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Planar Slink 

 

Draw a planar map, for example a subset of the squares on a graph paper. 

The 1st player chooses a region of it.  

Then the players take turns walking across an edge from the last reached 

region to an unreached region. 

A player loses when he can't do that. 

  

Record the moves by arrows crossing the crossed edges  

or by a new higher number in each reached square. 

  

Please try the game with a partner, and see if you think of a strategy. 

 

Hint: It uses some well-known combinatorial optimization theory. 
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Bimatrix Games 

 

A bimatrix game is given by  an mxn payoff matrix A and  

an nxm payoff matrix B,   

each with positive entries. 

 

Let R = {1,…,m} be the index-set of the rows of A and of the columns of B. 

Let S = {m+1,…,m+n} be the index-set of the rows of B and the columns of A. 

Player 1 chooses i in R and Player 2 chooses j in S.   

The payoff to Player 1 is Aij  and the payoff to Player 2 is Bji. 

If Player 1 chooses i in R with probability xi  and Player 2 chooses j in S with 

probability yj , then the expected payoff to Player 1 is xRAyS  and the expected 

payoff to Player 2 is ysBxR. 
 

The pair (x,y) is called a Nash equilibrium if neither player can improve his 

expected payoff by unilaterally changing his probability distribution. 

 

Nash‟s Theorem.  Every bimatrix game has an equilibrium. 

A Nash equilibrium can be found using the Lemke-Howson Algorithm. 
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Scarf‟s Co-operative Game 
This is a modified version of Scarf’s theory of non-transferable utility (NTU) co-

operative n-person games. 

 

Stable allocation of coalitions: 

Given a list of subsets of the n persons, called coalitions. (Different coalitions 

can be the same subset of persons.)  

For each person, given a total preference ordering of the coalitions he is in. 

A stable allocation, S, is a subset of mutually disjoint coalitions such that for 

every coalition, c, not in S there is a person in c who prefers the coalition of S 

that he is in more than c. 

Where the persons are the vertices of a bipartite graph G and the coalitions are 

the edges of G, the Stable Marriage Theorem says there exists a stable allocation. 

It is proved by an easy algorithm for finding one. 

More generally there may not be a stable allocation.  However there always 

exists a „fractional stable allocation of coalitions‟, proved by a very interesting 

but exponentially growing algorithm for finding one. 
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An Euler complex (oik) (V,M) consists of a finite set V of elements called the vertices and a set M 

of (d+1)-element subsets of V called the rooms such that 

every d-element subset of V is in an even number of rooms. 

 

A wall is a d-element subset obtained by removing one vertex from a room.   

 

If each wall is in exactly 2 rooms, the oik is called a manifold oik (or a simplicial 

pseudomanifold). 

 

A room-partition is a partition of the vertices into rooms. 

 

Euler graph (1-d oik). 

Vertices of oik = vertices of the graph      

Rooms of the oik = edges of the graph 

Room partition of the oik = partition of the vertices into rooms (edges) = perfect matching 

 
Special case: Even cycle is a 1-d manifold oik 
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A triangulation of a surface is a 2-d manifold oik. 

The vertices of the oik are the vertices of the triangulation. 

The edges of the oik are the triangular regions. 
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A triangulation of a surface is a 2-d manifold oik. 

The vertices of the oik are the vertices of the triangulation. 

The edges of the oik are the triangular regions. 

A room-partition is a partition of the vertices into triangles. 
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Summary: An Euler complex (oik) (V,M) consists of a finite set V of elements called 

the vertices and a set M of (d+1)-element subsets of V called the rooms such that 

every d-element subset of V is in an even number of rooms. 

 

A wall is a d-element subset obtained by removing one vertex from a room.   

 

If each wall is in exactly 2 rooms, the oik is called a manifold oik (or a simplicial 

pseudomanifold). 

 

A room-partition is a partition of the vertices into rooms. 

 

Oik     Vertices  Rooms  Walls  Room partition  

Euler graph   vertices  edges  vertices  partition of vertices into  

(1-d oik)             edges i.e. perfect matching 

 

Even cycle   vertices  edges  vertices  perfect matching 

(1-d manifold oik) 

 

Triangulation   vertices  triangular  edges  partition into triangular 

of a surface      regions     regions 

(is a 2-d manifold oik) 
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Room-Partition Theorem.  

