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Andrea Cassioli1, Oktay Günlük2, Carlile Lavor3, Leo Liberti2,4

1 MOSEK ApS, Fruebjergvej 3 2100 Copenhagen, Denmark
Email:andrea.cassioli@mosek.com

2 IBM Research, Yorktown Heights, 10598 NY, USA
Email:{gunluk,leoliberti}@us.ibm.com

3 Dept. of Applied Math. (IMECC-UNICAMP), Univ. of Campinas, 13081-970, Campinas – SP,
Brazil
Email:clavor@ime.unicamp.br
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Abstract

When a weighted graph is an instance of the Distance Geometry Problem (DGP), certain types of
vertex orders (called discretization orders) allow the use of a very efficient, precise and robust discrete
search algorithm (called Branch-and-Prune). Accordingly, finding such orders is critically important
in order to solve DGPs in practice. We discuss three types of discretization orders, the complexity
of determining their existence in a given graph, and the inclusion relations between the three order
existence problems. We also give three mathematical programming formulations of some of these
ordering problems.
Keywords: molecular conformation, protein, DDGP, DMDGP, re-order, Branch-and-Prune.

1 Introduction

The Distance Geometry Problem (DGP) is as follows: given a positive integer K and a simple,
undirected, nonnegatively weighted graphG = (V,E, d), where d : E → R+, find a realization x : V → RK
such that:

∀{u, v} ∈ E ‖xu − xv‖2 = duv. (1)

If G is disconnected then realizing G is the same as realizing its connected components, so we assume G
is connected.

Solution methods for the DGP generally involve a search in continuous space [19]. On the other hand,
several applications of DGP supply some guarantees on the sparsity structure of the input graph, which
may in turn imply graph rigidity. The solution set is then a finite subset of a Euclidean space, which
allows for remarkable performance improvements of the solution algorithms. Many methods are iterative
in nature: they assume a small subset of vertices have known positions, and try and infer the position of
the rest of the vertices in some order. Thus, vertex orders play an important role. Trilateration orders, for
example, guarantee that every vertex beyond the first K+1 is adjacent to at least K+1 predecessors [7].
This makes it possible to exactly triangulate the position of each next vertex. This implies a polynomial
time algorithm and a unique solution modulo translations and rotations.

The main focus of this paper is to determine the worst-case complexity class of many vertex ordering
problems used in algorithms for solving the DGP on certain rigid graphs. We also propose and test three
Mixed-Integer Linear Programming (MILP) formulations for solving such vertex ordering problems, and
empirically determine that they can only be useful for small-scale instances.
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1.1 Some applications of vertex orders

Vertex orders in graphs are of paramount importance in all sorts of applications, from graph search to
scheduling to graph drawing. The Depth-First Search (DFS) and Breadth-First Search (BFS) vertex
orders occur whenever a graph search algorithm is deployed [1]. One of the most celebrated problems
in combinatorial optimization, the Travelling Salesman Problem (TSP), asks for a certain order on the
vertices of a complete weighted graph. Tasks and their precedences are often represented as graphs in
scheduling, which yields partial or total vertex orders [9]. A vertex order is balanced if the neighbours of
every vertex v are as evenly distributed to the left and right of v as possible [2]: balanced orders are used
in graph drawing. Different vertex orders are also used to represent the adjacency matrix of graphs in a
meaningful way [28]. Dynamic programming type algorithms can be used to solve a large class of vertex
ordering optimization problems in “moderately exponential time” (i.e. the running time is asymptotically
exponential, but faster than exhaustive search), as shown in [3].

1.2 Vertex orders in protein conformation

The function of proteins is strongly related to their chemical composition and their three-dimensional
structure: proteins usually fold in space until they reach a stable configuration having low potential
energy. Finding their 3D structure is therefore an important task in pharmaceutical research. Many
approaches exist [31]: in this paper we adopt the point of view of distance geometry [4, 5, 27].

We represent a protein by means of a graph where vertices represent atoms and edges are present
if the distance between two adjacent atoms is known. Atomic distances may be known for chemical
or physical reasons, or because they were estimated using Nuclear Magnetic Resonance [32]. Proteins
consists of chains of amino acids, which come in twenty different types. Amino acids consist of a common
structure: a small chain starting with the amino group H3N, followed by the α carbon Cα (linked to
a hydrogen atom and to a side chain), followed by the carboxyl group COO−. Amino acids only differ
because of their side chains. The whole protein can then be seen as a backbone consisting of a chain
formed by the repeated common structures of each amino acid, and many dangling side chains. To a large
extent, the problem of finding a 3D realization of the protein can be decomposed into the subproblems of
realizing the backbone and, separately, the side-chains; and then try to combine the partial realizations
in a consistent way [30].

