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Abstract Community detection in networks has been studied extensively in the
last decade. Many criteria, expressing the quality of the partitions obtained, as well
as a few exact algorithms and a large number of heuristics have been proposed. The
parsimony criterion consists in minimizing the number of edges added or removed
from the given network in order to transform it into a set of disjoint cliques.
Recently Zhang, Qiu and Zhang have proposed a weighted parsimony model in
which a weight coefficient is introduced to balance the numbers of inserted and
deleted edges. These authors propose rules to select a good value of the coefficient,
use simulated annealing to find optimal or near-optimal solutions and solve a series
of real and artificial instances. In the present paper, an algorithm is proposed for
solving exactly the weighted parsimony problem for all values of the parameter.
This algorithm is based on iteratively solving the problem for a set of given values
of the parameter using a row generation algorithm. This procedure is combined
with a search procedure to find all lowest breakpoints of the value curve (i.e., the
weighted sum of inserted and deleted edges). Computational results on a series of
artificial and real world networks from the literature are reported. It appears that
several partitions for the same network may be informative and that the set of
solutions usually contains at least one intuitively appealing partition.
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1 Introduction

Networks, or graphs, are powerful and versatile tools in the study of complex
systems arising in the natural and social sciences as well as in engineering and
medicine. A network consists of a set of vertices and a set of edges. Edges are
pairs of vertices which are graphically represented by lines joining them. Ver-
tices are associated with entities (people, members of an organization, countries,
crossroads, atoms, ...) and edges with relationship between them (friendship, co-
operation, conflict, existence of connections such as road or electrical line, bonds
in a molecule,...).

A ubiquitous problem is to find communities in networks. In general terms a
set of vertices is a community if inner edges joining two of its vertices are more
dense than outer edges joining one of its vertices to another outside of it. The
set of communities (or clusters) in a network are always assumed to be pairwise
disjoint, thus forming a partition of the vertices. There are many ways to make the
concept of community precise and many criteria, or indices to evaluate the value
of a community. In turn, numerous heuristics and a few exact algorithms have
been proposed for finding an optimal or near-optimal partition of the vertices of
a network into communities. Probably the most studied criterion is the modularity

due to Newman and Girvan [16]. It is defined for each community as the differ-
ence between the number of inner edges and the expected number of inner edges
keeping the distribution of degrees fixed. The modularity of a partition is the sum
of the modularities of its clusters. This popular criterion has been subject to some
criticism [4,7,9,15]. The main concern is the resolution limit: small clusters may
be “absorbed by” larger ones even if they are very dense (and should therefore be
considered as separate clusters). Another approach consists in removing or adding
edges to the network until some criterion is satisfied. In the multicut problem
one aims at removing the smallest number of edges in order to transform a con-
nected network into k connected components. The main difficulty of this approach
is that this connected components may often be reduced to single entities [5]. A
related problem corresponds to the parsimony criterion i.e., remove or add the
smallest number of edges in order to transform the network into a disjoint collec-
tion of cliques [10]. As observed by Zhang et al. [19] this criterion tends to favor
small communities; in order to address this shortcoming, these authors propose
to modify the parsimony criterion by introducing a weight parameter to balance
the contribution to the objective of edges which are deleted and edges which are
inserted. The values assigned to this parameter are given by one of three possible
formulæ which depend on the density of the network and its clustering coefficient.
Near-optimal solutions (or optimal solutions but without a proof of optimality)
are obtained with a simulated annealing heuristic. Several artificial and real-world
networks are studied and results compared for some of them with those obtained
with the modularity [16] and modularity density criteria [13].

In the present paper, we extend the work of Zhang et al. in three ways: (i)
we study the properties of the parametric curve of weighted parsimony values;
(ii) we present an algorithm for finding the set of all optimal partitions for all
values of the parameter. More precisely, we partition the parameter range into a
finite set of intervals, to each of which there corresponds a unique optimal weighted
parsimony value (associated to one or more optimal partitions). A similar approach
was proposed for modularity clustering in [3]. (iii) We apply this algorithm to the
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same artificial and real examples studied by Zhang et al. and some more besides,
showing that considering several partitions instead of a single one can be more
informative.

The motivation for our paper is to investigate how the weight parameter in-
fluences the optimal clustering in the weighted parsimony clustering criterion.
Previous work on this criterion (Zhang et al. [19]) only propose heuristic choices
of this parameter. The new contribution of our paper is to provide a systematic
method for finding an optimal partition for all values of the parameter. Clustering
techniques are ubiquitous in big data technology: our work is relevant to every
application of data science. Section 2 (particularly 2.4) provides the core of our
theoretical study. We chose to present it in discoursive form, rather than using a
theorem/proof approach, to be consistent with the rest of the literature in commu-
nity detection (see e.g. the papers about modularity clustering in Physical Review
E); but the line of reasoning is completely formal and rigorous.

The paper is organized as follows. Definitions and notations are given in the
next section, followed by a parametric linear integer programming formulation and
an algorithm for solving it. Artificial and real instances are considered in Section
3. The problem of choosing a best value for the parameter is briefly discussed in
Section 4. Section 5 concludes the paper.

2 Algorithm

2.1 Definitions and notations

Let G = (V,E) be an undirected graph, or network, with a set of vertices V and
a set of edges E. If several edges join the same pair of vertices they are called
multiple edges and the graph G is a multigraph. An edge joining a vertex to itself
is called a loop. A simple graph has no loops nor multiple edges. The number of
vertices of G is usually denoted by n and called its order. The number of edges of
G is usually denoted by m and called its size. The degree ki of a vertex is equal
to the number of vertices it is incident to, or, in other words, to the number of
its neighbors. A vertex of degree 1 as well as its only incident edge are called
pendant. The density d of a network without loops or multiple edges is the ratio
of its number of edges to the maximum possible number of edges i.e., d = 2m

n(n−1) .

