = {c2, c3, c4}. The alternat-
ing path c4 → z1 → c2 → z2 → c3 (shown in Figure 5(e)) indicates that
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Figure 4. Generation of valid RRLT constraints for multiplier variable z2.
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Figure 5. Generation of valid RRLT constraints for multiplier variable z3.

multiplying these three constraints by z3 will result in the creation of
only two new bilinear terms, namely z1z3 and z2z3

5.3. Valid RRLT constraints by multiplication with

variables z4, z5 or z6

The bipartite graphs Gl for l = 4, 5, 6 are very simple as they contain
no variable nodes (i.e. N V

l = ∅). This results in the constraint sets:

Ll = {c1, c2, c3, c4}, l = 4, 5, 6

This is just a consequence of the fact that this problem already contains
all possible bilinear terms involving z4 or z5 or z6. Consequently, multi-
plying any linear constraint by one of these variables does not result in
any new bilinear terms and can, therefore, be used to generate a valid
RRLT constraint.

5.4. The reformulated NLP

In summary, the operations described in Sections 5.1-5.3 above result
in a set of 21 RRLT constraints obtained by multiplying each con-
straint subset Ll, l = 1, . . . 6 by variable zl. Three new bilinear terms
were introduced: z25 = z1z2, z26 = z1z3, z27 = z2z3, augmenting the
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original set B (cf. Equation (3)) with the triplets (25, 1, 2), (26, 1, 3)
and (27, 2, 3).

In order to determine which bilinear terms may be replaced by these
linear constraints, we write the latter in matrix form:

Bz′′ + Cz′ = 0 (34)

where z′ = (z1, . . . , z6)
T ∈ R6 and z′′ = (z7, . . . , z23, z25, . . . , z27)

T ∈
R20, B : R20 → R21 and C : R6 → R21. By performing Gaussian
elimination with row pivoting on B (and replicating the same row
operations on C) we obtain a system of the form:

(

U B̃

0 0

)

(

ξ

ζ

)

=

(

C̃

0

)

z′

where ξ = (z7, . . . , z23, z25)
T ∈ R18, ζ = (z26, z27)

T ∈ R2, U : R18 →
R18 is a nonsingular, upper-triangular matrix, B̃ : R2 → R18 and C̃ :
R6 → R18. Thus, the RRLT constraints determine the variables ξ in
terms of ζ and z′ via the solution of Uξ = C̃z′− B̃ζ, and consequently,
the corresponding triplets (i, j, k) can be deleted from the set B in
Equation (33). Overall, the reformulation of the original problem (32)
involves the introduction of the RRLT constraints (34) and a much
smaller set of just two triplets, namely B = {(26, 1, 3), (27, 2, 3)}.

6. Computational results

We have chosen a selection of bilinear test problems relating to pooling
and blending problems to test the efficiency of our algorithm. Pool-
ing and blending involves the determination of optimal amounts of
different raw materials that need to be mixed to produce required
amounts of end-products with desired properties. Such problems oc-
cur frequently in the petrochemical industry and are well known to
exhibit multiple local minima. There is a wealth of publications on
the pooling problem in the literature (Foulds et al., 1992; Sherali and
Alameddine, 1992; Visweswaran and Floudas, 1993; Ben-Tal et al.,
1994; Quesada and Grossmann, 1995; Visweswaran and Floudas, 1996;
Adhya et al., 1999; Tawarmalani and Sahinidis, 2004; Audet et al.,
2004; Tawarmalani and Sahinidis, 2002a; Sahinidis and Tawarmalani,
2005). Application of RLT-type constraints to the problem formulation
was carried out both explicitly (Sherali and Alameddine, 1992; Que-
sada and Grossmann, 1995) and implicitly (Tawarmalani and Sahini-
dis, 2004; Tawarmalani and Sahinidis, 2002a) as part of the so-called
pq-formulation.
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Here we wish to investigate the effects of our problem reformulation
carried out as a pre-processing step. We note that the formulation
proposed in (Audet et al., 2004) is expressed in such a way (bilinear
products distributed over sums) that the benefits of the application of
reduced RLT constraints are already included (see below). However, our
main objective is to investigate the extent to which a completely general
graph-theoretical procedure can automatically derive formulations that
are comparable in efficiency to the best known formulations for specific
problem classes (such as pooling and blending).