Protein backbones enforce an order on the atoms in the backbone. This order has some interesting
properties: we know the distance of each atom v to its predecessor v − 1, since covalent bond lengths
are known for chemical reasons. Since covalent bond angles are also known, for every triangle of three
consecutive atoms we know two of its side lengths and the angle between them: thus we can also compute
the length of its third side, i.e. the distance between v and v−2. Moreover, NMR can estimate all distances
up to a certain threshold (around 5.5Å), and it is known that distances between atom v and v − 3 are
always below this threshold, so the distance between v and v − 3 is also known. This order makes the
protein graph look like a chain of embedded cliques of size 4 (realized as 3-simplices), each sharing a
face with the preceding one, plus some other scattered edges called pruning edges. Pruning edges are
due to the fact that when a protein backbone folds in space, two atoms might come to be physically
close even though they are be very distant in terms of their ranks in the backbone order. In particular,
their Euclidean distance becomes known when it is below the NMR threshold. Orders were each vertex
is adjacent to three predecessors have been shown to yield rigid structures in early 1900s [11].

1.3 The Branch-and-Prune algorithm

This order was instrumental in devising a discrete method called Branch-and-Prune (BP) for finding the
3D realization of protein backbones [18]. Although the BP was not the first discrete method for this
problem [6], it was the first which could find all incongruent solutions to any given problem instance.
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Most methods previously proposed in the literature, by contrast, were searches in continuous space (see
[21] and references therein).

The principle behind the BP is that any 3D simplex on the vertices {v, v − 1, . . . , v − 3} (for some
vertex v) has two distinct realizations modulo translations and rotations: supposing that the 3D position
of vertices v − 1, v − 2, v − 3 is known, vertex v can be reflected across the unique plane containing
the points v − 1, v − 2, v − 3. So if we suppose that the first three atoms have known positions, we
can recursively place the remaining atoms by exploring each of the two possible positions at each step
(branching step). Those positions which are inconsistent with the distances assigned to the pruning edges
are pruned out (pruning step). This yields a method which is exponential in the worst case: if there
are no pruning edges, BP yields a binary tree with 2n−3 nodes, where n is the number of atoms in the
protein. It was recently shown in [20] that this order makes the BP a Fixed-Parameter Tractable (FPT)
algorithm.

1.4 Discretization of distance geometry problems

We generalize the backbone order to define an order for K-dimensional spaces: each vertex is adjacent to
at least K (rather than K+1) predecessors [19] (where, specifically for proteins in 3D space, K = 3). This
number of adjacent predecessors (K) is critical: any fewer, and the solution set might be uncountable in
general, since the graph may no longer be rigid [10]; any more, and the corresponding DGP subclass can
be solved in polynomial time via trilateration [7].

As discussed above, in protein graphs the adjacent predecessors of any vertex v immediately precede
v. This is an important feature: if v has K adjacent vertices that immediately precede v in the order,
they are called contiguous predecessors of v (those which follow v are called contiguous successors). [19].
In summary:

1. the first K vertices in the order form a clique;

2. each vertex with rank greater than K is adjacent to at least K predecessors, exactly K of which
are contiguous.

We call the class of DGP instances possessing these orders (and satisfying the strict triangular inequalities
on the edge weights [19]) the Discretizable Molecular Distance Geometry Problem in RK
(KDMDGP), and the orders themselves KDMDGP orders. In [14], the BP algorithm was extended to
the KDMDGP. In [25], it was shown that the BP algorithm could also be used for a larger class of
instances, the Discretizable Distance Geometry Problem (DDGP): the DDGP is the subclass of
DGP instances for which an order exists (called DDGP order) such that Requirement 1 above holds, and
a relaxation of Requirement 2 holds, where the K adjacent predecessors need not be contiguous. Both
the DDGP and the KDMDGP are NP-hard problems [25, 14], by reductions from Subset-Sum. It was
shown in [25] that KDMDGP ( DDGP (problem P is included in problem Q if the two problems have
the same input, and YES instances of P are also YES in Q).