Let U be a subset of V , the cutset of U is the set of edges in E with exactly one
endpoint in U ; a cutset is trivial if U = ∅ or U = V . A graph is connected if all
nontrivial cutsets are nonempty. A clique is a subgraph having an edge between
any two distinct vertices.

2.2 Mathematical programming formulation

Let G = (V,E) be a simple graph with adjacency matrix A, where Aij = 1 if
vertices i and j are joined by an edge and to 0 otherwise. We can then express the
weighted parsimony problem for a given value of the weight w for the given graph
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as follows:

min Pw = w

n−1∑

i=1

n∑

j=i+1

Aij(1− xij) + (1− w)
n−1∑

i=1

n∑

j=i+1

(1−Aij)xij

s.t. xij + xjk − xik ≤ 1 ∀1 ≤ i < j < k ≤ n

xij − xjk + xik ≤ 1 ∀1 ≤ i < j < k ≤ n

− xij + xjk + xik ≤ 1 ∀1 ≤ i < j < k ≤ n

xij ∈ {0, 1} ∀1 ≤ i < j ≤ n

(1)
where the binary variables xij are equal to 1 if vertices i and j are in the same
clique and 0 otherwise. So if an edge (i, j) of G is removed, 1 − xij is equal to 1
with a contribution to the objective value of w, and if an edge (i, j) is inserted in
G, xij is equal to 1 with a contribution to the objective function of 1 − w. The
set of feasible solutions of (1) corresponds exactly to all partitions into cliques
of the vertex set V . Each such partition corresponds to an equivalence relation
on the entities. Indeed, the corresponding relation satisfies reflexivity (we can
assume xii = 1 for each entity i as xii does not appear in (1)), symmetry (since
(1) only mentions indices i, j with i < j, we may set xij = xji for i > j, as we
only consider undirected networks) and transitivity (encoded by the constraints
of (1)). This problem is a parametric Integer Linear Program (ILP), where the
parameter w is allowed to vary in the interval [0, 1]. Several algorithms for clique
partitioning problems, whose formulation has the same constraints as above, have
been proposed in the Combinatorial Optimization literature. Among these a well-
known one is the row generation algorithm of Grötschel and Wakabayashi [10,11].
The problem (1) has O(n3) constraints and O(n2) variables. After relaxing the
integrality constraints the numerous transitivity constraints are adjoined a batch
at a time. When all of those constraints are satisfied, if the solution is integer the
algorithm terminates. Otherwise more sophisticated constraints may be adjoined
to the formulation, or a Branch-and-Bound (BB) procedure might be called. This
algorithm allows solution of instances with up to 150 entities in “reasonable” time.

2.3 Properties of the parametric curve of weighted parsimony values

At least one solution of (1) is the result of the minimization of a parametric linear
function on the (unknown) convex hull H of its integer solutions: in other words,
a linear program on H, which is a polyhedron with integer extreme points. It is
well-known [6] that linear programs attain at least one of their optima at extreme
points of the polyhedron defined by their constraints. If we fix the variables of (1)
to an integer extreme point vector x̄ of H, the objective function of (1) becomes
a linear function of w. To each extreme point there corresponds therefore a linear
function Pw(x̄) in w. For any w, the optimal solution of (1) is on the lower envelope
of this set of linear functions; i.e., on a concave piecewise linear function.

It follows that there is a sequence of consecutive intervals of w (possibly reduced
to a point) such that, for each successive interval, there is a solution of (1) which
is optimal in the whole interval. The problem is then to determine all breakpoints
of the curve Pw in function of w, i.e., the lowest points of intersection of the lines
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w
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Fig. 1 Pw is a concave piecewise linear function.

Pw(x̄) as functions of w for a given partition x̄, as w ranges between 0 and 1 (see
Fig. 1).

2.4 Theorectical analysis

At a generic iteration t of our algorithm, we have a value wt, a corresponding
partition xt and its weighted parsimony value P t = Pwt

(xt). We determine whether
xt is optimal for w by solving (1) for w = wt, and update xt and P t accordingly.
Next, we determine whether wt is the next breakpoint after wt−1: we compute the
intersection w∗ of the two lines at wt−1 and wt defined respectively by Pw(x

t−1)
and Pw(x

t) (see Fig.2, left) and a corresponding optimal partition x∗ with weighted
parsimony P ∗, using (1) for w = w∗. Now there are three cases for P ∗: (a) it is at
the top end of the interval of possible values; (b) it is at the bottom end; (c) it
lies between the two interval endpoints (see Fig.2, right).

In case (a), w∗ is the next breakpoint after wt−1 and wt is the next break-
point after w∗: for suppose there were a different breakpoint w̃ between wt−1

and w∗, then its optimal parametric parsimony value P̃ would be greater than
P ′ = Pw̃(x

t−1); this would mean that xt−1 is a better partition than the one cor-
responding to P̃ , contradicting optimality of P̃ (see Fig. 3). The argument when
w̃ lies between w∗ and wt is similar.

In case (b), w∗ is not a breakpoint, so wt is the next breakpoint after wt−1: for,
suppose it were not, then the next breakpoint after wt−1 would be smaller than
wt, say w̃ with associated optimal parametric parsimony value P̃ . This breakpoint
would define a nonconcave piecewise linear function Pw, as shown in Fig. 4.

In case (c), w∗ may or may not be a breakpoint. In such cases, we update
wt = w∗ and repeat.

