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Abstract In this opinion paper, I argue that “optimization and sustainable development”

indicates a set of specific engineering techniques rather than a unified discipline stemming

from a unique scientific principle. On the other hand, I also propose a mathematical principle

underlying at least some of the concepts defining sustainability when optimizing a supply

chain. The principle is based on the fact that since demand constraints are usually expressed

as inequalities, those which are not active at the optimal solution imply the existence of

some wasted activity, which may lead to an unsustainable solution. I propose using flow-

type equation constraints instead, which help detect unsustainability through infeasibility.

1 Introduction

This paper investigates the relationship between Optimization and Sustainable Development

(OSD).

By optimization, I mean a set of mathematical results and algorithmic techniques for

solving problems of the following very general form:

optx∈X f (x), (1)

where X is a suitably defined set (often a subset of some Euclidean space), f is a map from X

to R
d (in the case of a single objective problem, which is the main focus of the present paper,

d = 1), and opt indicates either minimization or maximization. The concision and generality

of the “optimality principle” given by Eq. (1) are mathematically remarkable; its syntax and

semantics can be expressed by means of formal languages. By further specifying conditions

on f ,X ,d, mathematical formulations can be obtained to describe most optimization prob-

lems. Many such problems are very useful in the solution of more concrete problems arising

in technical, scientific and social fields of human knowledge.

Defining sustainable development (SD) in conjunction with optimization is harder. Al-

though the term was introduced during the 1960s and 1970s, it was popularised in the

Brundtland Report, released by the United Nations in 1987: “sustainable development is
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development that meets the needs of the present without compromising the ability of fu-

ture generations to meet their own needs” [21]. The Brundtland definition was criticized

for being too vague [4]. The main reason why this definition is problematic with respect

to mathematical optimization is the explicit mention of time: formulating the Brundtland

definition in terms of Eq. (1) would require a precise planning of all human activity for all

future times, clearly an impossible task. On the other hand, one of the main goals of quan-

titative economics is to predict the future evolution of socio-economic systems in time, and

this is often done by means of mathematical optimization tools, which obviously take time

into account. Moreover, mathematical optimization is routinely employed to decide the op-

timal scheduling of activities over a limited time period, or under the assumption that the

decisions are periodic. I shall discuss time-dependency quantitatively in Sect. 5.

Many special interests groups adapted the terms to their own agenda. An internet search

shows that SD has been related to the following terms (among others):

– a set of laws and regulations for manufacturing firms

– a moral obligation for all humans

– production with low CO2 emissions

– reliance on “clean energy”

– recycling waste

– using public/clean transportation instead of private cars

– making sure hazardous material transportation is equitable

– development that can last forever

– making sure the earth can survive

– preservation of biodiversity

– helping third-world countries.

Although the above terms are more specific than “sustainable development”, and some of

them at least seem to be able to withstand some degree of formalization, none of them

exactly catches the essence of all problems arising in SD.

Part of my duties, as the scientific director of the “Optimization and Sustainable Devel-

opment” (OSD) Chair sponsored by Microsoft at the Laboratoire d’Informatique at École

Polytechnique, is to apply optimization techniques to problems arising in SD. Whilst in this

role, I observed a wild diversity of optimization problems related to SD. A very natural

question occurs: is there any mathematical principle underlying these problems? Insofar as

the vast majority of optimization problems can be formulated in a form given by Eq. (1), it

would be useful to identify a similarly general principle underlying SD problems. The inter-

section of the two problem classes (optimization and SD) could then refer to the conjunction

of the two corresponding principles. According to my own experience (see Sect. 2 below), a

possible a posteriori definition of SD is a set of engineering practices whose environmental

impact is controlled: but I see no way to generalize this definition to a formal mathematical

principle.

This paper attempts to shed some light on the question: is there a mathematical principle

underlying problems related to SD? Although I believe the answer to be negative in general,

I propose that a good starting point is that SD implies a development that can last forever.

In Sect. 3, I discuss a treatment of this principle from the point of view of avoiding waste in

supply chain networks. More precisely, when demand constraints are formulated as inequal-

ities of the type “production ≥ demand”, some of them may be inactive at some optimal

solution, which implies the existence of some waste; I propose using flow-type equations

instead. Simply adding a surplus variable to yield “production + waste = demand” is not

sufficient to generalize this no-waste principle to supply-chain network problems, however,
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as I shall argue in Sect. 4.3. To this purpose, I introduce the concept of a transformation

flow. As demonstrated in Sect. 4, transformation flows provide a much more effective tool.

The rest of this paper is organized as follows. In Sect. 2, I argue that optimization prob-

lems arising in SD are so diverse that it is difficult to relate them all formally by a unique

underlying mathematical principle. In Sect. 3-4, I discuss a set of transformation flow equa-

tions which can be used to model sustainable production processes. In Sect. 5, I address the

issue of time-dependent transflows.

2 Diverse problems

This section lists some of the optimization problems I encountered whilst working for the

OSD Chair. I hope the reader will be convinced that they differ in almost everything, aside

from the optimization principle. I thus hope to provide sufficient evidence in favour of my

negative claim, i.e. that there is no unifying principle underlying all problems in SD. Since

this statement is expressed in natural language, it is neither true nor false: it is simply my

reasoned opinion.

2.1 Scheduling nuclear plant outages

This problem was the subject of the popular yearly ROADEF/EURO Computational Chal-

lenge (http://challenge.roadef.org), whose 2010 edition, sponsored by Electricité de

France (EDF) was won by a team belonging to the OSD Chair, including V. Jost and

D. Savourey. From the document detailing the 2010 Challenge, EDF power generation fa-

cilities in France stand for a total of 98.8GW of installed capacity. The varied range of EDF

facilities mixes all forms of energy: thermal (nuclear, coal, fuel oil and gas), hydraulic and

other renewable energies. Most of the electricity EDF generates in France is produced by

thermal power plants: 90% in 2008, 86% of which by nuclear power plants. The outages of

thermal power plants, specially the nuclear ones, which have to be repeatedly shut down for

refuelling and maintenance, must be scheduled in such a way as to satisfy safety, mainte-

nance, logistics and plant operation constraints, as well as to lead to production programs of

minimum average cost. The time horizon of decisions is 5 years, and the solution must ful-

fil a stochastic demand robustly. The solutions adopted by national energy suppliers such as

EDF have a huge overall impact on the environment: in this sense, this problem is concerned

with optimization and SD.