Given a DDGP input graph, the problem of finding a DDGP order is at least as hard as Clique (the
problem of determining whether a graph has a clique of size K, which is itself NP-complete), since an
initial clique of size K must be found for the order to start. Finding the rest of a DDGP order, however,
is easier: there is an FPT algorithm to find DDGP orders whose time complexity depends exponentially
on K but polynomially on the graph size [13]. Since K is fixed to the constant 3 for proteins in 3D
space, this yields a polynomial time algorithm for finding DDGP orders on protein instances. One of
the new results proved in the present paper is that establishing the existence of a KDMDGP order is an
NP-complete problem, by reduction from Hamiltonian Path. Moreover, in contrast to DDGP orders,
we also prove that KDMDGP orders are hard to find for any fixed K.

Yet, the KDMDGP has two features that make it more convenient to handle with respect to the DDGP.
For protein instances, the fact that the BP algorithm need only consider K contiguous predecessors makes



2 NOTATION AND DEFINITIONS 4

it more likely that the distances between a vertex v and its K adjacent predecessors are well-scaled with
respect to one another. This decreases the incidence of numerical floating point error whilst solving linear
systems within the BP algorithm, which is a very desirable feature of the KDMDGP: we empirically found
that computational errors when using BP on DDGP instances sometimes made their solution impossible.
Moreover, in general, the symmetry structure of the KDMDGP is known [22], whereas the symmetry
structure of the DDGP is still unknown. This motivates the search for orders involving contiguous
adjacent predecessors, rather than just adjacent predecessors, even for DDGP instances. The compromise
proposed in [16] (limited to K = 3) is to allow the repetition of some selected vertices in the order, so that
at least K adjacent predecessors can always be chosen to be contiguous. Such orders are called repetition
orders (or re-orders). We call the class of DGP instances that can be discretized this way Re-order
Discretizable Distance Geometry Problem (RDDGP). Although hand-crafted periodic re-orders
were used in [16] to discretize entire protein backbones, the relationship between DDGP, RDDGP, and
KDMDGP was not investigated in depth.

1.5 Determination of vertex orders

Since these DGP variants only essentially differ in the vertex order they employ, we focus here on the
inclusionwise relations between the corresponding order existence problems: respectively, the problem
of finding a DDGP order, called1 the Trilateration Ordering Problem (TOP); the Re-Order
Problem (ReOP); and the problem of finding a KDMDGP order, called Contiguous TOP (CTOP).
Specifically, we show that CTOP ( ReOP ( TOP. From this relationship, the corresponding relation-
ship follows for KDMDGP, RDDGP, and DDGP.

1.6 Paper summary

The rest of this paper is organized as follows. In Sect. 2 we introduce some technical notation and
definitions. In Sect. 3 we prove that finding DDGP orders is NP-complete, and finding KDMDGP orders
and re-orders is NP-complete for any fixed K. The inclusion relationships between vertex discretization
ordering problems is discussed in Sect. 4. In Sect. 5 we discuss the issue of solving these problems in
practice, and propose three mathematical programming formulations for the CTOP.

2 Notation and definitions

Given a simple undirected graph G = (V,E), and sets E′ ⊆ E and V ′ ⊆ V , we denote by G[V ′] and
G[E′] the sub-graphs of G induced by V ′ and E′, respectively. For a graph G = (V,E) and a subgraph
H = (U,F ) of G, H is spanning if U = V .

We let NG(v) be the set of vertices adjacent to v in G, written N(v) if there is no ambiguity. For a
positive integer `, we let N `

G(v) be the set of vertices in V whose shortest path to v has exactly ` edges
(again, this is written N `(v) if there is no ambiguity). We extend N `

G to act on sets of vertices: let
W ⊆ V , then N `

G(W ) (also denoted N `(W ) if no ambiguity arises) is the set of vertices v ∈ V such that
the minimum over all the shortest paths to w ∈W contains exactly ` edges.

For a given total order relation < on V , we denote by γ(v) the set of predecessors of v, and by
ρ(v) = |γ(v)| + 1 the rank of v with respect of < in V . To simplify notation, if v ∈ V and p ∈ N, we
write v ± p, v > p and v < p to mean, respectively, ρ(v)± p, ρ(v) > p and ρ(v) < p. For each v ∈ V we
let U(v) = N(v) ∩ γ(v).