For every oik, there is an even number of partitions of the vertices into rooms. 

Thus, if there is one room-partition, there is another room-partition. 

___________________________________________________________________
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Manifold Oik Slink 

Given a subset of the rooms of a manifold oik, 

The 1st player chooses a room.  

Then the players take turns walking across a wall from the last reached room to an 

unreached room. 

A player loses when he can't do that. 

Record the moves by arrows crossing the crossed walls. 
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How to Find Another Room Partition of the Vertices 

 

A room-family means a set R = {Ri : i=1,…,h} of rooms. 

Let w be a vertex.  A w-skew room-family is a room-family R = {Ri : i=1,…,h} 

such that w is not in any of the rooms Ri, some vertex v is in exactly two of the 

Ri, and every other vertex is in exactly one of the Ri. 

 

Algorithm. 

Start with a room-partition R. 

Remove w from the room, say R1, it is in.  

R1-w is a wall, so it is contained in a room, say R2, different from R1 

Replace R by R’= R – R1 + R2.   

If R’ is a room-partition, stop.   

Otherwise, R’ is a w-skew room-family, with say v in two rooms of the family, 

R’ and R3.  Remove v from R3, to get a wall, …. 
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Polytopal Oiks 

 

Consider a feasible tableau T of a non-degenerate bounded linear system 

Ax=b,  x ≥ 0 

 

A polytopal oik has vertex-set the indices of columns of A  

and the rooms are the complements of feasible bases of A. 

 

Proof that this is a manifold oik – the ratio test of the  

Simplex Algorithm.  

For any feasible basis B and any column j not in B, 

There is a unique column i  in B such that B’ = B + j – i  is a feasible 

basis. 
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Sperner Oiks 

 

The vertices are a set of coloured points. 

The rooms are sets of vertices whose complement consists of exactly one 

vertex of each colour. 

A wall W is a set of vertices whose complement consists of two vertices 

of some colour and one vertex of every other colour. 

Clearly, a wall W is in exactly two rooms:  Where a and be are the two 

vertices of the same colour in the complement of W, W+a and W+b are 

the two rooms containing W. 
 

A version of Sperner‟s Lemma 

For any manifold oik, 

If the vertices are coloured, 

There is an even number of rooms containing exactly one vertex of each 

colour. 
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Gale Oiks 

 
Consider an even simple cycle Cn with n vertices. 

The vertices of the oik are the vertices of the graph. 

The rooms are the sets of vertices V(M) in a matching M of size k, where 2k < n. 

 

Thus a room induces a set of even paths in the cycle, each starting and ending 

with a matching edge.  

A wall is the set of vertices of such a matching M with one vertex removed. 

 

It is easy to see that a wall W is in exactly two rooms. So Gale oiks are manifold 

oiks. 
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Gale Oiks 

 
Consider an even simple cycle Cn with n vertices. 

The vertices of the oik are the vertices of the graph. 

The rooms are the sets of vertices V(M) in a matching M of size k, where 2k < n. 

 

Thus a room induces a set of even paths in the cycle, each starting and ending 

with a matching edge.  

A wall is the set of vertices of such a matching M with one vertex removed. 

 

It is easy to see that a wall W is in exactly two rooms. So Gale oiks are manifold 

oiks. 
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Summary 

 

Oik       Vertices    Rooms  

   

Euler graph     vertices    edges       

           

Even cycle     vertices    edges   

 

Triangulation of a surface   vertices    triangular regions     

    

     

Polytopal oiks    columns    complements of bases   

Ax=b,  x ≥ 0                  

   

Sperner oiks      coloured points  complement consists of a vertex 

             of each colour 

         

Gale oiks 

From even cycle    vertices    matchings of size 2k < n 

Cn               
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Rainbow Matchings in Gale Oiks  

 
Recall: The vertices of a Gale oik are the vertices of the simple cycle Cn. 

The rooms are the sets of vertices V(M) in a matching M of size k, where 2k < n. 

 
Where the vertices are coloured, a rainbow matching is a matching such that the 

vertices it contains have distinct colours. 

 
For every colouring of the vertices with 2k colours,  

There exists an even number of rainbow matchings. 

In particular, if there is one rainbow matching, then there is another. 
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Obvious:  

A rainbow matching in a graph  

is the same as  

a perfect matching in the graph obtained by gluing together all vertices of 

the same colour. 