Power plants are of two types: those that can be continuously supplied with fuel (Type

1), and those that can only be supplied with fuel at regular intervals (Type 2). Type 2 plants

cannot continue to produce whilst being supplied. The customer demand is given as a set of

uncertain scenarios. Production cost for Type 1 plants is proportional to the power output

and depends on the scenario and time step. Refuelling Type 2 plants leads to a cost which is

proportional to the amount of available fuel and the time step, but not the demand scenario.

The total amount of fuel for Type 2 plants is given at the outset of the planning period. The

following decision variables are considered:

– dates for outages to refuel Type 2 power plants (for each time step)

– the amount of fuel used in supplying a Type 2 power plant (for each time step)

– production levels for Type 1 and Type 2 power plants (for each time step and demand

scenario).
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The exact functional forms of objective function and constraints are detailed in [25]. This

problem is a combination of resource allocation and scheduling. The solution approach pro-

posed by the winning OSD Chair team is based on solving an Integer Linear Program (ILP)

that relaxes some of the technical constraints, and then heuristically trying to achieve feasi-

bility with respect to all constraints.

2.2 The concentrator placement problem

Many large-scale electricity distribution networks are in the process of being transformed

into “smart grids”. This means that the network must be: tolerant to occasional demand

spikes and hardware failures, able to accommodate renewable sources of energy at any scale

(large wind farms as well as customer-installed solar panels), easily monitored in its every

part, and user-transparent as regards costs, which must be billed at the smallest possible

monetary unit. In order for the grid to be “smart”, then, very detailed consumption data are

required: specifically, each end consumer must be provided with a “smart meter” that can

collect all sorts of data, transmit it to central servers, and receive information on the current

state of the network, as well as on the user account.

In France, the electricity provider, EDF, and the network handler, Electricité Réseau Dis-

tribution France (ERDF) are two separate entities. The latter is responsible for routing the

electricity to the end consumers. Within the framework of the nationally sponsored project

Chip2Grid, the OSD Chair is currently working on the problem of routing the masses of data

collected by the smart meters to the central servers. The overall solution consists in placing

some intermedate data aggregators and retransmitters called concentrators; the communi-

cation between smart meters and concentrators occurs on the same cables used to transmit

power, along a different frequency. Concentrators are costly piece of equipment, and can

serve at most a given number of meters: the problem is then to choose locations on the dis-

tribution network where fewest concentrators can be placed so as to cover the whole set of

meters.

Depending on whether the network is considered as a subset of points in R
2 or as an

abstract graph, this problem can be seen as a geographical location problem on a network,

as well as a vertex covering problem. There are several technical constraints, such as voltage

drops along the distribution lines, that must be taken into account. Also, although the French

network topology is close to a tree, other countries have other types of topologies, such as

meshes.

This problem is not about sustainability per se, but it serves the purpose of improving

the efficiency and accountability of smart grids, which in turn is crucial for a power network

to be sustainable.

2.3 Cost of equitability

This problem arose as part of the Ph.D. work of F. Roda [26] within the OSD Chair. It con-

cerns the difference between risk and damage in a problem concerning the transportation of

hazardous materials (hazmat) on a geographical network. Hazmat transportation is usually

regulated so that the risk is equitably split among the administrative partitions composing

the geographical region of interest. “Equitably” here means that no region is at a disadvan-

tage with respect to the risk of a catastrophic accident. We showed that equitable solutions

do not necessarily minimize the damage, and that, to put it bluntly, being equitable might
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cost lives. This is not surprising, as risk is an evaluation of the costs due to a future, uncertain

disaster, whereas the damage is the cost due to a past and certain disaster (see Fig. 1).

Fig. 1 Minimize damage: route through region 1. Risk equitability: route through both regions (this may cost

lives).

Consider a geographical road network modelled by a directed graph G= (V,A), together

with a set C ⊆V ×V where each (s, t) ∈C represents the need for transporting hazmat from

node s to node t — in other words, there is a pair (s, t) for each batch of hazmat to be

transported. For each arc (u,v) ∈ A and each (s, t) ∈ C we are given: (a) the risk pst
uv of an

accident occurring on the given arc and for the given hazmat; (b) the damage ∆ st
uv (expressed

in monetary units) caused by an accident; (c) the cost cst
uv of transporting a unit of hazmat

(s, t) on arc (u,v). The traditional risk of an accident occurring when transporting hazmat

(s, t) over arc (u,v) is rst
uv = pst

uv∆ st
uv. Minimum cost routes with and without risk equitability

constraints are shown for a simple case in Fig. 2.
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Fig. 2 On the left, solution with risk equitability (total damage: 855.045 monetary units). On the right,

without risk equitability (total damage: 677.997 monetary units).
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2.4 Multi-feature shortest paths

Traffic has a huge impact on energy consumption and CO2 emissions, which adversely im-

pact the environment. GPS-enabled devices allow drivers to compute shortest paths, but at

the time this project was carried out, these devices did not use to take traffic data into ac-

count. Even now, most of the low-cost GPS devices do not consider traffic data. At the OSD

Chair we have been working (through two Ph.D. students, G. Nannicini and D. Kirchler)

with a traffic data handling firm, in order to develop shortest path algorithms which consider

continuously varying traffic data [20,19]. Our algorithms are able to efficiently compute

shortest paths on large-scale road networks (such as Europe), with respect to different ob-

jectives (such as minimization of time-of-travel, CO2 emissions, and fuel costs), whilst keep-

ing track of multi-modality constraints, which can encode anything from changing mode of

transportation to stopping at certain sites. At the core of our algorithms are bi-directional

implementations of traditional multi-criteria shortest paths algorithms, be they label setting

or label-correcting, and a pre-processing of traffic data that minimizes the impact of its con-

tinuously changing nature. Multi-modality is achieved by pairing a finite-state automaton

to the main path search algorithm. The state transitions of this automaton are labeled with

symbols, which are employed by the main algorithm to distinguish between those arcs that

are allowed whilst exploring a node star, and those that are not [15].

2.5 Diversity in sustainability

The four problems above represent a small part of the problems we worked on in the OSD

Chair [12], but they show that SD can appear in many different forms. Problems focusing

on improving the production and/or use of energy are categorized as SD because the cur-

rent mainstream energy production ways are clearly unsustainable in the long term. Any

problem involving the reduction of CO2 emissions, or any method that can be potentially

applied to such problems, is categorized as SD because if our industrial society keeps emit-

ting CO2 as it does now, the environmental changes might be major, and even catastrophic

— clearly an unsustainable situation. If there is an accident involving hazardous materials,

the environmental damage might be extensive, and in the long run, a situation where the

risks associated to this type of logistics are unchecked is unsustainable. Thus, analysing the

trade-off between risk and damage minimization in this setting is also classified as SD.