In our approach, we find values of w corresponding to putative breakpoints in
increasing order of w (we allow backtracking as explained above). In general, in
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w

w = 0
wt−1 wtw∗ w = 1

Pw

Possible positions

of P
∗ at the next

iteration

Fig. 2 Finding the next breakpoint. The optimal weighted parsimony value must be on the
emphasized segment in the right hand side frame.

w̃

P̃

w∗

wt−1

wt

P ∗

P ′

Fig. 3 A proof sketch for case (a).

w̃

P̃

w∗wt−1 wt

P ∗

nonconcavity

Fig. 4 A proof sketch for case (b).

order to find a value wt > wt−1 at the next iteration, we use an agglomerative
approach: we find the smallest value of w for which it is worthwhile to merge two
communities. Consider then two communities Cr and Cs. When merging them the
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change in weighted parsimony will be

∆Pw = w(−
∑

i∈Cr

∑

j∈Cs

Aij) + (1− w)(|Cr||Cs| −
∑

i∈Cr

∑

j∈Cs

Aij)

where the first term corresponds to the edges of G which were previously deleted
and are now inserted again, and the second term corresponds to those edges added
between a vertex of Cr and one of Cs. The above formula can be simplified:

∆Pw = −w|Cr||Cs|+ |Cr||Cs| −
∑

i∈Cr

∑

j∈Cs

Aij .

So a merging of two clusters of the current partition will only be worthwhile if

w ≥
|Cr||Cs| −

∑
i∈Cr

∑
j∈Cs

Aij

|Cr||Cs|
. (2)

The right hand side of this last expression will be used as a tentative value
for the parameter of weighted parsimony to be a breakpoint. Then the arguments
presented above will be applied to explore the interval of parameter values between
the two last breakpoints.

The steps of the exact algorithm are as follows:

1. Initialization. Set t = 1 and wt = 0; consider the initial solution xt with n

communities, each containing one entity, and a value P t = 0.
2. Tentative optimal solution. If xt has a single community print all values

of wt, P
t and the corresponding partitions xt, then stop. Otherwise, increase

t by 1. Consider the set of all pairs (Cr, Cs) of communities in the previous
partition xt−1. Compute the new tentative value wt using (2). Let Cr∗ and
Cs∗ be the two communities to be merged at level wt. Obtain xt by replacing
Cr∗ and Cs∗ by their union in xt−1 and compute the new value Pwt

(xt) =∑
i∈V

∑
j∈V Aij(1− xij) + (1− w)

∑
i∈V

∑
j∈V (1−Aij)xij .

3. Optimality test. Find the next breakpoint wt after wt−1 using the arguments
above, and update xt and P t. Then return to 2.

The algorithm terminates when all entities are in the same community, which
will always be the case when wt = 1. Termination is guaranteed because wt ≤ wt−1,
there is only a finite number of breakpoints and in case wt = wt−1 the algorithm
does not cycle. We may have wt = wt−1 in two cases. The first is when the
solution found by the agglomerative method is optimal for w = wt−1. The value
of the parameter may not change even for several iterations, but the number of
communities is reduced by 1 at each iteration. The second case in which we may
have wt = wt−1 is after a backtrack. Let w∗ > wt−1 be the value of the parameter
corresponding to the putative breakpoint proposed by the agglomerative method
(or obtained in a previous backtrack iteration) and x∗ a corresponding optimal
solution with parametric weighted parsimony P ∗. We have wt = wt−1 if and only
if x∗ is optimal for values of the parameter in the interval [wt−1, w

∗]. This means
there are no breakpoints between wt−1 and w∗. As a consequence, at iteration
t+1 the agglomerative method, applied to x∗, will propose a putative breakpoint
corresponding to a value of the parameter larger or equal to w∗ and the actual
breakpoint wt+1 found after the optimality check and the eventual backtracking
phase will be wt+1 ≥ w∗ > wt, otherwise the optimality of x∗ for w = w∗ is
contradicted.
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3 Experiments

3.1 Artificial networks

We first tested our algorithm on four artificial networks from the literature. These
networks where designed to verify whether a given method detects some “obvious”
communities. The first one [7] consists in a ring of cliques, each joined to the
next by a single edge. Specifically, we consider a ring of 30 cliques with 5 vertices
each. This network was designed to illustrate the resolution limit of the modularity
criterion. The function P ∗(w) is presented in Fig. 5. For w = 0 edges can be deleted
without cost. The solution with minimum value 30 is obtained and corresponds
to the partition into 30 cliques of order 5. It remains optimal for a very large
interval of values of w i,e, [0, 0.96]. Then 15 pairs of cliques are merged one at
a time, giving partitions into 29 to 15 communities. They have a common value
of 28.8 and are optimal only for the interval reduced to the point w = 0.9600
except for the last one which is valid for the interval [0.9600, 0.9867]. The next
partition consists in 10 communities of 15 vertices each i.e., merging 3 cliques at
a time, 10 edges are removed and 730 edges are added. This partition is optimal
for a small interval of value of w i.e., [0.9867, 0.9933]. The next partition into
8 communities is obtained by merging 4 communities 6 times and 2 communities
twice. It is optimal for 0.9933 ≤ w ≤ 0.9950. The remaining partitions are obtained
by merging cliques in the most equal possible way (see Tab. 1 for details); so the
weighted parsimony algorithm finds very quickly the structure of this network as
well as a corresponding interval of values of the parameter.

K5

K5

K5

K5

K5

K5

(a)

 0

 5

 10

 15

 20

 25

 30

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w

P
∗
(w

)

(b)

Fig. 5 Optimal parametric curve for the ring of cliques.

The second network [7] consists of two cliques on 20 vertices joined by an edge
and two smaller cliques on 5 vertices both joined by an edge between themselves
and by an edge to the same large clique (see Fig. 6(a)). For this network there
are only 4 weighted parsimony optimal partitions. As in the previous example the
partition for w = 0 captures the structure of the network as it consists of the
four cliques separated. Again the solution is optimal for 0.0 ≤ w ≤ 0.96. At the
next iteration the two small cliques are merged and this solution is optimal for w
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between 0.9600 and 0.9900. Then one of the two large cliques is merged with the
union of the two small ones for a value of P ∗ = 3.2100 and finally all cliques are
merged into one at w = 0.9983.