If β is a non-empty sequence of vertices in V containing a given vertex v ∈ V , then we may write β as

1This order is also called Discretizable Vertex Ordering Problem (DVOP) in [13, 19].



2 NOTATION AND DEFINITIONS 5

(β1, v, β2), where β1 is the sequence of all predecessors of v in β, and β2 is the sequence of all successors
of v in β, in the same order as they appear in β.

2.1 Definition
Given a simple undirected graph G = (V,E) and a positive integer K, a DDGP order for G is defined as
follows:

1. G[{v ∈ V | v ≤ K}] is a clique of size K;

2. for each v ∈ V with v > K, |U(v)| ≥ K.

The problem of determining whether G has a DDGP order is known as TOP (see Sect. 1.5).

2.2 Definition
A KDMDGP order for G is defined as follows:

1. G[{v ∈ V : v ≤ K}] is a clique of size K;

2. for each v ∈ V with v > K, all vertices of rank v −K ≤ w ≤ v − 1 are adjacent to v.

The problem of determining whether G has a KDMDGP order is known as CTOP (see Sect. 1.5).

2.3 Definition
A re-order for G is a sequence σV = (v1, v2, . . . , vm) of m not necessarily distinct vertices from V such
that:

1. G[{v1, . . . , vK}] is a clique of size K;

2. for all i ∈ {K + 1, . . . ,m} and j ∈ {i−K + 1, . . . , i− 1}, {vj , vi} ∈ E

3. for all i ∈ {K + 1, . . . ,m}, either {vi−K , vi} ∈ E or vi−K = vi

4. m ≥ |V |

5. m is bounded by a polynomial in |V |

6. every vertex of V is present in the sequence σV .

The problem of determining whether G has a re-order is known as ReOP (see Sect. 1.5).

Of course, not all graphs possess KDMDGP, DDGP orders or re-orders: hence the interest in solving the
corresponding existence problems.

Some remarks are in order.

• The TOP, CTOP and ReOP are trivially in NP, since testing whether a vertex order has the
required properties can obviously be done in polynomial time.

• The definition of re-order given in [16] is limited to K = 3 and lists one more condition (i.e. that
{vi−K , vi} might correspond to an interval of distance values instead of a single value) for practical
purposes relating to the distribution of precise and imprecise distances in protein distance data. In
this paper we only consider this more abstract definition of re-order.
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2.1 Some structural properties of KDMDGP orders

KDMDGP instances exhibit a remarkable structure. In [22], it was shown that the cardinality of the
solution set of KDMDGP instances is almost certainly a power of two. [20] provides a description of the
group structure of the partial reflection symmetries of KDMDGP instances; as a consequence, the BP
algorithm is shown to be Fixed Parameter Tractable (FPT) on the KDMDGP. An algorithm to efficiently
count the number of solutions of KDMDGP instances is provided in [17]. An improvement to the BP
efficiency based on exploiting symmetries was described in [26]. In this section we make some observations
on the structure of KDMDGP orders.

In any KDMDGP order, the first vertex is adjacent to at least K other vertices: K − 1 because of the
initial clique of size K, together with the vertex whose rank is K + 1, by Condition 2. The second vertex
is adjacent to at least K+1 other vertices: K−1 because of the initial clique, and then the (K+1)-st and
(K + 2)-nd vertices by Condition 2, and so on until the K-th vertex, which is adjacent to 2K − 1 other
vertices. All vertices from the (K + 1)-st to the (n −K)-th are adjacent to at least 2K other vertices,
because of Condition 2 applied to themselves and their K − 1 contiguous successors. The (n−K + 1)-st
vertex is adjacent to at least K contiguous predecessors and to all of its K − 1 contiguous successors, for
a total of at least 2K − 1 adjacencies. For similar reasons, the (n −K + 2)-nd vertex is adjacent to at
least 2K − 2 other vertices, and so on until the last vertex, which is adjacent to at least K predecessors
by Condition 2. Thus, we have the following result.

2.4 Lemma
The following lower bounds on the adjacencies of the vertices of G hold for KDMDGP orders defined on
a graph G = (V,E):

1. ∀v ∈ V such that 1 ≤ v ≤ K, |N(v)| ≥ K + v − 1;

2. ∀v ∈ V such that K < v ≤ n−K, |N(v)| ≥ 2K;

3. ∀v ∈ V such that n−K < v ≤ n, |N(v)| ≥ K + n− v.