Again, these problems differ wildly. A common point is that all of the involve pairwise

relations, which are modelled as graphs. In particular, the concentrator placement problem,

the equitability problem, and the shortest path problems are defined on physical networks;

the scheduling problem only involves the formalization of a distance relation on outages.

This common feature reflects in part the very real issue that sustainability often has to do

with the interaction of human technology with the planet, which often involves the geo-

graphical transportation of commodities. However, it is also in part due to my own disposi-

tion to employ graphs and their language to model problems. Although, due to my own bias,

I will not emphasize this feature as a main driver behind OSD, it does in part motivate the

employment of network flows in the following.
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3 Development that can last forever

I shall give a unifying principle for an important class of optimization problems in SD,

i.e. those problems that concern certain sustainable supply chains that can be modelled by

flows of matter, energy, resources or information. In order to do so, I shall consider the

lexical meaning of the words “sustainable development”: it describes a development that

can exist over time. To take this concept to its abstraction, SD can last forever. I shall restrict

the meaning of “development” to the development of a product (artifact or service) into its

own environmental, social, technological and commercial environment. In other words, I

shall consider the supply chain for a product or system thereof. Although I am still writing

in natural language, this concept is precise enough so that I can provide a formalization.

In what follows, I shall represent flows of matter as a mathematically defined quantity

travelling along a network; matter transforms when passing through the network nodes,

in a way that is formally described by equations, which impose a generalized form of

mass/energy balance: what flows into a node can be transformed, but what flows out of

the node must correspond exactly to that transformation. This idea is not new in SD — it is

mentioned e.g. in [4], but in informal language, and limited to a study of qualitative type,

where ideas are expressed in the form general guidelines for policymakers. In this paper,

I give a quantitative and formal version of the idea, and express it in a form that can be

understood and put in practice by mathematically oriented engineers and decision makers.

By characterizing SD as “development that can last forever”, the forever can be taken

literally, in which case time is not explicitly part of the modelling paradigm, or just as an

extremely long but finite horizon — and engineering literature reports time-indexed models

with very long horizons, stretching many years, see e.g. [23]). The optimization techniques

used to solve such models often involve the integration of the time component within the

flow network itself, by means of the addition of “event nodes” which represent a plant at a

particular time [22]. Most of the paper will be devoted to the steady-state case, where time is

not explicitly part of the model. Sect. 5 will propose a generalization to the time-dependent

case.

3.1 The supply chain network

By development I mean an interconnected network of processes that transform input flow

into output flow (see Fig. 3). The network is modelled by means of a digraph G = (V,A)

input output
process

in

in

out

Fig. 3 A process (left) and a process network (right).
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where V is a set of processing nodes, and A is the set of arcs (or links). G processes a set K

of commodities. Each node v ∈V has two functions (see Fig. 4):

1. v transforms an input commodity h ∈ K into an output commodity k ∈ K, so that one

unit of h yields πhk
v units of k;

2. v may have a surplus of ωk
v units of commodity k.

process

v

1 unit of h πhk
v units of k

ωk
v surplus units of k

Fig. 4 Basic node transformation.

Standard graph notation is used to express the graph topology: for each v ∈V , the outward

star N+(v) of v consists of the nodes u ∈V such that (v,u) ∈ A; and the inward star N−(v)
of v consists of the nodes u ∈V such that (u,v) ∈ A.

3.2 Transformation flows

I am going to approximate the movement of commodities over the arcs of the process net-

work by means of a continuous flow: for each commodity k ∈ K and arc (u,v) ∈ A let f k
uv

be the flow (quantity of commodity per time unit) of k over (u,v). The concept of flows is

well known in the study of networks. If no commodity transformation occurs at nodes, then

the flow conservation principle states that flow is conserved across nodes, compatibly with

surplus capacity:

∀v ∈V ∑
u∈N−(v)

fuv − ∑
u∈N+(v)

fvu = ωv. (2)

In multi-commodity flow networks, the flow conservation principle holds for each separate

commodity:

∀v ∈V,k ∈ K ∑
u∈N−(v)

f k
uv − ∑

u∈N+(v)

f k
vu = ωk

v . (3)

In the present case, the natural extension of Eq. (2)-(3) is the following:

∀v ∈V,k ∈ K ∑
h∈K

πhk
v

(

ωh
v + ∑

u∈N−(v)

f h
uv

)

− ∑
u∈N+(v)

f k
vu = ωk

v . (4)

Eq. (4) says that at each process node v, the amount of commodity k consists of whatever is

transformed into k from every commodity h (either as a surplus at v or arriving on each arc

incident to v), plus whatever quantity of k is a surplus at v.

I shall thus formally define a process network as a quadruplet (G,K,π,ω) where G =
(V,A) is a digraph, K is a set, π : V ×K2 → [0,1] and ω : V ×K → R+ are two scalar

functions. In physical processes, the transformation factor πhk
v can neither be negative, nor

be greater than one. Moreover, the function π must be such that:

∀m ∈ N,k = (ki | i ≤ m) ∈ Km
,v = (vi | i ≤ m) ∈V m

(v1 = vm ∧{(vi,vi+1) | i < m} ⊆ A) → πk1k2
v1

· · ·πkmk1
vm

≤ 1. (5)
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Eq. (5) asserts that no iterated transformation over a cycle in G can result a cumulative

transformation factor that is greater than one.

Definition 1 (Transflow) A transformation flow (also called transflow) over a process net-

work N = (G,K,π,ω) is a function A :→ R satisfying the transflow equations (4).

3.3 Resource limits

The activity of a supply chain is obviously limited by available resources. These constraints

can be enforced rather naturally by means of generalized budget constraints, either on arcs

or on nodes of the network. For arcs (u,v) and each commodity k, consider an operator

γk
uv : A → R and a scalar Ck

uv ∈ R. The arc budget constraints are:

∀(u,v) ∈ A γk
uv( f k

uv)≤Ck
uv. (6)

For nodes v, let β k
v : V → R and Bk

v ∈ R. The node budget constraints are:

∀v ∈V,k ∈ K β k
v

(

ωk
v + ∑

u∈N−(v)

f k
uv

)

≤ Bk
v. (7)

In their simplest form, both γ and β can simply be multiplicative constants — this is appro-

priate when the resource measures are proportional to the quantity of commodity. Budget

constraints (7) may be aggregated over sets of nodes, as required by the exact nature of

the problem. If arcs represent the movement of commodity over a route network, the arc

measure often involves transportation capacity (for example number of lorries required to

transport each commodity unit); capacity constraints (6) can be aggregated over different

commodities sharing the same link. Node measures often involve the cost of transforming a

commodity unit.