K20 K20

K5

K5

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w

P
∗
(w

)

(b)

Fig. 6 Optimal parametric curve for the 4 cliques network.

The next two artificial networks are built from cliques and stars connected by
a chain or a cycle. The third network consists of a clique on 10 vertices and stars
on 7, 6, 5, and 4 vertices each joined to the next one by an edge. This network
was introduced in Ref. [2] in order to show the limits of parametric modularity
methods based on Potts model [17]. The optimal partitions obtained are listed in
Tab. 3. The optimal partition 15, into five clusters, has a value of 9, 4 edges being
removed and 34 added. It is optimal for the very large interval [0.8333, 0.9500].

(a)

 0

 2

 4

 6

 8

 10

 12

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w

P
∗
(w

)

(b)

Fig. 7 Optimal parametric curve for the 5 modules network.

The fourth artificial network consists of four cliques on 6 vertices and two
stars on 5 vertices joined by a 6-cycle (see Fig. 8(a)). It was introduced in Ref. [19]
to illustrate the difference between the results obtained by parsimony and by
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weighted parsimony. Characteristics of the optimal partitions are given in Tab. 4.
The partition into 6 communities captures exactly the structure of this network.
It has a value of 6.75, which coincides with the value of the optimal partition into
7 communities, 5 edges are removed and 12 inserted.

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

w

P
∗
(w

)

(b)

Fig. 8 Optimal parametric curve for the network with 4 cliques and 2 stars.

To study further the partition of graphs built from cliques and stars we consider
a fifth network consisting of two cliques on 4 vertices joined by an edge and both
of them joined by an edge to the center of a star on 18 vertices (see Fig. 9). This
time the ”obvious” structure consisting of the two 4-cliques and the star does not
coincide with any optimal partition. For three communities the optimal solution
corresponds to a community of 8 vertices obtained by joining the two small cliques,
one isolated vertex and a star on 17 vertices, 3 edges are removed and 135 added.
The solution is optimal for the w belonging to the interval [0.9375, 0.9412]. The
partition into 4 communities consists of two cliques on 4 vertices, an isolated point
and a star on 17 vertices, 4 edges are removed and 120 inserted. It is optimal for
w = 0.9375.

3.2 Real world networks

The first example is the well-known karate club network of Zachary [18]. It has
34 vertices and 78 edges, corresponding to members of the club and friendship
relations between them. At some time during Zachary’s investigation a dispute
arose between the administrator and the karate instructor and the club broke into
two. It is a challenge for community detection criteria algorithms and heuristics
to predict this bipartition from the previous data collected in the network. There
are 26 optimal solutions and corresponding intervals. They are listed in Tab. 6.
Observe that the number of communities is not monotonous in the parameter:
indeed there are two partitions into 2 communities for disjoint intervals of w, and
three partitions into 3 communities. The first partition into 2 communities (rep-
resented in Fig. 10(a)) is optimal for 0.9375 ≤ w ≤ 0.9569. It almost reproduces
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Iter. wmin P ∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 30 30 0
2 0.9600 28.8000 29 29 24
3 0.9600 28.8000 28 28 48
4 0.9600 28.8000 27 27 72
5 0.9600 28.8000 26 26 96
6 0.9600 28.8000 25 25 120
7 0.9600 28.8000 24 24 144
8 0.9600 28.8000 23 23 168
9 0.9600 28.8000 22 22 192

10 0.9600 28.8000 21 21 216
11 0.9600 28.8000 20 20 240
12 0.9600 28.8000 19 19 264
13 0.9600 28.8000 18 18 288
14 0.9600 28.8000 17 17 312
15 0.9600 28.8000 16 16 336
16 0.9600 28.8000 15 15 360
17 0.9867 19.6000 10 10 730
18 0.9933 14.8000 8 8 1028
19 0.9950 13.1000 7 7 1227
20 0.9960 11.8800 6 6 1476
21 0.9973 9.9200 5 5 1850
22 0.9983 8.2087 4 4 2424
23 0.9989 6.6162 3 3 3348
24 0.9995 4.7840 2 2 5222
25 0.9996 3.8560 1 0 10845

Table 1 Ring of cliques. Values of the optimal solution for parametric weighted parsimony.

Iter. wmin P ∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 4 4 0
2 0.9600 3.8400 3 3 24
3 0.9900 3.2100 2 1 222
4 0.9983 1.3683 1 0 821

Table 2 Four cliques (2 large, 2 small). Values of the optimal solution for parametric weighted
parsimony.

Iter. wmin P ∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 19 18 0
2 0.5000 9.0000 18 17 1
3 0.5000 9.0000 17 16 2
4 0.5000 9.0000 16 15 3
5 0.5000 9.0000 15 14 4
6 0.6667 10.6667 14 13 6
7 0.6667 10.6667 13 12 8
8 0.6667 10.6667 12 11 10
9 0.6667 10.6667 11 10 12

10 0.7500 10.5000 10 9 15
11 0.7500 10.5000 9 8 18
12 0.7500 10.5000 8 7 21
13 0.8000 9.8000 7 6 25
14 0.8000 9.8000 6 5 29
15 0.8333 9.0000 5 4 34
16 0.9500 5.5000 4 3 53
17 0.9762 4.1905 3 2 94
18 0.9878 3.1220 2 1 175
19 0.9961 1.6824 1 0 429

Table 3 Five modules. Values of the optimal solution for parametric weighted parsimony.
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Fig. 9 Optimal parametric curve for the network with 2 cliques and 1 star.