Here, we use the general blending problem formulation found in
(Adhya et al., 1999):

min
f,q,x

p
∑

j=1

nj
∑

i=1

cijfij −
r
∑

k=1

dk

p
∑

j=1

xjk (35)

nj
∑

i=1

fij −
r
∑

k=1

xjk = 0, ∀j ≤ p (36)

qjw

r
∑

k=1

xjk −

nj
∑

i=1

λijwfij = 0, ∀j ≤ p ∀w ≤ l (37)

p
∑

j=1

xjk ≤ Sk, ∀k ≤ r (38)

p
∑

j=1

qjwxjk − Zkw

p
∑

j=1

xjk ≤ 0, ∀k ≤ r ∀w ≤ l (39)

fL ≤ f ≤ fU , qL ≤ q ≤ qU , xL ≤ x ≤ xU , (40)

where fij is the flow of input stream i into pool j, xjk is the total flow
from pool j to product k and qjw is the w-th quality of pool j; p is the
number of pools, r the number of products, l the number of qualities,
nj the number of streams; cij , dk, Sk, Zkw, λijw are given parameters.

When the blending problem (35)-(40) is reformulated to the stan-
dard form [P ], new variables uj are created to replace the term

∑r
k=1 xjk

in constraint set (37). Thus, we introduce the linear constraints:

r
∑

k=1

xjk − uj = 0, ∀j ≤ p (41)

and re-write (37) as

tjw −

nj
∑

i=1

λijwfij = 0, ∀j ≤ p ∀w ≤ l
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where we have introduced new variables tjw derived via the bilinear
constraints:

tjw = qjwuj , ∀j ≤ p ∀w ≤ l.

More new variables zjwk are created in the standard form to replace
the bilinear terms qjwxjk in constraint set (39):

zjwk = qjwxjk, ∀j ≤ p ∀w ≤ l ∀k ≤ r

which allows (39) to be re-written in linear form as:
p
∑

j=1

zjwk − Zkw

p
∑

j=1

xjk ≤ 0, ∀k ≤ r ∀w ≤ l.

The standard form reformulation of (35)-(40) is shown below:

min
f,q,x

p
∑

j=1

nj
∑

i=1

cijfij −
r
∑

k=1

dk

p
∑

j=1

xjk

subject to linear constraints:
nj
∑

i=1

fij −
r
∑

k=1

xjk = 0 ∀j ≤ p

tjw −

nj
∑

i=1

λijwfij = 0 ∀j ≤ p ∀w ≤ l

r
∑

k=1

xjk − uj = 0 ∀j ≤ p

p
∑

j=1

xjk ≤ Sk ∀k ≤ r

p
∑

j=1

zjwk − Zkw

p
∑

j=1

xjk = 0 ∀k ≤ r ∀w ≤ l

with bilinear terms:

B = {(tjw, qjw, uj), (zjwk, qjw, xjk) | j ≤ p, w ≤ l, k ≤ r}

and bounds:

fL ≤ f ≤ fU , qL ≤ q ≤ qU , xL ≤ x ≤ xU .

We now apply the algorithm of this paper to the above standard form.
This results in a set of RRLT constraints derived by multiplying con-
straints (41) by the quality variables qjw:

∀j ≤ p ∀w ≤ l qjw(
∑r

k=1 xjk − uj) =
∑r

k=1 qjwxjk − qjwuj =
∑r

j=1 zjwk − tjw = 0.
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These constraints can be used to eliminate the bilinear constraints
tjw = qjwuj .