3.4 Quality requirements

Quality measures are defined in function of the quantities of processed commodities may

give rise to generalized quality constraints over arcs and nodes. These are formally very

similar to Eq. (6)-(7), with the ≤ relation operator replaced by a ≥. Quality measures may

include minimum amount of output commodities that the market needs, desirability, and so

on.

3.5 Objective functions

Generalized budget and quality constraints may also be cast in the form of objective func-

tions: one may wish to minimize the operations costs, instead of limit them from above; or

to maximize the quality of the output products, instead of bounding them from below.
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4 Optimizing the chain

In Sect. 3, I introduced transflows and their corresponding constraints. These are mathe-

matical expressions involving the symbols f ,π,ω,β ,γ,B,C. In order to define optimization

problems over transflows, one must clearly identify which symbols are decision variables,

and which are parameters. The latter encode the input of the problem, whilst the former will

be assigned values by the optimization algorithms tasked with solving the problem (in other

words, they represent the problem output).

The transflow framework is general enough to accommodate several practical optimiza-

tion problems arising in the literature. For example, if f are decision variables and the other

symbols are parameters, one obtains a transflow routing problem: only the routing of com-

modities is to be determined optimally. If f ,ω are decision variables, one also decides on the

allowable surplus at each node. Deciding π controls the efficiency level of the transforma-

tions. Deciding B,C is related to sensitivity analysis: what is the tightest possible resource

limit (or quality requirement)? Deciding β ,γ might be useful in planning situations, during

the conception of the infrastructure linked to the supply chain.

In the rest of the section, I shall give examples of transflow problems, i.e. optimization

problems arising from transflows. I will employ the language of Mathematical Program-

ming (MP) in order to describe the optimization problems formally: MP problems consist

of a set of parameter symbols encoding the input data; a set of decision variable symbols

encoding the solution after the optimization process has taken place; one or possibly more

objective functions to be optimized, and zero or more constraints to be satisfied. Objective

and constraints are expressed by means of mathematical expressions, having parameters and

decision variables as arguments. I shall also make use a very simple, illustrative process net-

work example, shown in Fig. 5. Node 1 represents a plant, where some kind of material

transformation occurs, nodes 2-5 represent input stock nodes, and nodes 6-9 represent out-

put stock nodes. The material flow follows the arrows from nodes 2-5 into node 1, and from

node 1 out to nodes 6-9.

2

1

6 7 8 9

3 4 5

Fig. 5 A simple process network with one transformation plant.
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4.1 Relations to other known problems

Transflow problems are generalizations of several other types of problems found in the MP

literature. They can be seen as multicommodity flow problems [14] with a variable set of

origin/destination nodes. The variant with fixed percentages, and limited to a single plant,

can be seen as a mixing/blending problem, one of the classic applications of LP [10]. The

variants which decide percentages (Sect. 4.4) are close to pooling problems [1,3,18,9]. The

time-dependent variants (Sect. 5) are close to discrete-time dynamic network flows [2]. In

the time-expanded setting, the node surplus variables ω can also be used to partly address

delays at nodes (in which case they may be considered as denoting “storage at a node”),

which may arise in dynamic network flows [16].

4.2 Routing optimization

The first MP I will present decides the optimal routing of different transflows through the

process network N = (G,K,π,ω), where G = (V,A) is a digraph. Let φ : A×K → R be a

function such that φ k
uv is the cost routing one unit of commodity k ∈K over the arc (u,v)∈ A.

For each k ∈ K, let us also consider two subsets Sk,T k of nodes in V , called respectively

sources and targets or destinations of the commodity k. Source nodes are also sometimes

called production nodes, and target nodes are also sometimes called demand nodes. Source

nodes have no incoming flow of commodity k, and target nodes have no outgoing flow of

commodity k. In this example, I assume for simplicity that process nodes (i.e. all nodes that

are not sources or targets) have no surplus capacity. Given source levels sk
v for commodity k

and source vertex v ∈ Sk, and demand levels dk
v for commodity k and target vertex v ∈ T k,

the MP is as follows.

min
f ,ω

∑
(u,v)∈A

k∈K

φ k
uv f k

uv

∀k ∈ K,v ∈ Sk ωk
v = sk

v

∀k ∈ K,v ∈ T k ωk
v = dk

v

∀k ∈ K,v ∈V r (Sk ∪T k) ωk
v = 0

∀k ∈ K,v ∈ Sk,u ∈ N−(v) f k
uv = 0

∀k ∈ K,v ∈ T k,u ∈ N+(v) f k
vu = 0

f is a transflow.















































(8)

The MP formulation in Eq. (8) is a Linear Program (LP), for which efficient solutions

methods exist, capable of determining, in polynomial time: (a) whether the given instance is

bounded or not; (b) whether the given instance is feasible or not; (c) in the case of a bounded

feasible instance, its optimal solution f ∗ [24]. This implies that one can efficiently determine

whether a given supply chain problem is sustainable or not: if the transformation occurring

in the process nodes does not satisfy the conservation of transflow, then running the plant

indefinitely will accumulate an infinite amount of surplus commodity in those process nodes

where

∑
h∈K

πhk
v ∑

u∈N−(v)

f h∗
uv < ∑

u∈N+(v)

f k∗
vu

(recall that we assumed ωk
v = 0 at all process nodes).
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Example 2 Consider the network in Fig. 5 with four commodities: K = {1,2,3,4}. Let

nodes 2,3 be sources for commodity 1 at source level 1, let nodes 4,5 be sources for com-

modity 2 with source level 1, let nodes 6,7 be targets for commodity 3 with demand level 1,

and nodes 8,9 be targets for commodity 4 with demand level 1. The process node 1 trans-

forms one unit of commodity 1 into one unit of commodity 3 and one unit of commodity 4,

and the same holds for commodity 2. Formally:

1. S1 = {2,3}, S2 = {4,5}, T 3 = {6,7}, T 4 = {8,9} (all other Sk,T k are set to ∅);

2. π13
1 = π14

1 = π23
1 = π24

1 = 1 (all other πhk
v are set to 0);

3. s1
2 = s1

3 = s2
4 = s2

5 = d3
6 = d3

7 = d4
8 = d4

9 = 1 (all other sk
v and dk

v are set to 0).

