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Abstract

In this paper we compare four different ways to compute a convex linear relaxation of a quadri-
linear monomial on a box, analyzing their relative tightness. We computationally compare the
quality of the relaxations, and we provide a general theorem on pairwise-comparison of relaxation
strength, which applies to some of our pairs of relaxations for quadrilinear monomials. Our results
can be used to configure a spatial Branch-and-Bound global optimization algorithm. We apply our
results to the Molecular Distance Geometry Problem, demonstrating the usefulness of the present
study.
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1 Introduction
Monomials of degree four occur often in the mathematical programming formulation

of important applications, such as the Molecular Distance Geometry Problem [7] and the
Hartree-Fock Problem [10]. Such applications can be modeled as non-convex Nonlinear
Programs (NLPs), which often exhibit several local and global optima. The most widely
employed deterministic method for the global solution of non-convex NLPs is the spatial
Branch-and-Bound (sBB) algorithm [1]. One of the most crucial steps of this algorithm is
the computation of the lower bound at each sBB node, which is usually based on providing
tight convex and/or concave relaxations (or preferably envelopes) for each term appearing
nonlinearly in the objective functions and/or constraints.

Convex/concave envelopes in explicit form currently existfor concave/convex uni-
variate functions [14], bilinear terms [12], trilinear terms [13], univariate monomials of
odd degree [11] and fractional terms [15]. The multivariatemonomials of smallest de-
gree for which the convex envelopes are not completely knownare the quartic ones. We
focus in particular on the quadrilinear termx1x2x3x4, for which we compare four convex
relaxations.

A key idea in sBB is that given a sufficiently rich set of “elementary” convex en-
velopes, one can compose convex relaxations (albeit not envelopes) of complex functions



relatively easily. For example, given two functionsf (x) and g(x) for which the con-
vex/concave envelopes are available, a convex relaxation for the productf (x)g(x) can be
obtained by applying the bilinear convex envelope to the productw1w2, where the neces-
sary “defining constraints”w1 = f (x), w2 = g(x), can be replaced by the convex/concave
envelopes off and ofg. This strategy, however, due to the associativity of the product,
yields sometimes non-unique ways of combining terms when wehave products of many
functions and consequently different convex relaxations.

The relaxation strength is crucial for the performance of the sBB process. In this
paper, we undertake a computational as well as a theoreticalinvestigation of the relative
tightness of four relaxations of quadrilinear terms. Our results indicate, not surprisingly,
that a grouping leading to the exploitation of a trilinear envelope yields tightest bounds.
This is important especially in view of the fact that the traditional grouping used by sBB
algorithms [1, 3] is((x1x2)x3)x4. We remark that our main result (Theorem 1 in Section 2)
can be applied in full generality to any pair of relaxations for which one is derived from
the other by a natural contraction operation — for products this amounts to the deletion
of parentheses.

2 Comparison of relaxations
Given a quadrilinear monomialx1x2x3x4, we consider the following four types of

term grouping: ((x1x2)x3)x4, (x1x2)(x3x4), (x1x2x3)x4, (x1x2)x3x4. We will derive four
corresponding linear relaxations forx1x2x3x4. Let us consider the following sets:

S1 = {(x,w) ∈ R
4×R

3 |xi ∈ [xL
i ,xU

i ], w1 = x1x2,w2 = w1x3,w3 = w2x4},

S2 = {(x,w) ∈ R
4×R

3 |xi ∈ [xL
i ,xU

i ], w1 = x1x2,w2 = x3x4,w3 = w1w2},

S3 = {(x,w) ∈ R
4×R

2 |xi ∈ [xL
i ,xU

i ], w1 = x1x2x3,w2 = w1x4},

S4 = {(x,w) ∈ R
4×R

2 |xi ∈ [xL
i ,xU

i ], w1 = x1x2,w2 = w1x3x4}.

To derive the four relaxations, we exploit a bilinear envelope thrice for the first two cases,
a trilinear envelope followed by a bilinear envelope forS3 and a bilinear envelope followed
by a trilinear envelope forS4.

In the next subsections we first describe a computational study and get some signifi-
cant evidence for what is the best relaxation, then we provide a theorem that confirms the
validity of some of the obtained results.