Another way to interpret what is happening in this particular case
is that the constraint sets (37) and (39) (the bilinear constraints in
the general blending problem formulation above) define more bilinear
products than is really necessary: if we were to re-write the first term
on the left hand side of (37) as

∑r
k=1 qjwxjk, we would not need to

create all the variables tjw. Yet another way of saying this is that
distributing products over sums is advantageous. This is in accordance
with the considerations found in (Tawarmalani and Sahinidis, 2002b),
p. 73. However, the important point is that, here, this reformulation is
determined automatically by a general-purpose algorithm.

Table II. Pooling and blending test problem statistics.

norg morg nstd ml
std |BT | |RC| |NB|

Haverly 1 9 8 18 11 6 2 0

Haverly 2 9 8 18 11 6 2 0

Haverly 3 9 8 18 11 6 2 0

Foulds 2 26 16 51 21 20 4 0

Foulds 3 168 48 313 57 136 8 0

Foulds 4 168 48 313 57 136 8 0

Foulds 5 100 40 173 45 68 4 0

Ben-Tal 4 10 8 19 11 6 2 0

Ben-Tal 5 41 27 94 32 48 8 0

Example 1 21 30 64 33 40 8 0

Example 2 25 42 88 45 60 12 0

Example 3 38 49 132 53 90 18 0

Example 4 26 35 77 38 48 8 0

Table II summarizes the main characteristics of the test problems.
Here, norg, morg are respectively the number of variables and con-
straints in the original problem formulation, nstd is the number of
variables in the standard form [P ], ml

std is the number of linear con-
straints in the standard form, |RC| is the number of RRLT constraints
created, |BT | is the number of bilinear constraints in the standard
form before RRLT constraint creation and |NB| is the number of new
bilinear terms created during the RRLT constraint creation procedure.
We note that |NB| = 0 in all test problems considered.

We now proceed to consider how the addition of RRLT constraints
affects the tightness of the convex relaxation of the NLP in the context
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of its solution using deterministic global optimization algorithms. Table
III compares the number of nodes needed to solve the problems of Table
II using nine different codes. The first six are computer codes described
in the literature:

1 = (Foulds et al., 1992)
2 = (Visweswaran and Floudas, 1993)
3 = (Ben-Tal et al., 1994)
4 = (Visweswaran and Floudas, 1996)
5 = (Adhya et al., 1999)
6 = (Tawarmalani and Sahinidis, 2004)
7 = (Audet et al., 2004)
8 = (Sahinidis and Tawarmalani, 2005)

and their performance is shown in Table III, taken from the correspond-
ing papers. Codes 9, 10 and 11 correspond to an implementation of sBB
based on the algorithm proposed by (Smith and Pantelides, 1999). The
difference between them is that:

− code 9 solves the original problem (no RRLT constraints)

− code 10 includes both RRLT constraints and all bilinear terms
found in the original problem

− code 11 includes the RRLT constraints but eliminates the redun-
dant bilinear terms.

In Table IV we have listed comparative results for the lower bounds
to the objective functions obtained at the root node of each spatial
branch-and-bound search carried out by codes 9,10 and 11 (in columns
“LB 9”, “LB 10”, “LB 11”). Column “Opt” contains the globally
optimal objective function values.

Columns 1-8 of Table III demonstrate the steady progress that has
been achieved in spatial branch-and-bound algorithms over the last
one and a half decade. The incorporation of the RRLT constraints in
the convex relaxation improves solution performance dramatically (cf.
columns 10 and 11 of Table III), allowing the solution of four problems
that were not solvable after 10000 nodes by code 9. In general, a sig-
nificant reduction in the number of nodes that need to be examined is
observed; this is the effect of the tightening of the convex relaxation
as is well illustrated by the comparison of the lower bounds between
codes 9 and 10 (or 11) shown in Table IV.