Does there exist a transflow f satisfying Eq. (8)? Since s1
2 = s1

3 = 1, there are two units of

commodity 1 entering node 1, and by π13
1 = π23

1 = 1 these two units of commodity 1 are
transformed into two units of commodity 3 at node 6, which are too many since there is a
unit demand for commodity 3 at node 6. Although the small size of this example makes it is
easy to establish infeasibility, this is much more complicated if the network size increases.
The same conclusion can be reached for any unsustainable instance by solving Eq. (8) and
observing its infeasibility. In this case, I used AMPL’s pre-solving procedure [11], to get:

presolve, variable f[2,1,2]:
impossible deduced bounds: lower = 0, upper = -2
presolve, variable f[4,1,1]:
impossible deduced bounds: lower = 0, upper = -2
presolve, variable f[4,1,1]:
impossible deduced bounds: lower = 0, upper = -2
presolve, variable f[4,1,1]:
impossible deduced bounds: lower = 0, upper = -2
Infeasible constraints determined by presolve.

In order to obtain a sustainable process network, the availability at the source nodes can

be limited to smaller values, or the process at node 1 can be changed so that π13
1 = π14

1 =
π23

1 = π24
1 = 0.5. The corresponding solution is shown in Fig. 6. ⊓⊔

2

1

1(1)

6

1(3)

7

1(3)

8

1(4)

9

1(4)

3

1(1)

4

1(2)

5

1(2)

Fig. 6 A sustainable process network. Arc labels are f ∗(k), where f ∗ is the value of the optimal flow, and k

is the commodity index.
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Example 3 Modelling the network in Example 2 without transflows can be done as follows:

for all k ∈ K,v ∈V let xk
v be the quantity of commodity k at node v. Then the constraints

∀k ∈ K,v ∈ Sk xk
v ≤ sk

v (9)

∀k ∈ K,v ∈ T k xk
v ≥ dk

v (10)

∀k ∈ K,v ∈V r (Sk ∪T k) xk
v ≤ ∑

h∈K

πhk
v ∑

u∈N−(v)

xh
u (11)

are the (unsustainable) standard way to model the process. The solution x given by:

– x1
2 = x1

3 = x2
4 = x2

5 = 1

– x3
1 = x4

1 = 2

– x3
6 = x3

7 = x4
8 = x4

9 = 2

– all other xk
v are set to 0

is evidently feasible for Eq. (9)-(11), but it is not sustainable, since the constraints of Eq. (10)

have a nonzero slack at x, which implies the existence of unaccounted waste. ⊓⊔

4.3 Necessity or usefulness?

Example 3 shows that modelling by transflows links the question of sustainability to the

feasibility of the problem: a SD-aware solver would reject outright any set of data for which

the supply chain network produces waste. By having decision support software refuse to

provide a solution for such instances, it is hoped that decision-makers will be made more

aware about SD issues.

Are transflows really necessary, however? Mathematically, the fundamental difference

between the models in Examples 2 and 3 is between equations and inequalities. Whereas the

former accounts for all types of waste (which are seen as commodities), the latter does not.

Although this is a very basic principle, and, for experienced mathematical programmers, not

a very deep one, in my experience both academics and practitioners often model problems

using inequalities rather than equations whenever possible. This partly justifies transflows

as a useful modelling tool.

Transflows, however, achieve considerably more than just replace inequality with equa-

tions. I mentioned in the introduction that rewriting demand constraints such as “production

≥ demand” as “production + waste = demand” does not suffice to settle the SD issue in

supply chain network modelling. Consider a constraint xk
v +wk

v = dk
v , where x is the quantity

of commodity k at node v, dk
v is the demand for commodity k at v, and wk

v is the corre-

sponding waste. Usually, the cost for waste is positive, so that wk
v will be minimized: if the

cost is large, chances are that wk
v = 0 at the solution, which yields a sustainable process:

but there is no guarantee that this will be the case. Quite on the contrary, because often the

costs associated to waste are borne by society as a whole and thus difficult to quantify, it is

possible that waste variables will take nonzero values at the optimum. This is why I believe

that modelling by transflows is not only useful, but actually necessary for SD purposes.

4.4 Deciding percentages

The above routing model is appropriate for certain types of transformation processes, but

not for others. When exploiting the mass balance of the transformation of coal, for example,

the following holds:
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1 coal −→ 0.05 tar + 0.015 benzol + 500 methane

This means that one unit of coal is transformed into 0.05 units of tar and 0.015 units of

benzol, and 500 units of methane. Transflows with fixed π’s can be used for exactly this

purpose. Consider another type of transformation process, occurring in the dairy industry:

some fraction of the input milk is pasteurised, another is transformed into cheese, yet an-

other into butter, and the rest is sold to other industries. Instead of only deciding how much

milk should flow into the transformation plant, the values for these fractions should also be

decided optimally. To this purpose, I introduce the fraction phk
v of commodity h to be trans-

formed into commodity k at process node v, as an additional decision variable, and rewrite

the transflow conservation Eq. (4) as:

∀v ∈V,k ∈ K ∑
h∈K

phk
v

(

ωh
v + ∑

u∈N−(v)

f h
uv

)

− ∑
u∈N+(v)

f k
vu = ωk

v (12)

∀v ∈V,h ∈ K ∑
k∈K

phk
v = 1 (13)

This is essentially the same as considering π as decision variables in Eq. (4). The resulting

MP, under similar assumptions as that of Eq. (8), is:

min
f ,p,ω

∑
(u,v)∈A

k∈K

φ k
uv f k

uv

∀k ∈ K,v ∈ Sk ωk
v = sk

v

∀k ∈ K,v ∈ T k ωk
v = dk

v

∀k ∈ K,v ∈V r (Sk ∪T k) ωk
v = 0

∀k ∈ K,v ∈ Sk,u ∈ N−(v) f k
uv = 0

∀k ∈ K,v ∈ T k,u ∈ N+(v) f k
vu = 0

f , p,ω satisfy Eq. (12)-(13).















































(14)

Because of the products between p and f in Eq. (12), The MP formulation (14) is a non-

convex Nonlinear Program (NLP), which can only be solved using appropriate algorithms,

such as spatial Branch-and-Bound (sBB) [5].

Example 4 The sustainable process network of Example 2 can be tested using the COUENNE

solver [5]. The solution is exactly the same as shown in Fig. 6, with p13
1 = p14

1 = p23
2 = p24

2 =
0.5. Example 3 can be adapted to this setting to show how modelling with inequalities yields

an unsustainable solution. ⊓⊔

A limitation of the sBB algorithm is that it cannot certify optimality and infeasibility

exactly, but only approximately to within a given ε tolerance. Luckily, however, the math-

ematical form of Eq. (14) is special, in that it can be reformulated exactly [17] to an LP.