2.1 Computational comparison
We generated a set of eighty test instances by varying the signs of the bounds on

the variablesxi and, starting from the same initial width of the bound intervals for all
variables, progressively reducing the width of the bound interval ofxi, i = 1,2,3. A bound
interval [xL

i ,xU
i ] is changed to[xL

i +1/2,xU
i −1/2]. This simulates a typical behavior of a

sBB algorithm, that progressively reduces the size of the variable intervals.
We compare the considered relaxations in terms of the volumeof the corresponding

enveloping polytopes. This method of comparison, introduced in [8], is independent of
any objective function.

Because exploiting envelopes for bilinear and trilinear terms leads to an increased
number of variables, so that the obtained polytopesS1,S2 live in R

7, andS3,S4 in R
6. So



we project the polytopes on{(x, f (x) := x1x2x3x4) ∈ R
5} in order to compare the results.

The projection is computed by using the softwareCDD [4]. Then, the volume of each
of the obtained projected polytopes is computed by using theLRS code [2]. Both codes
provide results in exact arithmetic.

For each problem instance, we compare the volumes of the polytopes corresponding to
S1,S2,S3,S4 projected onR5. As expected, reducing the width of the bounds on variables,
the polytopes have decreasing volumes, while keeping the same relative size with respect
to the others. Our results are that for 85% of the test instances the smallest volume are
obtained with the relaxation corresponding toS4. For a small percentage of instances
(5%), these volumes are also obtained with (S3 and (1)S1 or with (1). S2. We also find
that for some instances the same volume is obtained for all four relaxations. For the
remaining instances, the smallest values are obtained withS3. We never find thatS1 and
S2 provide the lowest volumes.

Our computational results suggest thatS3 andS4 always provide the best relaxations.
That is, the best relaxations appear to be obtained employing convex envelopes for trilin-
ear terms and not just bilinear ones. Our computational evidence for this apparent fact is
confirmed by Theorem 1, reported in the next section.

We computationally get a further more precise information about tightness of the con-
sidered relaxations by checking relative containments of the corresponding (projected)
polytopes. For each pair of polytopesP,Q, we check ifP is contained inQ by checking
that every extreme point ofP satisfies all the inequalities definingQ. We find that, as
expected, relaxationS4 gives a polytope that is the most frequently contained in theoth-
ers. In particular, it is always contained or equivalent to that corresponding toS1 andS2.
The polytope corresponding toS3 is also always contained in or equivalent to that given
by S1. This is particularly interesting, becauseS1 is currently the most utilized insBB
implementations.

2.2 Mathematical comparison
The aim of this subsection is to provide a theoretical framework to investigate relax-

ation strength. We point out that it can be applied to convex relaxations of any mathemat-
ical program.

We define a language whose strings are the functions used in the objective and con-
straints of a mathematical program, and we define a semantic of strings of this lan-
guage. To construct the language, we consider the alphabetA = X ∪R∪O, where
X = {x1, . . . ,xn} is a set of variable symbols andO is a set of operator symbols. LetL

be the class of strings built recursively in such a way that atomic expressions of a single
variable or real number are in the language (∀ℓ∈R∪X (ℓ∈L )), and for every operator
and potential arity, if the arityp is compatible with the operator, then by applying the
operator top (ordered) elements of the language, we get another element of the language
(∀⊗ ∈ O, p ∈ ω (p ∈ α(⊗) →∀ℓ1 . . . , ℓp ∈ L (⊗(ℓ1, . . . , ℓp) ∈ L ))).

We now introduce the formal definition of relaxed semantic ofstrings inL . Let
x ∈ R

n be such thatxL ≤ x ≤ xU for xL,xU ∈ R
n, and let f ∈ L . Consider the sets:

S ( f ) = {(w f ,x) | w f = f (x), xL ≤ x ≤ xU},

R( f ) = {(w f ,x) | A f (w f ,x) ≤ b f , xL ≤ x ≤ xU},



whereb f ∈R
m andA f ∈R

m×(n+1) are such thatS ( f )⊆R( f ). We callR( f ) therelaxed
semantic of f .
We also consider a relaxed semantic over substrings. For alli ≤ p let fi,g,h ∈ L be such
thath(x) = g( f1(x), . . . , fp(x)). Let w f = (w f1, . . . ,w fp), w = (w1, . . . ,wp), and consider
sets

R̄(h) = {(wg,w f ,x) | Ag(wg,w f ) ≤ bg, A fi(w fi ,x) ≤ b fi ∀i ≤ p, xL ≤ x ≤ xU},

R(h) = {(w,x) | ∃w ∈ R
p such that(w,w,x) ∈ R̄},

whereR(h) is the projection ofR̄(h) on the subspace(w,x) ∈ R
n+1. R(h) is therelaxed

composite semantic of h with respect to its substringg( f1, . . . , fp).