Codes 10 and 11 perform very similarly when applied to most ex-
amples. In three cases (Foulds 2 and Examples 1 and 3), retaining
the McCormick inequalities generated by the redundant bilinear con-
straints does in fact have a beneficial effect. However, in two other cases
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Table III. Number of nodes required for global solution of pooling and blending
problems. The ‘-’ sign indicates that the algorithm did not converge within 10000
iterations.

1 2 3 4 5 6 7 8 9 10 11

Haverly 1 5 7 3 12 3 3 9 1 3 1 1

Haverly 2 19 3 12 9 9 13 1 5 3 3

Haverly 3 3 14 5 3 7 1 3 3 3

Foulds 2 9 1 1 1 0 23 9 15

Foulds 3 1 1 1 - 0 - 3 1

Foulds 4 25 1 1 - 0 - 2 2

Foulds 5 125 1 1 - 0 - 1 1

Ben-Tal 4 47 25 7 3 3 43 1 5 1 1

Ben-Tal 5 42 283 41 1 1 39 0 - 1 1

Example 1 6174 1869 245 28 65 3 25

Example 2 10743 2087 267 17 415 3 3

Example 3 79944 7369 537 31 37 3 243

Example 4 1980 157 693 1 31 31 5

Table IV. Objective function lower bounds at the root
node of the sBB run for codes 9, 10 and 11, compared
with globally optimal objective function value.

LB 9 LB 10 LB 11 Opt

Haverly 1 -1200.1 -400.0 -400.0 -400.0

Haverly 2 -2216.4 -1000.0 -1000.0 -600.0

Haverly 3 -1550.0 -800.0 -800.0 -750.0

Foulds 2 -2145.6 -1133.3 -1133.3 -1100.0

Foulds 3 -93.0 -8.0 -8.0 -8.0

Foulds 4 -96.9 -8.0 -8.0 -8.0

Foulds 5 -100.0 -8.0 -8.0 -8.0

Ben-Tal 4 -950.0 -450.0 -450.0 -450.0

Ben-Tal 5 -6100.0 -3500.0 -3500.0 -3500.0

Example 1 -577.1 -572.1 -572.4 -549.8

Example 2 -577.1 -572.1 -572.4 -549.8

Example 3 -574.4 -570.9 -571.1 -561.0

Example 4 -1068.1 -1029.0 -1029.0 -877.6
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(Foulds 2 and Example 4), the opposite is the case; for the problem
considered here, more detailed examination has revealed that this is due
to the fact that the upper bounding problem has fewer bilinear terms,
and hence the local NLP solver used for the solution of this non-convex
problem is more effective. A comparison of the objective function lower
bound at the root node between 10 and 11 (see Table IV) also shows
very little advantage in favour of the (potentially) tighter formulation
10.

Overall, the results indicate that the incorporation of the RRLT
constraints is vastly beneficial. Retaining or discarding the redundant
bilinear terms has only a second-order effect on the code performance.

We wish to emphasize that the important conclusion that can be
drawn from Table III is not that codes 10 and 11 are somehow “bet-
ter” than those presented in earlier literature. The main comparison of
interest is between codes 9 and 10, 11 which are entirely identical with
the exception of the RRLT constraints that are automatically generated
by code 10, and the elimination of redundant bilinear terms in code
11. This provides another demonstration of the fact that, as in the
case of the branch-and-bound solution of mixed integer optimization
problems, problem (re-)formulation is often much more important than
algorithmic details. Nevertheless, automatic reformulation and basic
algorithmic improvements are largely complementary, and need to be
applied together in practical codes.

7. Generalization of the graph-theoretical algorithm

The graph-theoretical algorithm described in Section 4 for the identi-
fication of useful RRLT constraints has some limitations. These arise
from the fact that potential multiplications are considered separately
for each variable, which may result in some useful multiplications being
missed. To understand this point, consider the following very simple
example:

min x2
1 + x2

2

x1 + x2 = 1
0 ≤ x1, x2 ≤ 10.