Define two new sets of variables x : V ×X → R and z : V ×K ×K → R defined as follows.

∀v ∈V,k ∈ K xk
v = ωk

v + ∑
u∈N−(v)

f k
uv (15)

∀v ∈V,h,k ∈ K zhk
v = phk

v xh
v . (16)

Now multiply Eq. (13) by xh
v , for all v ∈ V,h ∈ K, and use Eq. (16) to replace the resulting

bilinear terms phk
v xh

v by zhk
v . This yields:

∀v ∈V,h ∈ H ∑
k∈K

zhk
v = xh

v . (17)
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Moreover, using the same replacement of bilinear terms, the nonlinear transflow conserva-

tion equations Eq. (12) become:

∀v ∈V,k ∈ K ∑
h∈K

zhk
v = ωk

v + ∑
v∈N+(v)

f k
uv. (18)

Consider now the MP given by:

min
f ,p,x,z,ω

∑
(u,v)∈A

k∈K

φ k
uv f k

uv

∀k ∈ K,v ∈ Sk ωk
v = sk

v

∀k ∈ K,v ∈ T k ωk
v = dk

v

∀k ∈ K,v ∈V r (Sk ∪T k) ωk
v = 0

∀k ∈ K,v ∈ Sk,u ∈ N−(v) f k
uv = 0

∀k ∈ K,v ∈ T k,u ∈ N+(v) f k
vu = 0

f , p,x,z,ω satisfy Eq. (13),(15)-(18).















































(19)

A MP formulation Q is an exact reformulation of another MP formulation P if there

exists a mapping φ from the set G (Q) of global optima of Q onto the set G (P) of those of

P. An exact reformulation Q is useful if it is easier to solve than P is.

Theorem 5 If f ,ω ≥ 0, Eq. (19) is a useful exact reformulation of Eq. (14).

Proof Let ( f ,ω,x,z) be an optimal solution of Eq. (19). First, remark that by f ,ω ≥ 0 and

Eq. (15), we have x ≥ 0, which by Eq. (16) also implies z≥ 0. For all v ∈V and h,k ∈ K such

that xh
v > 0, we define phk

v =
zhk
v

xh
v

; whenever xh
v = 0, we define phk

v = 0. This satisfies Eq. (16).

Since Eq. (19) was obtained from Eq. (14) by replacing the bilinear terms in p, f with the

variables z, Eq. (12) holds, which implies that ( f ,ω, p) is feasible for Eq. (14). Since the

objective function only depends on f , ( f ,ω, p) is also optimal for Eq. (14). Usefulness

follows because Eq. (14) is a nonconvex NLP, whereas Eq. (19) is an LP.

Notice that Thm. 5 can be generalized to hold independently of the constraints fixing the

values of ω in source, target and process nodes in Eq. (14) and Eq. (19). Moreover, the

restriction on f ,ω to be nonnegative simply reflects physical reality: negative flows really

correspond to positive flows on an inverse arc, and negative surplus (deficit) really corre-

sponds to a demand.

A partial converse of Thm. 5 also holds.

Proposition 6 Eq. (14) is an exact reformulation of Eq. (19).

Proof Given an optimal solution ( f ,ω, p) of Eq. (14), use Eq. (15)-(16) to define a unique

solution ( f ,ω,x,z) that is by definition both feasible and optimal in Eq. (19).

Example 7 Reformulating Example 4 according to Thm. 5 and solving the resulting MP

formulation using the CPLEX [13] solver yields the same solution as in Example 4. ⊓⊔

4.5 Multiple inputs

Some transformations require more types of input that transform as a whole. For example,

the mass balance of the transformation of methane is based on the following:
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1 CH4 + 2 O2 −→ 1 CO2 + 2 H2O. (∗)

In this setting, the parameters πhk
v as defined above make no sense, because h,k range over

the set K of commodities, whereas in (∗) sets of commodities transform together. To address

the issue, h,k are re-defined to take values in the set P(K) of all subsets of commodities

(i.e. the power set of K). Not all subsets of K need be taken into account, according to the

definition below.

Definition 8 A multiple input transflow process is a quadruplet H = (H−,H+, p−, p+) such

that H−,H+ ⊆ K, p− : H− → R+ and p+ : H+ → R+.

By the above definition I mean to encode with H− the set of commodities entering the

process with proportions given by p− and transforming as a whole into the output set H+ of

commodities proportioned according to p+.

Example 9 In the methane transformation (∗) above, the quadruplet (H−,H+, p−, p+) given

by H− = {CH4,O2}, p−(CH4) = 1, p−(O2) = 2, H+ = {CO2,H2O}, p+(CO2) = 1 and

p+(H2O) = 2 is a multiple input transflow process. ⊓⊔

At each process node v ∈ V , many different multiple input transflow processes H =
(H−,H+, p−, p+) may be active at the same time: denote the set of all such processes by

Hv. Given a multiple input transflow process H, the multiple input transflow conservation

equations are as follows:

∀v ∈V,k ∈ K xk
v = ωk

v + ∑
u∈N−(v)

f k
uv (20)

∀v ∈V,k ∈ K yk
v = ωk

v + ∑
u∈N+(v)

f k
vu (21)

∀v ∈V,H ∈ Hv ∑
k∈H−

p−k xk
v = ∑

k∈H+

p+k yk
v. (22)

Using Eq. (20)-(22) as constraints, define a MP formulation P similar to Eq. (8) but with

the transflow conservation equations replaced by the multiple input transflow conservation

equations. Since these are linear, the resulting MP is a LP.

Example 10 Consider the methane transformation (∗) at node 1 of the process network of

Fig. 5. Commodities are encoded as follows: CH4 ↔ 1, O2 ↔ 2, CO2 ↔ 3, H2O ↔ 4; H1

simply consists of the multiple input transflow process given in Example 9. The source level

sk
v of commodity k at node v is defined as follows: s1

2 = 10, s1
3 = 15, s2

4 = 40, s2
5 = 10. Solving

the formulation using CPLEX yields the solution shown in Fig. 7. It is easy to see that the

output level of H2O is twice that of CO2. Again, Example 3 can be adapted to this setting to

show how a different modelling may bring about an unsustainable solution. ⊓⊔

4.6 Chemical balances

Chemical reactions also produce energy. For example, the methane transformation (∗) also

produces around 891 kJ. We cannot, however, integrate this energy production into a trans-

flow equation CH4 + 2O2 = CO2 + 2H2O+ 891 kJ. From a chemical point of view, mass

and energy balances must give rise to two separate equations: the interpretation of the trans-

formation
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Fig. 7 The methane transformation process.