 

In particular,  

the rainbow rooms of a Gale manifold oik with coloured vertices  

are the same as  

the perfect matchings in the Euler graph you get by gluing together the 

vertices of  Cn  which have the same colour. 

 

There is an even number of perfect matchings in an Euler graph, 

so there is an even number of rainbow rooms in a Gale manifold oik with 

coloured vertices. 
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Room Partitioning Oik Families 
 

An oik-family is a family of oiks, all with the same vertex-set V.  

A room-partition of the oik family is a partition of V into sets, such that 

the ith set is a room in the ith oik. 

 

Room-partitions where all oiks same corresponds to room-partitions of a 

single oik. 

 

Room Partitioning Theorem for Oik Families.   

For any oik family, there is an even number of room-partitions. 

 

In particular, if there is one room-partition of a family of oiks, there 

exists a different room-partition. 
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Room Partitioning Theorem for Oik Families (again)   

For any oik family, there is an even number of room-partitions. 

 

Proof. Choose a vertex, say w, to be special.  A w-skew room-family for 

oik family M mean a room-family, R = {Ri : I – 1,…,h} such that w is not 

in any of the rooms Ri, some vertex v is in exactly two of the Ri, and every 

other vertex is in exactly one of the Ri. 

 

Consider the so-called exchange graph X, determined by M and w,  

where the nodes of X are the room-partitions for M and all the w-skew 

room-families for M.   

Two nodes of X are joined by an edge in X when each is obtained from 

the other by replacing one room by another.   

It’s easy to see the room-partitions for M are the odd-degree nodes of X.  

The result follows since X, like every graph, must have an even number of 

odd-degree nodes. □ 
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Consider an oik-family where one oik is a Sperner oik.   

 

Where the other oik polytopal (that is, the oik whose rooms are the 

complements of feasible bases of a simplex tableau T): 

A room-partition for this pair of oiks is a partition of the columns of T into 

the complement N of a basis of T and a set B of columns whose 

complement is rainbow.  

Thus N is actually a rainbow complement of a feasible basis.   

It follows that the number of rainbow complements of feasible bases is 

even.  

Geometrically interpreted, the complements of feasible bases are the 

facets of a simplicial polytope, and this gives the classical Sperner 

Lemma: the number of rainbow facets of a simplicial polytope is even.  

 

Where the other oik is a Gale oik: 

A room partition for this pair of oiks is a partition of the vertices of Cn into 

a the vertices in a matching of size k, and a set whose complement is 

rainbow.  Thus the number of rainbow matchings is even (as said before). 
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Theorem.  The Lemke-Howson Algorithm for a Nash-equilibrium of a 

bimatrix game is the exchange algorithm for an oik family consisting of 

two oiks, where each oik is polytopal. 

 

Theorem. Scarf’s Algorithm for a stable solution for his NTU game is the 

exchange algorithm applied to an oik family consisting of two oiks where 

one is polytopal and the second is slightly more complicated and remains 

to be described. 
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Recall: 

Bimatrix Games 

 
A bimatrix game is given by  an mxn payoff matrix A and  

an nxm payoff matrix B,   

each with positive entries. 

 

Let R = {1,…,m} be the index-set of the rows of A and of the columns of B. 

Let S = {m+1,…,m+n} be the index-set of the rows of B and the columns of A. 

Player 1 chooses i in R and Player 2 chooses j in S.   

The payoff to Player 1 is Aij  and the payoff to Player 2 is Bji. 

If Player 1 chooses i in R with probability xi  and Player 2 chooses j in S with 

probability yj , then the expected payoff to Player 1 is xRAyS  and the expected 

payoff to Player 2 is ysBxR. 
 

The pair (x,y) is called a Nash equilibrium if neither player can improve his 

expected payoff by unilaterally changing his probability distribution. 

 

Nash‟s Theorem.  Every bimatrix game has an equilibrium. 
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Nash‟s Theorem.  Every bimatrix game has an equilibrium. 

 

Finding a Nash equilibrium is equivalent to finding a pair of complementary 

feasible bases of two bounded non-degenerate linear feasibility problems: 

[ A | Im ] y” = 1   [ In | B] x” = 1    

y” ≥ 0     x” ≥ 0 

 

Theorem. The equilibria of the bimatrix game are given by the basic solutions 

corresponding to complementary pairs of feasible bases other than the starting 

pair (Im , In) (that is, the basis given by (R,T)). 