(42)

On multiplying the linear constraint x1 + x2 = 1 by x1 we obtain
x2

1+x1x2 = x1, which introduces one new bilinear term x1x2; thus, this
multiplication would not appear to bring any benefit. Similarly, on mul-
tiplying the same linear constraint by x2, we would get x1x2 + x2

2 = x2

and thus, again, one new bilinear term x1x2; hence this multiplication
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would not be considered to be beneficial either. Consequently, the al-
gorithm of Section 4 applied to this system will not create any RRLT
constraint.

However, considering the combined effect of the two multiplications,
we note that they produce two new linearly independent RRLT con-
straints while introducing only one new bilinear term (namely, x1x2).
These two RRLT constraints can be used to eliminate two bilinear
terms from the problem, e.g. x2

1 and x2
2, leading to the problem refor-

mulation:

min w1 + w3

x1 + x2 = 1

w1 + w2 = x1

w2 + w3 = x2

w2 = x1x2

0 ≤ x1, x2 ≤ 10

0 ≤ wi ≤ 100, i = 1, 2, 3.

Essentially, the algorithm of Section 4 correctly identifies that multi-
plying the linear constraint by either x1 or x2 results in a bilinear term
x1x2 that did not occur in the original problem. What it misses is the
fact that it is the same bilinear term in both cases. This is unfortunate
as such reformulation may be very beneficial. For instance, we have
found that the numerical solution of the example above in its original
form with a simple sBB algorithm requires the examination of 96 nodes,
while the reformulated one can be solved in a single node.

This motivates an extension to the algorithm of Section 4 to consider
simultaneously the multiplication of linear constraints by each and
every system variable, while still aiming to identify a minimal set of
useful multiplications. Instead of creating one bipartite graph for each
multiplier variable, we consider one unified bipartite graph comprising
two disjoint sets of nodes:

− The ρ-nodes which comprize m × n nodes ρij representing the
potential multiplication of constraint i by variable xj .

− The σ-nodes which comprize n2 nodes σhk representing the bilinear
terms xhxk.

An edge connecting node ρij and σhk exists if the multiplication of
constraint i by variable xj would give rise to a new bilinear term xhxk;
obviously either h = j or k = j holds.

Having created the bipartite graph, we attempt to trace an aug-
menting path emanating from each node ρij . If no such path is found,
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then we must have identified a dilation involving ν nodes of type ρ

and ν − 1 nodes of type σ. This implies that the variable-constraint
multiplications corresponding to these ρ nodes will result in ν new
constraints but only ν − 1 new bilinear terms – which is exactly what
we are trying to establish.

We apply this generalized algorithm to the simple example problem
(42). Assuming that the constraint x1 + x2 = 1 is labelled with index
i = 1, the unified bipartite graph is shown in Figure 6. Tracing an
augmenting path from node ρ11 is succesful, resulting in node σ12 being
assigned to it. However, no augmenting path emanating from node ρ12

can be found. Instead, we identify a dilation comprising nodes ρ11,
σ12 and ρ12, i.e. in this case, ν = 2. This simply implies that the
reformulated problem should involve multiples of the linear constraint
by both variables, which introduces a single bilinear term.

ρ11

ρ12

σ11

σ12

σ22

Figure 6. Unified bipartite graph for problem (42) in the generalized algorithm.