Iter. wmin P ∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 12 11 0
2 0.5000 5.5000 11 10 1
3 0.5000 5.5000 10 9 2
4 0.6667 6.6667 9 8 4
5 0.6667 6.6667 8 7 6
6 0.7500 6.7500 7 6 9
7 0.7500 6.7500 6 5 12
8 0.9667 5.2333 5 4 41
9 0.9667 5.2333 4 3 70

10 0.9722 4.8611 3 2 105
11 0.9896 3.0729 2 1 200
12 0.9965 1.6886 1 0 488

Table 4 Four cliques and two stars. Values of the optimal solution for parametric weighted
parsimony.

the observed split. Only the member 10 is misclassified, as was the case for sev-
eral previous heuristics. As noted in Ref. [19], this entity was also considered as
belonging to both clusters by several fuzzy partitioning methods [12,20,21]. The
second partition into 2 communities, also represented in Fig. 10(b), is optimal for
0.9643 ≤ w ≤ 0.9724 and it exhibits a small and dense cluster with 5 entities
and attached to the remaining part by a cut vertex. The first partition into three
communities, represented on Fig. 10(c), is optimal for 0.9091 ≤ w ≤ 0.9310. It can
be viewed as the intersection of the two partitions into 2 clusters as it corresponds
to the first partition into 2 after the isolation of the small cluster found by the
second partition into 2. The second and third partition into three communities are
similar to the two partitions into two communities except for the fact that member
12 forms now an isolated community by himself. Partition into larger numbers of
communities often present communities reduced to a single or small number of
vertices.

A second real world network is the main component of the collaboration net-
work of scientists at the Santa Fe Institute [8], a widely used test example for
communities detection methods. It consists of 118 vertices and 200 edges. The
optimal parametric curve is reported in Fig. 16 and the intervals are listed in
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Iter. wmin P ∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 19 19 0
2 0.5000 9.5000 18 18 1
3 0.6667 12.3333 17 17 3
4 0.7500 13.5000 16 16 6
5 0.8000 14.0000 15 15 10
6 0.8333 14.1667 14 14 15
7 0.8571 14.1429 13 13 21
8 0.8750 14.0000 12 12 28
9 0.8889 13.7778 11 11 36

10 0.9000 13.5000 10 10 45
11 0.9091 13.1818 9 9 55
12 0.9167 12.8333 8 8 66
13 0.9231 12.4615 7 7 78
14 0.9286 12.0714 6 6 91
15 0.9333 11.6667 5 5 105
16 0.9375 11.2500 4 4 120
17 0.9375 11.2500 3 3 135
18 0.9412 10.7647 2 2 151
19 0.9861 4.0694 1 0 293

Table 5 Two K4 cliques and a star with 18 entities. Values of the optimal solution for
parametric weighted parsimony.

Table 7. A reasonable partition into 9 communities is found for values of w in
[0.9643, 0.9722]. It is represented in Fig. 11(a). For w in [0.9792, 0.9875] we obtain
a partition into 6 communities which is very close to the one obtained by max-
imizing modularity (it differs for two vertices). The next interval [0.9875, 0.9877]
corresponds to another partition into 6 communities (see Fig. 11(c)). Optimal so-
lutions for larger values of the parameters are obtained by merging communities
of this partition.

The third example is the game schedule of the 2000 season of Division I of the
US college football league [8]. The 115 vertices represent the teams, while edges
correspond to 613 games played between the two teams they connect during the
year. Teams are grouped in 12 conferences of 8 to 12 teams each. Usually, games
between members of the same conference are more frequent than games between
teams of different conferences.

Three of the conferences are correctly identified even for w = 0: Atlantic Coast,
Big East and Mountain West. The community corresponding to the Atlantic Coast
conference appears in an optimal solution for values of the parameter in the range
[0, 0.9222]. Two teams of the IA Independents conference join the community of
the Big East for w = 0.200; the resulting community remains unchanged until it is
merged with the Atlantic Coast for w = 0.9222. As noted in other papers [20,13,
19], the members of the IA Independents have more links with teams of the other
conferences than internal edges, so it is not surprising if the five vertices of this
conference are distributed to other communities. The Mountain West conference
is exactly isolated for 0 ≤ w ≤ 0.8958.

A partition into 13 communities is found for values of the parameter in [0.6667, 0.6923];
7 conferences are correctly identified and 12 vertices are misclassified. The next
2 intervals, [0.6923, 0.8913] and [0.8913, 0.8958], corresponds to partitions into 12
and 11 communities respectively. In both of them 6 conferences are correctly iso-
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(a) First partition into two communities.
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(b) Second partition into 2 communities.
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(c) First partition into three communities.

Fig. 10 Partitions of the Zachary network. (a) is optimal for values of w in the interval
[0.9375, 0.9569], (b) in [0.9643, 0.9724] and (c) in [0.9091, 0.9310].

lated and 11 vertices are misclassified. The partition into 11 clusters is represented
in Fig. 12. All three seems reasonable partitions for the network.

A fourth real-world network is the dolphins social network reported by Lousseau
et al. [14]. It has 62 vertices and 159 edges. A partition into 2 groups of predom-
inantly male and female dolphins respectively was described by Luosseau. There
are 37 optimal partitions and in this case the number of clusters is monotonous
up to 19 communities. Moreover there is a single optimal partition into 1 to 6
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(a) Partition into 9 communities.

(b) First partition into 6 communities.

(c) Second partition into 6 communities.