1 CH4 + 2 O2 −→ 1 CO2 + 2 H2O + 891 kJ (†)

is not that a part of the mass of methane and oxygen is used to produce energy, but rather that

a purely mass-related transformation occurs, which gives rise to a new commodity, namely

energy. Mathematically, the surplus variable corresponding to the energy source depends on

a nonlinear function of other decision variables, as shown in Eq. (24)-(25) below.

Of course, the energy yielded by chemical transformations really does correspond to

mass according to the theory of relativity. However, I believe that using multiple input trans-

flow processes using the equivalence between mass and energy would result in extremely

badly scaled constants in the resulting LP (recall that E = mc2).

I shall therefore think of the energy unit measure, kJ, as a new commodity having as

source node the process node of the chemical transformation.

Definition 11 A chemical transflow process is a 8-tuple H =(H−,H+, p−, p+,J−,J+,q−,q+),
such that H−,H+,J−,J+ ⊆ K, p− : H− → R+, p+ : H+ → R+, q− : J− → R+, q+ : J+ →
R+, and J−∩ J+ =∅.

The head 4-tuple (H−,H+, p−, p+) in a chemical transflow process H (call it H ′) is a multi-

ple input transflow process (see Defn. 8). The interpretation of tail 4-tuple (J−,J+,q−,q+)
(call it H ′′) is as follows:

– J− is the set of commodities that are needed to engender (or are absorbed by) the multi-

ple input transflow process H ′;

– J+ is the set of commodities that are produced as by-products of (or originate from) the

multiple input transflow process H ′′;

– q−, similar to p−, encodes the proportions of commodities in J−;

– q+, similar to p+, encodes the proportions of commodities in J+.

Example 12 Consider Example 9, and call H ′ its multiple input transflow process; let H ′′

be the 4-tuple given by J− = ∅, J+ = {kJ}, q− be the empty function, and q+(kJ) = 891.

Then the 8-tuplet H formed by the components of H ′ followed by those of H ′′ is a chemical

transflow process describing (†). ⊓⊔

As in the previous section, I subscript chemical transflow process symbols with the index

of the network process node they correspond to. A commodity k ∈ J−v is therefore absorbed
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by a transformation at the process node v. Accordingly, define a new target:

ωk
v = ∑

u∈N−(v)

f k
uv. (23)

Similarly, a commodity k ∈ J+v originates from a transformation at the process node v. Ac-

cordingly, define a new source:

ωk
v = ∑

u∈N+(v)

f k
vu.

Lastly, I shall enforce the fact that the quantities of commodities in J−,J+ are proportional

to the coefficients in the given chemical transformation recipe (such as (†)). Thus, given any

h ∈ H−,

∀v ∈V,H ∈ Hv,k ∈ J−
ωk

v

q−k
=

xh
v

p−h
(24)

∀v ∈V,H ∈ Hv,k ∈ J+
ωk

v

q+k
=

xh
v

p−h
. (25)

A MP (of the LP type) for chemical transflow process can be obtained by replacing the

transflow conservation equations in Eq. (8) by the constraints given by Eq. (20)-(22) and

Eq. (23)-(25).

Example 13 Consider the chemical transformation (†) at node 1 of the process network

of Fig. 5. Use the same encoding for commodities and the same multiple input transflow

process and data defined in Example 10. Add an energy commodity kJ (indexed as 5), with

an additional target node 10 with d5
10 = 22275. The chemical transflow process based MP is

solved using CPLEX, which yields the solution shown in Fig. 8. Again, Example 3 can be

2
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10(1)

6

5(3)

7

20(3)

8

20(4)
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30(4)
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22275(5)
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4

40(2)

5

10(2)

Fig. 8 The chemical transformation process for methane.

adapted to this setting to show how a different modelling may bring about an unsustainable

solution. ⊓⊔
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4.7 Real-life application of transflows

The above ideas are generalizations of application work I carried out some years ago with

M. Bruglieri. We were commissioned the task of computing the optimal cost of planning

and then running a biomass-based energy production process, in view to argue in favour

of new investor funding for our clients. More precisely, we had to define a minimum cost

transportation network connecting several transformation plants with biomass production

sites, in such a way as to optimize the energy yield, as well as to satisfy several technical

and financial constraints. Initially, we tried to conceive a formulation based on classical

multi-commodity network flows; none of these attempts gave rise to an accurate model. We

later realized that the network transformed flows according to the mass balance equations

called “transflow equations” above, and successfully implemented a MP formulation based

on these concepts. The details can be found in [6,7].

A further interesting feature of this problem is that certain transformation process sites

explicitly modelled for waste, because certain types of waste can be recycled, and thus

appear with a negative cost (i.e. a positive revenue) in the objective function. This further re-

inforces the case for necessity of transflows in SD: going back to the discussion of Sect. 4.3,

the slack-based equality constraints xk
v +wk

v = dk
v (for a process node v and a commodity

k) would impose no bound to the waste wk
v. Whenever waste has a positive revenue coeffi-

cient, the network process might try to maximize the production of waste at a certain site.

If the modeller has not explicitly catered for this, or has overestimated the waste revenue,

the optimal solution might simply state to maximize the production of waste (which is very

likely not what is being sought). Transflows provide an appropriate tool to deal with these

situations, since waste is modelled as any other commodity.

5 Time-dependent transflows

As mentioned in Sect. 1, time appears in some MP formulations arising in economics,

scheduling, transportation, and other industrial settings. All the transflow optimization for-

mulations above deal with a steady state. Assuming the production process (e.g. a chemical

reaction) does not depend on time, this is a reasonable assumption, and transflows will guar-

antee sustainability to the extent that unaccounted waste is mathematically infeasible. In

practice, however, input data such as e.g. demand does depend on time. Moreover, for most

industrial problems, data will become available at certain timesteps, rather than being sup-

plied as a continuous function of time.

5.1 Limitations of steady-state transflows

The simplest solution to the time dependence of data is to solve a sequence of steady state

transflow problems, one at each timestep. This has two main drawbacks. The first, and in my

opinion the least, is that if the timesteps are too close, the time available to a computational

system for finding a real-time solution to the problem may be insufficient. The second is

far more serious: steady-state solutions do not account for the fact that a limited amount of

waste may be acceptable, provided it is eventually disposed of. In other words, a sequence

of steady-state problems would result in infeasibility across the whole sequence, because

the only feasible way to dispose of the waste is to produce it at a certain time and dispose
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of it at another (e.g. when an appropriate facility becomes available). Examples 2 and 14

provide an illustration of this fact.