 

Precisely, the Nash equilibrium (xR, yS) is   

xR = (x”)R
 / Σ {x”j : j ε R},   yR = (y”)

S
 / Σ {y”j : j ε S} 

  

A crucial part of an algorithmic proof of Nash’s Theorem: 

Theorem.  There is another complimentary pair of feasible bases different from 

the starting pair (R,T). 
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If Player 1 chooses i in R with probability xi  and Player 2 chooses j in S with 

probability yj , then the expected payoff to Player 1 is xRAyS  and to Player 2 is 

ysBxR. 

 

A best response to Player 2’s mixed strategy ys is a mixed strategy xR of Player 1 

which maximizes xRAys.  Analogously, a best response to Player 1’s mixed 

strategy xR is a mixed strategy y of Player 2 which maximizes ysBxR. 

A Nash equilibrium is a pair (xR, ys) of best responses to eachother. 

 

Lemma.  Let x, y be mixed strategies for Players 1 and 2, respectively. 

x is a best response to y   if and only if 

xi > 0   =>  the ith component of Ay is the largest component of Ay 

 

Proof. Note that the ith component of AyS, denoted (AyS)i , is the expected 

payoff to Player i when she chooses row i.  

Let u denote the largest component of AyS. 

 

xRAyS = Σ xi (AyS)i  = Σ xi (u - ( u - (AyS)i )) = u - Σ xi (u – (AyS)i ) ≤ u 

 

xRAyS = u    [ xi > 0 => (AyS)i = u ] 
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Note that AyS ≤ u means that u is at least as large as the expected payoff for each of 

Player 1’s pure strategies.  [u is a vector of all u’s] 

 

A strategy y for Player 2 can be formulated as finding a vector y and number u such that  

(1) AyS ≤ u ,   yS ≥ 0,  1∙yS = 1. 

 

Analogously, a strategy x for Player 1 can be formulated as finding a vector x and number 

v such that  

(2) BxR ≤ v ,   xR ≥ 0,  1∙xR = 1. 

 

u and v are unknown, but since A and B have positive entries, u and v are positive. 

 

Replace variable yj  by yj /u  variable xi  by xi /v in (1) and (2) respectively to get 

equivalents systems 

(1’)  Ay‟ ≤ 1 ,  y‟ ≥ 0 

and 

(2’)  Bx‟ ≤ v ,  x‟ ≥ 0  

 

AyS ≤ u  became  Ay‟ ≤ 1    BxR ≤ v   became  Bx‟ ≤ 1 

yS ≥ 0    y‟ ≥ 0    xR ≥ 0     x‟ ≥ 0 

1∙ yS = 1         1∙xR = 1 
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The equilibrium conditions: 

xi > 0 => (AyS)i = u      yj > 0 => (BxR)j = v  

becomes  x‟i > 0 => (Ay‟)i = 1   becomes  y‟j > 0 => (Bx‟)i = 1 

 

Inserting slack variables: 

[ A | Im ] y” = 1        [ In | B] x” = 1    

y” ≥ 0          x” ≥ 0 

 

Let y” and x” be basic feasible solutions. Remember: the systems are non-degenerate. 

  

i in basis of [ In | B]  <=> x”i > 0 <=> (Ay‟)i = 1 <=> slack variable i of [ A | Im ] is 0 <=> 

i is not in basis of [ A | Im ] 

 

j in basis of [ A | Im ] <=> y”j > 0 <=> (Bx)j = 1 <=> slack variable i of [ In | B]  is 0 <=> 

i is not in basis of [ In | B]   

 

The Nash equilibrium (xR, yS) is   

xR = (x”)R
 / Σ {x”j : j ε R},   yR = (y”)

S
 / Σ {y”j : j ε S} 

 

So: Finding a Nash equilibrium is equivalent to finding a pair of complementary 

feasible bases of two bounded non-degenerate linear feasibility problems (at top of 

page) different from the starting pair of complementary feasible bases. 



42 

 

Finding a Nash equilibrium is equivalent to finding a pair of 

complementary bases of two bounded non-degenerate linear 

feasibility problems different from the starting pair of complementary 

feasible bases. 