By Lemma 2.4, any graph with a vertex distribution that does not comply with these bounds is a NO
instance of the CTOP problem, while the converse may not hold [23].

Next, we show that KDMDGP orders are symmetric.

2.5 Proposition
Let α be a KDMDGP order on G = (V,E); the inverse order α−1 is also a KDMDGP order on G.

Proof. The last K vertices α are the first K vertices of α−1. For any u, v ∈ V such that n −K + 1 ≤
u < v ≤ n, since v − u ≤ K we have u ∈ U(v), which means that {u, v} ∈ E by Condition 2; thus
{n−K + 1, . . . , n} is a clique of size K. Now consider a vertex v ∈ V such that 1 ≤ v ≤ n−K. Because
α is a KDMDGP order, for every j ∈ {1, . . . ,K} the vertices ranked v + j are also adjacent to v, either
because v ∈ U(v + j) or because v and v + j are in the initial clique of size K of α. Hence v is also
adjacent to its K contiguous successors, as claimed. �

3 Complexity of order existence problems

In this section we discuss the complexity of the three order existence problems defined above.
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3.1 NP-completeness of TOP

In [13], it is mentioned that the TOP is NP-complete by reduction from Clique. Here we give a more
detailed proof. We start with an instance (G,K) of Clique, where G = (V,E). We transform G into a
graph G′ = (V ′, E′) by adding K − 1 dummy vertices to V , so that each dummy vertex is adjacent to
every vertex in V . Formally, let U = {u1, . . . , uK−1} be such that U ∩ V = ∅, let V ′ = V ∪ U , and let
E′ = E ∪ {{u, v} | u ∈ U ∧ v ∈ V }. We aim to show that G is YES in Clique if and only if G′ is YES
in TOP.

3.1 Proposition
The TOP is NP-complete.

Proof. Let (G,K) be an instance of Clique, where G = (V,E) with V = {v1, . . . , vn}, and G′ the
corresponding instance of TOP. Assume G is a YES instance; after a suitable vertex relabelling, the
clique of size K can be taken to be C = {v1, . . . , vK}. We start the order with (v1, . . . , vK , u1, . . . , uK−1):
each ui is adjacent to all K vertices in C by construction. Let W0 = C; next, we list (in any order) all
the yet unlisted vertices in N1(W0): by definition, each is adjacent to at least one vertex in W0, which
precedes it in the order, and all of the vertices in U , which also precede it in the order; and we set
W1 = C ∪N1(W0). An easy induction on ` (appearing in the N `(·) operator) shows that this procedure
can be carried out for any ` as long as N `(W`−1) 6= ∅. We thus obtain a DDGP order on G′. Now let
G be a NO instance. Suppose, to get a contradiction, that G′ has a DDGP order (v′1, . . . , v

′
n+K−1). Its

initial clique C of size K cannot be such that C ⊆ V , for otherwise G would be trivially a YES instance,
against the assumption. Also, C cannot contain more than one vertex in U , since U is by definition a
stable set in G′. Hence C necessarily contains exactly one vertex in U and K − 1 vertices in V , which
implies that G has a K − 1 clique C ′. Now consider v′K+1: since vertices in U are pairwise non-adjacent,
and v′K+1 must be adjacent to all vertices in C, v′K+1 6∈ U . So then v′K+1 ∈ V . But since v′K+1 is adjacent
to all vertices in C then it is adjacent to all vertices in C ′ ⊆ C, which means that C ∪ {v′K+1} is a clique
of size K in V , against the assumption. So G′ cannot contain a DDGP order, as claimed. �

The proof of Prop. 3.1 essentially states that the reason why TOP is hard has something to do with
finding the initial clique of size K. This is confirmed by the fact, already mentioned above and in [13,
Prop. 2], that if K is fixed then the TOP can be solved by a polynomial-time algorithm.

3.2 NP-completeness of CTOP

We show that the CTOP is NP-complete for every fixed K by reduction from Hamiltonian Path (HP).
We start with the easy case K = 1, where a Hamiltonian path is also a 1DMDGP order.