Fig. 11 Partitions of the scientific collaboration network. (a) is optimal for values of w in the
interval [0.9643, 0.9722], (b) in [0.9792, 0.9875] and (c) in [0.9875, 0.9877].

communities. The partition into two communities observed by Zhang et. al [19],
represented in Fig.13, is almost identical to the one described by Luosseau. Only
dolphin 40 is misclassified and is connected to one vertex only of both communi-
ties. A recent overlapping community detection heuristic consider it to be shared
between the two groups. The optimal partition in three to six groups consists of
the partition into 2 with one to 4 “degenerate” communities, composed of single
dolphins, detached from the largest community. They correspond to the 4 pending
edges in that community. Partitions into a larger number of communities contain
several 1 dolphin degenerate communities or other small communities. The small-
est community among the partition into two remains untouched until the partition
into 10 communities. This suggest that ties between members of that community
are stronger than ties among members of the other one. This is an evident exam-
ple of the additional information obtained by analysing the partitions obtained for
different values of the w parameter, instead of looking at a single partition.



16 Andrea Bettinelli et al.

43

37

29

91

111

60

64

98

59

81 83

Fig. 12 College football network. Partition into 11 communities.
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Fig. 13 Dolphin network. Partition into two communities.

We also considered a often studied real network which was not included into
those reported on by Zhang et al. [19]. It describes the interactions between the
characters in Victor Hugo’s masterpiece Les misérables and has 77 vertices and 257
edges. There are 54 optimal partitions. The single partition into 2 communities sep-
arates neatly a community of 10 characters which are bishop Myriel and people he
encountered during his long life. This partition is optimal for 0.9923 ≤ w ≤ 0.9955.
This appears to be the most obvious split and the 10 characters community remains
unchanged until the partition into 18 communities. In the next partition Napoleon
forms a one character degenerate community. Other partitions into small number
of communities again have several one character or two characters degenerate com-
munities. After sometimes the largest community splits into two. This happens in
the first partition into 6 communities which is optimal for w = 0.9804 only. This
partition is presented in Fig. 14. For this network it appears that the weighted
parsimony criterion captures part of the structures but also exhibits many small
communities, as did the (unweighted) parsimony criterion. Nevertheless, by look-
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Fig. 14 Les Misérables network. First partition into six communities.

ing at all the optimal partitions we are able to gain information on the strenght
of some communities.
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Fig. 15 Optimal parametric curve for the Zachary network.

4 Choosing a value for the parameter

Zhang, Qiu and Zhang [19] do not determine solutions for all values of the pa-
rameter w̄ = 1 − w for the weighted parsimony criterion. Instead, they give three
formulæ for the choice of the best value of w̄. To this effect they first argue that
w̄ should increase with the average density of the network. More precisely they
introduce the value De = m/n (1/2 of the average degree) and normalize it to
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Iter. wmin P ∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 20 53 0
2 0.2000 10.6000 19 49 1
3 0.5000 25.0000 18 47 3
4 0.6000 29.4000 17 45 6
5 0.6667 32.0000 16 43 10
6 0.6667 32.0000 15 41 14
7 0.6667 32.0000 14 39 18
8 0.6667 32.0000 13 37 22
9 0.7143 32.7143 12 35 27

10 0.7143 32.7143 11 33 32
11 0.7500 32.7500 10 31 38
12 0.7500 32.7500 9 29 44
13 0.7778 32.3333 8 27 51
14 0.8000 31.8000 7 26 55
15 0.8333 30.8333 6 23 70
16 0.8333 30.8333 6 22 75
17 0.8750 28.6250 6 21 82
18 0.9000 27.1000 5 20 91
19 0.9038 26.8269 4 15 138
20 0.9091 26.1818 3 14 148
21 0.9310 23.2414 4 12 175
22 0.9333 22.8667 3 11 189
23 0.9375 22.1250 2 10 204
24 0.9569 18.3621 3 5 315
25 0.9643 16.0714 2 4 342
26 0.9724 13.3241 1 0 483

Table 6 Zachary network. Values of the optimal solution for parametric weighted parsimony.
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Fig. 16 Optimal parametric curve for the scientific collaboration network.

D̄e = 1 − 1/De that is 0 ≤ D̄e ≤ 1. Similarly these authors argue that w̄ should
increase with the clustering coefficient C. Recall that Ci = 2Ki/(ki(ki − 1)) for a
vertex i, where Ki is the number of edges joining neighbors of a vertex i and ki is
the degree of i (or in other words its number of neighbors), and C = (1/n)

∑n
i=1 Ci

for the network G itself. Formulae for the optimal value of w̄ according to interval
of values for D̄e and C are given for three cases and are reproduced in Tab. 11

Note that no formula is proposed for the case D̄e <= 0.5 and C <= 0.5.
which does not arise for any of the five problems considered. While indeed seems
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Iter. wmin P∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 65 109 0
2 0.5000 54.5000 64 107 2
3 0.5000 54.5000 63 106 3
4 0.5000 54.5000 60 103 6
5 0.6000 64.2000 59 101 9
6 0.6000 64.2000 58 95 18
7 0.6000 64.2000 57 93 21
8 0.6364 66.8182 56 89 28
9 0.6667 68.6667 55 87 32