We assumeR(h) ⊆ R(h), i.e. the relaxed semantic is tighter than the relaxed com-
posite semantic. LetF ∈ L and h such thath(x) = g( f1(x), . . . , fp(x)). Let F ′ be F
rewritten using the ruleg( f1, . . . , fp) → h, i.e. using the alphabetA ′ = X ∪R∪O ′,
whereO ′ = O ∪{h}. The following theorem compares the strength of two relaxations.

Theorem 1. R(F ′) ⊆ R(F).

Theorem 1 applied to relaxations of a quadrilinear term confirms the validity of some
of the computational results reported in the previous section. In particular, it proves that
among the relaxations that we considered, those utilizing trilinear envelopes (namelyS3

andS4) always provided relaxations that are at least as tight as the other two (i.e.,S1 and
S2) For example, if we compare(x1x2x3)x4 and((x1x2)x3)x4, Theorem 1 ensures that the
relaxed semantic of the former is at least as tight as the relaxed semantic of the latter
(using the known convex envelopes for bilinear and trilinear terms).

3 The Molecular Distance Geometry Problem
We applied our results to the well-known Molecular DistanceGeometry Problem

(MDGP), whose main use is to find the three-dimensional structure of a molecule given a
subset of the atomic distances [7]. Consider an undirected graphG = (V,E) with weights
d : E → R+, whereV is the set of vertices (also calledatoms) andE is the set of weighted
edges (also calledinter-atomic distances). Let di j = d({i, j}), for {i, j} ∈ E. A solution
of the MDGP is a set of pointsx1, . . . ,x|V | ∈ R

3 satisfying

||xi − x j||2 = di j, ∀{i, j} ∈ E. (1)

The MDGP can be naturally cast as a continuous non-convex polynomial NLP with terms
of degree up to four, by minimizing the sum of squared errors over the equations (1):

min
x∈R|V |×3

f (x) = ∑
{i, j}∈E

(||xi − x j||
2
2−d2

i j)
2. (2)

Note that (2) typically has a large number of local minima, sofrom a practical point of
view, this is a hard global-optimization problem.

The natural application of tight lower bounds computed through a convex relaxation
is within the sBB algorithm. In order to quickly assess the quality of our proposed alter-
native bound for quadrilinear terms on the MDGP without having to implement a full sBB



framework, we implemented a simplified “partial sBB” algorithm which, at each branch-
ing step, only records the most promising node and discards the other, thus exploring
a single branch up to a leaf. This corresponds to well-known “diving heuristics” em-
ployed in integer programming. At each node, a (linear) convex relaxation is constructed
automatically by theRose software [9] in the four different ways corresponding to the
relaxationsS1− S4. It is then solved byCPLEX [5]. Table 3 shows the results obtained
on four MDGP instances, that are randomly generated as described in [6]. We report the
lower bounds obtained with the four relaxations. On all of the instances, the best lower
bound is that obtained with a relaxation involving a trilinear envelope. In particular,S4

gives the tightest bound for most cases, and this bound is significantly better than the val-
ues obtained with bilinear relaxations on the largest instance. This confirms the results of
the previous sections and suggests that they can be used to configure a sBB algorithm to
be efficiently applied to problems containing quadrilinearterms.

Instance ((x1x2)x3)x4 (x1x2)(x3x4) (x1x2x3)x4 (x1x2)x3x4

lavor6 -1006.75 -1839.21 -1006.75 -990.167
lavor7 -1285.67 -1279.88 -1175.95 -1216.91
lavor8 -1711.27 -1694.56 -1718.41 -1671.09
lavor10 -3149.29 -3172.05 -3007.41 -2755.04

Table 1: Results obtained on MDGP instances.

4 Conclusion
We computationally and mathematically evaluated four linear relaxations of a quadri-

linear term, showing that the tightest one can be obtained bycombining the convex en-
velope of a trilinear term and that of a bilinear term. A more complete view of our
computational results will appear in a full-paper version of this extended abstract. Our
results can be exploited in a sBB algorithm to compute tight bounds. Our mathematical
result can be applied to compare relaxations of more generalproblems.
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