3.2 Proposition
The 1DMDGPO is NP-complete.

Proof. Given G = (V,E) with n = |V |, if G is a YES instance of HP, then there is a Hamiltonian
path α = (v1, . . . , vn), which also induces a total order on V . Since for all v ∈ V such that v > 1, v is
adjacent to its predecessor in the order, this order is also a 1DMDGP order. Conversely, assume G is
a NO instance of HP and suppose α = (v1, . . . , vn) is a 1DMDGP order. Then by definition α is also a
Hamiltonian path in G, which is impossible. �

Next, we show that the CTOP is NP-complete for any fixed positive integer K. In order to prove
that finding the order is hard, rather than simply finding the initial clique of size K, we consider suitable
variants of Hamiltonian Path (HP) and of CTOP. More precisely, the restricted HP (rHP) problem
contains HP instances paired with a given vertex s, which is required to be the starting vertex of the
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Hamiltonian path if it exists. The restricted CTOP (rCTOP) contains CTOP instances paired with
a given clique Cs of size K, which is required to be the initial clique of size K of the KDMDGP order
if it exists. The fact that the rHP is NP-complete follows immediately from the NP-completeness HP,
since solving the rHP on n vertices essentially requires solving a HP instance on n − 1 vertices. And of
course the rCTOP can be trivially reduced to a smaller CTOP (by removing the initial clique Cs).

The reduction from rHP to rCTOP replaces each vertex v of the rHP instance G = (V,E) with a clique
Cv of size K, and each edge {u, v} with a clique Cuv of size K and two bicliques (Cu, C

uv), (Cuv, Cv)
(see Fig. 1). More precisely, for a given graph G = (V,E) and a given positive integer K, we define

C13

tauK

1

2

3

C1

C2

C3

C12

Figure 1: The reduction from rHP to rCTOP, for K = 2.

the graph G′ = (V ′, E′) as follows. For each v ∈ V let Cv = {uv1, . . . , uvK} and Fv = {{w, z} | w 6=
z ∈ Cv)}, so that Cv is a clique for each v ∈ V . For each {v, w} ∈ E let Cvw = {uvw1 , . . . , uvwK },
Hvw

1 = {{uvi, uvwj } | i, j ≤ K} Hvw
2 = {{uvwi , uwj} | i, j ≤ K} define the motif biclique-clique-biclique

joining two cliques Cv, Cw. Now, we let:

V ′ =

(⋃
v∈V

Cv

)
∪

 ⋃
{v,w}∈E

Cvw


E′ =

(⋃
v∈V

Fv

)
∪

 ⋃
{v,w}∈E
i∈{1,2}

Hvw
i

 .

We let τK be the transformation taking G to G′. Notice that the transformation τ−1
K is well-defined over

the range of τK : simply contract each clique Cv to its originating vertex v (for v ∈ V ), and contract each
biclique-clique-biclique motif to the corresponding edge. This shows that τ−1

K (τK(G)) = G.

A KDMDGP order α in G′ = τK(G) is consecutive if, for any clique Cv of size K in G′ corresponding
to a vertex v of G, all vertices of Cv are listed consecutively in α. First, we show that any Hamiltonian
path in G can be transformed into a consecutive KDMDGP order in τK(G).

3.3 Lemma
Let (G = (V,E), s) be a YES instance of rHP, and K > 1. Then G′ = τK(G) has a consecutive KDMDGP
order starting with Cs.

Proof. Let β = (v1, . . . , vn) be a Hamiltonian path in G starting with s = v1. Relabel each vi to i, so
that β = (1, 2, . . . , n). Let

α = (u11, . . . , u1K , u
12
1 , . . . , u

12
K , u21, . . . , u2K , . . . , un1, . . . , unK).

Since {i− 1, i} ∈ E for each i > 1, given any vertex u of a clique C of size K in G′, at least K contiguous
predecessors of u are adjacent to it by definition of τK , as claimed. �

Next, we show that τK(G) has no triangles involving vertices of three different cliques.
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3.4 Lemma
Let C,C ′, C ′′ be three cliques of size K in G′ = τK(G). There is no vertex triplet u ∈ C, u′ ∈ C ′, u′′ ∈ C ′′
inducing a triangle in G′.