10 0.6667 68.6667 54 86 34
11 0.6667 68.6667 53 85 36
12 0.6667 68.6667 52 84 38
13 0.6667 68.6667 52 83 40
14 0.7500 72.2500 51 82 43
15 0.7500 72.2500 50 80 49
16 0.7500 72.2500 49 78 55
17 0.7500 72.2500 49 77 58
18 0.8000 73.2000 48 76 62
19 0.8125 73.3750 48 73 75
20 0.8182 73.3636 47 71 84
21 0.8333 73.1667 46 70 89
22 0.8333 73.1667 45 68 99
23 0.8571 72.4286 44 67 105
24 0.8571 72.4286 43 66 111
25 0.8571 72.4286 43 63 129
26 0.8750 71.2500 42 62 136
27 0.8750 71.2500 41 61 143
28 0.8750 71.2500 41 60 150
29 0.8889 70.0000 40 59 158
30 0.9000 68.9000 39 58 167
31 0.9000 68.9000 38 56 185
32 0.9091 67.7273 37 55 195
33 0.9091 67.7273 36 54 205
34 0.9091 67.7273 31 50 245
35 0.9167 66.2500 30 49 256
36 0.9167 66.2500 29 48 267
37 0.9167 66.2500 29 46 289
38 0.9231 64.6923 28 45 301
39 0.9231 64.6923 27 44 313
40 0.9231 64.6923 27 43 325
41 0.9286 63.1429 26 41 351
42 0.9333 61.6667 25 40 365
43 0.9333 61.6667 24 39 379
44 0.9333 61.6667 24 38 393
45 0.9375 60.1875 23 37 408
46 0.9412 58.8235 22 36 424
47 0.9412 58.8235 21 35 440
48 0.9412 58.8235 21 34 456
49 0.9444 57.4444 20 33 473
50 0.9474 56.1579 19 32 491
51 0.9474 56.1579 18 31 509
52 0.9500 54.9000 17 30 528
53 0.9500 54.9000 16 29 547
54 0.9500 54.9000 15 28 566
55 0.9524 53.6190 14 27 586
56 0.9524 53.6190 13 26 606
57 0.9545 52.3636 12 25 627
58 0.9545 52.3636 11 24 648
59 0.9630 47.1111 10 21 726
60 0.9643 46.1786 9 20 753
61 0.9722 40.3611 8 19 788
62 0.9762 37.3095 8 16 911
63 0.9783 35.4565 7 13 1046
64 0.9792 34.5208 6 11 1140
65 0.9875 25.1125 6 10 1219
66 0.9877 24.9259 5 8 1379
67 0.9896 22.2813 4 5 1664
68 0.9939 15.0545 3 2 2156
69 0.9993 3.5474 2 1 3547
70 0.9997 2.1232 1 0 6703

Table 7 Scientific collaboration network. Values of the optimal solution for parametric
weighted parsimony.
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Iter. wmin P ∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 22 311 0
2 0.2000 62.2000 21 307 1
3 0.2000 62.2000 20 287 6
4 0.2500 76.2500 19 272 11
5 0.3333 98.0000 18 252 21
6 0.5000 136.5000 17 234 39
7 0.5000 136.5000 16 216 57
8 0.5000 136.5000 15 214 59
9 0.6250 155.8750 14 208 69

10 0.6667 161.6667 13 194 97
11 0.6923 164.1538 12 190 106
12 0.8913 180.8696 11 185 147
13 0.8958 181.0417 10 180 190
14 0.9063 180.9375 10 177 219
15 0.9074 180.8889 9 167 317
16 0.9167 179.5000 8 154 460
17 0.9222 177.8000 7 147 543
18 0.9394 171.0000 6 137 698
19 0.9444 168.1667 5 131 800
20 0.9444 168.1667 5 125 902
21 0.9545 160.3182 4 107 1280
22 0.9616 152.0242 3 88 1756
23 0.9721 134.5260 3 88 1756
24 0.9736 130.4960 2 61 2697
25 0.9808 111.6923 2 58 2850
26 0.9816 109.4083 1 0 5942

Table 8 College football network. Values of the optimal solution for parametric weighted
parsimony.
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Fig. 17 Optimal parametric curve for the college football network.

plausible that w̄ should increase with D̄e and C no a priory justification is given for
the precise form of the three complicated formulæ of Tab. 11, although they give
good results a posteriori i.e, point values in the intervals corresponding to plausible
partitions. It is possible to still have this property with much simpler formulæ
e.g. linear expressions in D̄e and C. For the first two problems, ring of cliques
and star-shapes and karate club, D̄e ≥ 0.5 and C ≥ 0.5, the intervals of values
for w corresponding to the best partitions are [0.75, 0.9667] and [0.9091, 0.9310].
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Iter. wmin P∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 29 103 0
2 0.2000 20.6000 28 99 1
3 0.2500 25.5000 27 96 2
4 0.4444 43.7778 26 91 6
5 0.5000 48.5000 25 90 7
6 0.5000 48.5000 24 83 14
7 0.6000 55.4000 24 81 17
8 0.6250 57.0000 23 78 22
9 0.6667 59.3333 22 72 34

10 0.7143 61.1429 21 70 39
11 0.7500 62.2500 20 68 45
12 0.7500 62.2500 19 67 48
13 0.7500 62.2500 20 66 51
14 0.7647 62.4706 19 62 64
15 0.7857 62.4286 18 59 75
16 0.8235 61.8235 18 56 89
17 0.8704 60.2778 17 49 136
18 0.8889 58.6667 16 46 160
19 0.9015 57.2273 16 33 279
20 0.9167 53.5000 15 31 301
21 0.9286 50.2857 14 30 314
22 0.9286 50.2857 14 29 327
23 0.9375 47.6250 13 28 342
24 0.9412 46.4706 12 27 358
25 0.9444 45.3889 11 26 375
26 0.9474 44.3684 10 25 393
27 0.9500 43.4000 9 24 412
28 0.9503 43.2795 9 16 565
29 0.9531 41.7344 8 13 626
30 0.9706 31.0294 7 12 659
31 0.9706 31.0294 7 11 692
32 0.9722 29.9167 6 10 727
33 0.9730 29.3784 5 9 763
34 0.9737 28.8421 4 8 800
35 0.9744 28.3077 3 7 838
36 0.9750 27.7750 2 6 877
37 0.9930 12.0697 1 0 1732

Table 9 Dolphin. Values of the optimal solution for parametric weighted parsimony.
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Fig. 18 Optimal parametric curve for the dolphin network.