As has already been mentioned, the worst-case computational com-
plexity of the dilation-finding algorithm of Section 4.3 is proportional to
the product of the number of nodes from which the augmenting paths
emanate and the number of edges; on the other hand, the average-case
complexity is nearer to the sum of these two numbers. The original
procedure described in Section 4 was applied to a bipartite graph with
m linear constraint nodes; in principle, each of these nodes could be
connected with each and every one of the n variable nodes; conse-
quently, the number of edges is bounded from above by mn. Therefore,
the worst-case and average complexities of this procedure are O(m2n)
and O(m + mn) respectively. Of course, the procedure has to be ap-
plied separately for each candidate multiplier variable; therefore, the
corresponding total complexities are O(m2n2) and O(mn + mn2) re-
spectively. On the other hand, the procedure described in this section
is applied to a bipartite graph with mn ρ-nodes and n2 σ-nodes. Each
ρ-node is potentially connected with up to n σ-nodes, and therefore
the number of edges is bounded from above by mn2 edges. Conse-
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quently, the worst-case and average complexities are O(m2n3) and
O(mn + mn2) respectively. In conclusion, the procedure of this section
has worse worst-case complexity than that of Section 4, but similar
average complexity.

On the other hand, the memory requirements of the two procedures
are very different. With the original algorithm, a graph consisting of
m+n nodes and up to mn vertices needs to be stored in memory at any
one time, whereas the unified bipartite graph of this section will have
mn + n2 nodes and up to mn2 edges. For extremely large problems,
these requirements may be excessive and special attention may have to
be paid to the implementation of the algorithm (one could create the
graph “on-the-fly” as the algorithm progresses, deriving the nodes and
edges from the problem data at each step).

8. Concluding remarks

The work presented in this paper is based on the fact that geometrical
intersections of hyperplanes and nonlinear hypersurfaces corresponding
to bilinearities may embed a higher degree of linearity than what is
apparent by mere inspection of the defining equations. We have shown
that it is possible to exploit this fact so as to reformulate an NLP
involving such equality constraints to a form with fewer bilinearities
and more linear constraints.

The basic idea of the reformulation is to multiply subsets of the
NLP’s linear constraints by one of the system variables x. This creates
new linear constraints expressed in terms of variables w, each one of
which corresponds to a bilinear product, viz. wjk ≡ xjxk. In general,
some of these w variables will already exist in the original NLP while
others are new variables introduced by the multiplication.

Unlike the original RLT procedures proposed in (Sherali and Alamed-
dine, 1992; Sherali, 2002), our algorithm is limited to linear equality
constraints. However, it is more selective in that it identifies multiplica-
tions which result in “valid” sets of RRLT constraints, i.e. sets in which
the number of constraints exceeds the number of new bilinear terms
introduced by the multiplication. Moreover, this operation is applied
once only as a pre-processing step of the original non-convex NLP,
relying on the use of graph theoretical algorithms for the identification
of valid RRLT constraint sets. These algorithms have the advantage of
being quite fast even when applied to relatively large systems. Also,
they may sometimes provide useful insight on how best to formulate
broad classes of problems (such as pooling/blending) since their results
depend only on the constraint structure and not on the specific nu-
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merical values of the various coefficients that appear in any particular
problem instance. On the other hand, they may fail to identify some
valid RRLT constraint sets in cases in which the matrix A′′ in Equation
(28) is numerically singular but structurally non-singular.

Acknowledgement

The authors wish to acknowledge the invaluable help of Dr. Xueya
Zhang of the Centre of Process Systems Engineering, Imperial College
London, in obtaining the computational results presented in Table III
using a modified version of the algorithm in (Smith and Pantelides,
1999). We are also grateful for the financial support of the United King-
dom’s Engineering and Physical Sciences Research Council (EPSRC)
under Platform Grant GR/N08636.

References

Adams, W., J. Lassiter, and H. Sherali: 1998, ‘Persistency in 0-1 Polynomial
Programming’. Mathematics of Operations Research 2(23), 359–389.

Adhya, N., M. Tawarmalani, and N. Sahinidis: 1999, ‘A Lagrangian Approach to
the Pooling Problem’. Industrial and Engineering Chemistry Research 38, 1956–
1972.

Al-Khayyal, F. and J. Falk: 1983, ‘Jointly constrained biconvex programming’.
Mathematics of Operations Research 8, 273–286.

Audet, C., J. Brimberg, P. Hansen, S. Le Digabel, and N. Mladenović: 2004, ‘Pooling
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