Proof. Cliques of size K in G′ correspond to either vertices or edges in G: let us call the former “vertex
cliques” and the latter “edge cliques”. To reach a contradiction, assume a triangle induced by u, u′, u′′

exists in G′: since all edges in E(G′) belong to bicliques, there must be bicliques (C,C ′), (C ′, C ′′), (C ′′, C).
Since there are only two types of cliques, there must be at least two cliques of size K in C,C ′, C ′′ having
the same type, which results in bicliques on two vertex cliques or on two edge cliques. However, by
definition of τK there is no biclique on pairs of vertex cliques, nor on pairs of edge cliques. �

Finally, we show that if τK(G) has a KDMDGP order, τ−1
K maps it to a Hamiltonian path in G.

3.5 Lemma
Let (G = (V,E), s) be an instance of rHP, K > 1, and α be a KDMDGP order in G′ = τK(G). Then G
is a YES instance.

Proof. If α is consecutive, then the vertices in all cliques Cv of size K in G′ originating from vertices v
of G are listed consecutively in G′. Therefore, by contracting Cv to v in τ−1

K (α) we obtain a Hamiltonian
path in G starting with s. Now suppose α is not consecutive: then there must be a clique C of size K in
G′ such that α lists strictly fewer than K vertices from C consecutively. Let u1, . . . , uh be these vertices
(with h < K). Let u′ ∈ C ′ be the predecessor of u1, and u′′ ∈ C ′′ be the successor of uh, where C ′, C ′′ are
cliques of size K in G′ induced by the mapping τK . By definition of KDMDGP order, every vertex in α
must be adjacent to at least K contiguous predecessors. Thus, for all j ≤ h, uj is adjacent to u′, and u′′

is adjacent to uj . Moreover, since h < K, u′′ is adjacent to u′. Thus {u′, uj}, {uj , u′′}, {u′, u′′} ∈ E(G′)
for all j ≤ h: this defines triangles in G′ on vertex triplets belonging to three different cliques, which is
impossible by Lemma 3.4. Hence α must be consecutive. �

3.6 Theorem
The rCTOP and CTOP are NP-complete for any fixed integer K > 0.

Proof. The first part follows because, by Lemmata 3.3 and 3.5, τK maps YES instances of the rHP to
YES instances of the rCTOP, and NO instances to NO instances. We reduce a rCTOP instance to a
CTOP instance with K fewer vertices by removing the initial clique of size K. �

3.3 NP-completeness of ReOP

Because a re-order which never repeats any vertices is a KDMDGP order, the ReOP is also NP-complete
for any fixed K by restriction to the CTOP.

4 Relations between discretization vertex order problems

In this section we discuss the inclusionwise relationship between the three order existence problems
mentioned above.
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4.1 CTOP ( TOP

It follows by definition that CTOP ⊆ TOP. Although the strict inclusion was shown in [13, Prop. 2] for
a specific instance, we exhibit here a new infinite family of TOP instances that are not in CTOP.

For any pair of positive integers K,n with n ≥ K + 3, consider the graph S(K,n) whose vertices are
{1, . . . ,K, . . . , n} and whose edges are {{u, v} | u < v ≤ K} ∪ {{u, v} | u ≤ K ∧ v > K}. The first
set in the union defines a clique of size K on {1, . . . ,K}, and the second set defines n − K cliques on
{1, . . . ,K, i}, each having size (K + 1), for all i ∈ {K + 1, . . . , n} (see Fig. 2). It is trivial to verify that

5

1

2

3

4
6

7

Figure 2: The graph S(3, 7).

any vertex order starting with 1, . . . ,K is a DDGP order: simply take {1, . . . ,K} as the initial clique
of size K, and then the vertices K + 1, . . . , n in any order: by definition of S(K,n), each such vertex is
adjacent to the initial clique of size K.