 

This is an instance of 

Given two polytopal (manifold) oiks, and a partition of the vertices 

into a room in each, find a different partition of the vertices into a 

room in each oik. 
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Rainbow Matchings in Gale Oiks  

 
Where the vertices are coloured, a rainbow matching is a matching such that the vertices 

it contains have distinct colours. 

 
A rainbow matching in a graph is the same as a perfect matching in the graph obtained by 

gluing together all vertices of the same colour. 

 

Thus, the rainbow rooms of a Gale manifold oik with coloured vertices are the same as  

the perfect matchings in the Euler graph you get by gluing together the vertices of  Cn  

which have the same colour. 

 

Rainbow rooms of a Gale manifold oik with coloured vertices corresponds to partitioning 

the vertices into a room in the Gale manifold and a room in a Sperner manifold. 
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Sperner oiks are polytopal (trivially). 

Gale oiks are polytopal (not so trivially – they come from cyclic polytopes) 

 

We don’t need to know that in order to apply the exchange algorithm for finding a room 

partition of an oik family consisting on one Sperner oik and one Gale oik, to find another 

rainbow matching in an even cycle with coloured vertices 

(or a another perfect matching in an Euler graph). 

 

Our purpose is only to conclude that the exchange algorithm on this oik family is an 

instance of the Lemke-Howson algorithm. 
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Scarf‟s Co-operative Game. A modified version of Scarf’s theory of  

Non-transferable Utility (NTU) Co-operative n-person games. 

(aka fractional stable matching in hypergraphs, Aharoni & Fleiner, 2003, JCT): 

 

Stable allocation of coalitions: 

Given a list of subsets of the n persons, called coalitions.  

(Different coalitions can be the same subset of persons.)  

For each person, given a total preference ordering of the coalitions she is in. 

A stable allocation, S, is a subset of mutually disjoint coalitions  

such that for every coalition, c, not in S  

there is a person in c who prefers the coalition of S that she is in more than c. 

 

Where the persons are the vertices of a bipartite graph G and the coalitions are 

the edges of G, the Stable Marriage Theorem says there exists a stable allocation. 

It is proved by an easy algorithm for finding one. 

 

More generally there may not be a stable allocation.  However there always 

exists a „fractional stable allocation of coalitions‟, proved by a very interesting 

but exponentially growing algorithm for finding one. In other words: 
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In any hypergraph preference system there exists a fractional stable matching. 

 

fractional allocation of coalitions (i.e., fractional matching): 

an assignment of non-negative weights, w(h), to the hypergraph edges, h, 

such that for each vertex, v, sum of w(h), where h contains v, is at most 1.  

 

A fractional matching w is called stable when 

Every edge e contains a vertex v such that sum of w(h)  

over edges containing v and having preference at least as great as e 

equals 1. 

 

Existence of a fractional stable matching follows immediately from 

Scarf‟s Theorem: 

Given an m by n matrix B whose first m columns are identity I; 

Given non-neg b such that {x: Bx = b, x ≥ 0} is bounded;  

And given m by n matrix C = {c(i,j): i = 1…m, j =1…n}  

of preference ordering numbers for each row i,  

such that c(i,j) ≤  c((i,k) ≥ c(i,j) for row i, row j, and any non-row column k. 

Then there exists a size m subset J of columns   

such that Bx = b for some x ≥ 0 where xj = 0 for j not in J,  
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and such that J is “dominating”, 

i.e., for every column k there is a row i such that c(i,k) ≤  c(i,j) for all j ϵ J. 

For a matrix C where in each row the entries  

are the elements of a preference total ordering, say 0, 1, 2, …, n, ∞, 

A subset D of columns of C is called dominating if  

for every column k of C there is a row i such that c(i,k) ≤  c(i,j) for all j ϵ D. 

 

Clearly subsets of a dominating set are dominating. 

For the C of Scarf’s Theorem the first m columns, call it set H, is not dominating. 

However every subset of H is dominating. 

 

Scarf‟s Lemma:  

The family consisting set H together with all size m dominating sets  

is the rooms of a manifold oik. 

 
Important example (showing exponential growth of the exchange algorithm): 

∞  0  0  0  0  1  2  3  4  5 

0  ∞  0  0  0  5  1  2  3  4 

0  0  ∞  0  0  5  4  1  2  3   … 

0  0  0  ∞  0  5  4  3  1  2 

0  0  0  0  ∞  5  4  3  2  1 