Time-dependent transflow optimization also addresses a further layer of decisions in

transformation processes: the scheduling of activities. By contrast, in steady state formula-

tions we decide the activities but not their scheduling. From a purely formal point of view, a

sequence of activities can be turned into a set of activities by simply projecting time away,

but not every set of activities corresponds to a feasible sequence, given the scheduling con-

straints. The upshot is that an optimal solution of a steady-state formulation might not cor-

respond to any feasible schedule.

5.2 Time-expanded networks

There is a graph product operation which can be applied to a transflow network G = (V,A)
in order to turn it into a time-dependent one G = (V ,A ). Let T = {1, . . . , tmax} be a fi-

nite timestep index set. Then V is the set of couples (v, t), where v ∈ V and t ∈ T , and

((u, t1),(v, t2)) ∈ A if and only if either t1 = t2 and (u,v) ∈ A, or if u = v and t2 = t1 + 1.

More succinctly, if T = (T,{(t−1, t) | t ∈ T r{1}}), then G = G×T. Note that this models

the simplest situation where all activities take one timestep to complete. Longer activities

can be modelled by requiring the presence of arcs ((u, t − k),(u, t)) in A for some k > 1,

and appropriate u ∈V, t ∈ T .

This operation can be generalized to a non-complete extended p-sum (NEPS) [8, Sect. 2.5]

so that A can be specified more precisely. When a time-dependent network is obtained by

a product-like operation on a steady-state network, it is usually called a time-expanded net-

work (see Fig. 9 for an example).

2 3 4 5

1

6 7 8 9

10

11 12 13 14

15 16 17 18

t = 1 t = 2

Fig. 9 The network G from example of Fig. 5 in a graph product with T = ({1,2},{(1,2)}).

A transflow f : A → R defined on a time-expanded network of the simplest type (i.e. a

graph product) models a commodity which travels through the network in either of the two
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components G,T. An arc in A has either the form ((u, t),(v, t)) (the transportation arcs) or

the form ((v, t−1),(v, t)) (the time arcs) for u,v with (u,v)∈ A and some t > 1. Accordingly,

f kt
uv describes a flow of commodity k through the arc ((u, t),(v, t)) if u 6= v (a flow in the

steady-state component G), or a commodity flow through the arc ((v, t−1),(v, t)) if u = v (a

flow in the time component T). Informally, this allows a commodity to move in space on G

and in time on T.

As briefly mentioned above, the assumption underlying the simplest graph product model

is that all time movement takes a unit timestep to occur. If this assumption is unrealistic, a

carefully constructed NEPS can address the issue, for example by requiring arcs in A be-

tween t and t+1, . . . , t+r for a given time offset r in the time component, and in a given disc

in the space component. Notice that in this generalization, flow variables should be indexed

differently (e.g. f
kt1t2
uv ), to account for the fact that not all time-indexed arcs join immediately

successive timesteps t and t +1.

5.3 Sustainability for time-dependent transflows

I shall only illustrate how to generalize the basic transflow equations Eq. (4) to time depen-

dence. The corresponding generalizations for Sect. 4.4-4.6 are similar.

First, we index relevant parameter and decision variable symbols by the timestep t,

i.e. ωk
v , f k

uv become arrays of symbols having components ωkt
v , f kt

uv respectively, for each

t ∈ T0, where T0 = T ∪{0}. The zero timestep is used to relate quantities at timestep t to

timestep t − 1 for each t ∈ T . All decision variable symbols indexed at t = 0 (or, more in

general, at timesteps where the network status is known) can optionally be fixed to certain

given parameters called boundary conditions. Infinite time horizons can also be modelled as

long as they are cyclic, by requiring that the network status at the final timestep is equal to

the network status at some intermediate timestep (most usually the initial timestep, but this

need not be necessary).

The time-dependent version of Eq. (4) simply adds the appropriate flows from the new

arcs ((v, t −1),(v, t)) in the expanded network:

∀v ∈V,k ∈ K, t ∈ T ∑
h∈K

πhk
v

(

ωht
v +ωh,t−1

v + ∑
u∈N−(v)

f ht
uv

)

=

= ωkt
v +ωk,t−1

v + ∑
u∈N+(v)

f kt
vu. (26)

Example 14 The generalization of Example 2 (which is infeasible in a steady state setting)

to a time-dependent setting, when the sources are only active at t = 1 but the target demands

must be satisfied at both t = 1 and t = 2 yields a feasible solution, shown in Fig. 10. Dotted

arcs indicate unused transportation arcs ((u, t),(v, t)), light-colored dashed arcs indicated un-

used time arcs ((v, t −1),(v, t)). Dashed arcs indicate a flow (denoted as units[commodity])
along time arcs. Line arcs indicate a flow (denoted as units(commodity)) along transporta-

tion arcs.

The solution uses the source nodes 4,5 at time t = 1 and transforms the two units of

commodity 2 into two units of commodity 3 and two of commodity 4, which arrive at the

four target nodes 6,7,8,9. The surplus units of commodity 1 are stored at source nodes 1,2

and used at time t = 2 in a similar way. ⊓⊔

Notice that time-dependency also allows us to define power on, ramp up and power off

costs for plants [27] by means of suitable binary variables indexed by node and timestep.
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1(1)

1(3) 1(3) 1(4) 1(4)

1[1]

1(3) 1(3)1(4) 1(4) 1(1)

1[1] 1(2) 1(2)

(1,1)

(2,1) (3,1) (4,1) (5,1)

(6,1) (7,1)(8,1) (9,1) (1,2)

(2,2) (3,2) (4,2) (5,2)

(6,2) (7,2) (8,2) (9,2)

Fig. 10 Feasible solution of the time-dependent generalization of Example 2.

6 Conclusion

In this paper I argue that the term “optimization and sustainable development” really defines

a class of very diverse problems with no discernible underlying mathematical principle.

Using a more specific definition of the term, i.e. optimization in connection with a form

of development that can last forever, I propose a set of mathematical programming related

modelling techniques based on the concept of transformation flows, an extension of multi-

commodity flows which involves the transformation of incoming flow into outgoing flow

of different type at selected process nodes. Such equations in principle allow solvers to

detect (by infeasibility) when a supply chain fails to account for all input commodities in a

transformation process. Feasible transflow processes are formally defined to be sustainable,

in the sense of the process lasting indefinitely under unchanging conditions.
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