Consider then the following linear program in the variables w1, w2, y1 and y2 as
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Iter. wmin P∗(w) n. of comm. edges removed edges inserted
1 0.0000 0.0000 35 118 0
2 0.2222 26.2222 35 111 2
3 0.2857 33.1429 35 106 4
4 0.3077 35.3846 35 97 8
5 0.4167 45.0833 34 90 13
6 0.5000 51.5000 33 89 14
7 0.6667 64.0000 32 88 16
8 0.6667 64.0000 31 85 22
9 0.7500 69.2500 30 84 25

10 0.7500 69.2500 29 83 28
11 0.7500 69.2500 29 82 31
12 0.7778 70.6667 26 74 59
13 0.8000 71.0000 25 73 63
14 0.8000 71.0000 24 72 67
15 0.8333 71.1667 23 71 72
16 0.8571 71.1429 22 70 78
17 0.8571 71.1429 21 68 90
18 0.8750 70.7500 20 67 97
19 0.8750 70.7500 19 66 104
20 0.8750 70.7500 19 65 111
21 0.8889 70.1111 18 64 119
22 0.9000 69.5000 17 63 128
23 0.9107 68.8036 17 48 281
24 0.9167 67.4167 16 47 292
25 0.9259 65.1481 15 45 317
26 0.9333 63.1333 18 41 373
27 0.9355 62.4194 17 39 402
28 0.9375 61.6875 16 37 432
29 0.9545 54.9545 15 34 495
30 0.9667 49.3667 14 27 698
31 0.9750 43.7750 14 25 776
32 0.9767 42.4651 13 24 818
33 0.9767 42.4651 13 23 860
34 0.9778 41.6000 12 22 904
35 0.9783 41.1739 11 21 949
36 0.9787 40.7447 10 20 995
37 0.9792 40.3125 9 19 1042
38 0.9796 39.8776 8 18 1090
39 0.9800 39.4400 7 17 1139
40 0.9804 39.0000 6 16 1189
41 0.9804 39.0000 13 15 1239
42 0.9815 37.6667 12 14 1292
43 0.9815 37.6667 12 13 1345
44 0.9821 36.7857 11 12 1400
45 0.9825 36.3509 10 11 1456
46 0.9828 35.9138 9 10 1513
47 0.9831 35.4746 8 9 1571
48 0.9833 35.0333 7 8 1630
49 0.9836 34.5902 6 7 1690
50 0.9839 34.1452 5 6 1751
51 0.9841 33.6984 4 5 1813
52 0.9844 33.2500 3 4 1876
53 0.9923 18.4000 2 3 2005
54 0.9955 11.9642 1 0 2672

Table 10 Les Misérables. Values of the optimal solution for parametric weighted parsimony.

well as slacks variables for lower and upper bounds sl and su

min s

s.t. w1 = 0.5641y1 + 0.5706y2

0.9091 ≤ w1 ≤ 0.9310

w1 + sl1 − su1 = 0.92005

w2 = 0.5405y1 + 0.6443y2

0.75 ≤ w2 ≤ 0.9667

w2 + su2 − sl2 = 0.85835

s ≥ sl1

s ≥ sl2

s ≥ su1

s ≥ su2

(3)
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Fig. 19 Optimal parametric curve for Les Misérables network.

d̄e C w̄

≥ 0.5 ≥ 0.5 w̄ = 1
2
(D̄e)2C

≤ 0.5 ≥ 0.5 w̄ = 1
2
(D̄e)

1
D̄e C

≥ 0.5 ≤ 0.5 w̄ = 1
2
(D̄e)2C

0.5
C

Table 11 Formulae proposed by Zhang et al. [19] to choose a value for the parameter w̄.

The aim of this program is to find values for w1 and w2 as close as possible to
the midpoints of the corresponding intervals, i.e., w1 = 0.92005 and w2 = 0.85835.
In this case the solution is such that all the departures from those values are
equal to 0. Similar results are obtained for the scientific collaboration network
(the only instance considered with D̄e ≤ 0.5 and C ≥ 0.5) and for the football and
dolphins network (D̄e ≥ 0.5 and C ≤ 0.5). One finds w3 = 0.96825 for the scientific
collaboration network. Finally w4 = 0.89355 and w5 = 0.984 for the football and
dolphins networks. Note that this approach can be extended to more than two
instances at a time but the probability of finding a feasible solution decreases
rapidly.

5 Conclusion

In a recent paper Zhang, Qiu and Zhang [19] extended the parsimony criterion for
detecting community structures to weighted parsimony. This gives partitions with
fewer communities, which often appear to be more plausible and informative than
those obtained with the usual parsimony criterion. After formulating the weighted
parsimony problem, these authors propose a simulated annealing heuristic for ob-
taining an optimal or near-optimal solution for a particular value of the parameter.
Three formulæ for choosing the value of the parameter according to the values of
the average distance and the clustering coefficient are presented .

This paper further explores communities detection in networks according to the
weighted parsimony criterion. The curve of weighted parsimony values is shown
to be a piecewise concave function of the parameter with a finite (and usually
moderate) number of breakpoints. A parametric integer program is proposed for
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finding all breakpoints of this curve as well as the corresponding optimal partitions
and the intervals of values in which they remain optimal. Experimental results
confirms those of Zhang et al. [19] and also show that several partitions into a
small number of communities may be of interest. The question of choosing a priori

a good value for the parameter is also discussed. At the end of the paper Zhang
et al. mention as future work the study of the theoretical properties of the weight
parameter w, the robustness of the simulated annealing heuristic and solving larger
instances. We believe that the characterization of the curve of optimal values
of the parametric weighted parsimony model is an important step regarding the
first point. Similarly the proposed parametric integer program provides optimal
solutions for all values of the parameter. This is done with a guarantee of optimality
unlike previous heuristics. Finally, the size of the problems solved is similar (and
often the same) as those previously considered. Clearly solving larger instances
would be of interest. One possible way to do so would be to replace in the proposed
parametric algorithm the clique partitioning routine [11,10] by a stabilized column
generation one [1].
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