4.1 Lemma
For a positive integer K and n > K + 3, no graph S(K,n) can have a KDMDGP order.

Proof. Suppose the contrary holds, and v1, . . . , vn is a KDMDGP order for S(K,n). By definition of
S(K,n), either the initial clique of size K is {1, . . . ,K} or not. In the former case, then vK+1 can be
any vertex in {K + 1, . . . , n}, but since all of these are only adjacent to {1, . . . ,K} by construction,
and {1, . . . ,K} have already been listed, no vertex vK+2 can be chosen compatible with the definition
of KDMDGP order. In the latter case, the only possible initial cliques of size K have a vertex u in
{K + 1, . . . , n} and K − 1 vertices in {1, . . . ,K}: say, without loss of generality, that v1 ∈ {K + 1, . . . , n}
and {v2, . . . , vK} = {1, . . . ,K − 1}. Then the only possible choice for vK+1 is K, since none of the
other vertices in {K + 1, . . . , n} r {v1} is adjacent to v1, whereas by definition of the KDMDGP order,
v1 ∈ N(vK+1). This implies that vK+2 ∈ {K + 1, . . . , n} r {v1, vK+1}. There can be no next vertex
vK+3 ∈ {K + 1, . . . , n}r {v1, vK+1, vK+2} since none of them is adjacent to vK+2. The result follows. �

4.2 CTOP ( ReOP

In the ReOP definition (Defn. 2.3), if no pair of vertices {vi−K , vi} is ever such that vi−K = vi, the order
is trivially a KDMDGP one, thus it follows that CTOP ⊆ ReOP. In Fig. 3 we exhibit a YES instance of
ReOP which is NO in 2DMDGPO. Let G = (V,E) be the graph shown in Fig. 3, and let K = 2. First,
it is easy to verify that (1, 2, 1, 3, 1, 4, 1, 5, 1, 6) is a re-order in G.

On the other hand, we claim that G does not have 2DMDGP orders. Suppose one exists, say α =
(v1, . . . , v6): either v1 = 1, or v1 is one of the other vertices, say v1 = 2 without loss of generality because
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51

2

6

3

4

Figure 3: A graph with a re-order but no 2DMDGP orders.

of the symmetry in G. In the former case, v2 can only be one of the other vertices, say v2 = 2 without
loss of generality. Then v3 = 3 or 6 (say v3 = 3). This forces v4 = 4, but this is impossible: in the
order 1, 2, 3, 4, N(4) = {1, 3} but 1 is not a contiguous predecessor of 4. In the latter case, v2 can only
be in {1, 3, 6}. If v2 = 1, then v3 = 3 or 6, without loss of generality take v3 = 3. This forces v4 = 4,
and v5 = 5, but this is impossible: in the order 2, 1, 3, 4, 5, the contiguous predecessors of 5 are 3, 4, but
{3, 5} 6∈ E. The remaining case where v2 = 6 is symmetric.

Notice that the example in Fig. 3 can be generalized to any wheel graph with sufficiently many vertices.

4.3 ReOP ( TOP

We first prove non-strict inclusion.

4.2 Proposition
All YES instances of ReOP are YES instances of TOP.

Proof. Let G = (V,E) be a ReOP instance with a re-order α = (v1, . . . , vm). Now construct an order β
from α as follows. Scan α, and copy the first K vertices to β. Next, for every i > K, copy vi to β only
if it has not already appeared as vj for some j < i. Now consider a vertex w ∈ β, and let Uαw be the
K contiguous adjacent predecessors of w in α. All vertices Uαw appearing in α for the first time are also
adjacent predecessors of w in β, by construction of β. Let vi ∈ Uαw such that there is j < i with vj = vi,
and let ` be the minimum such j. Then vi does not appear in β; however, v` does. Also, since v` = vi
and vi ∈ Uαw , v` is an adjacent predecessor of w in β. Thus β is a DDGP order for G, as claimed. �

It turns out that the family of graphs S(K,n) can also be used to separate DDGP from ReOP. For
brevity, we only prove this for S(3, 7), shown in Fig. 2, by making use of the following lemma.

4.3 Lemma
If U = {u1, . . . , uK} is a clique of size K in a graph G, no minimally-sized re-order can have a subsequence
listing all of U followed by a vertex ui for some i ≤ K.

Proof. If a minimally-sized re-order α had a subsequence α′ = (u1, . . . , uK , u1) (without loss of generality)
followed by a vertex v, this would mean that v is adjacent to all vertices in U , which implies that the
re-order obtained by replacing α′ in α by (u1, . . . , uK , v) is shorter than α, against minimality. �

We now attempt to build a minimally-sized re-order (v1, . . . , vm) for S(K,n). We either start from
the initial clique {1, 2, 3} or from one of the other vertices {4, 5, 6, 7}. Let us first look at the case where
v1 = 1, v2 = 2, v3 = 3: by Lemma 4.3, v4 ∈ {4, 5, 6, 7}, say v4 = 4 without loss of generality, which forces
v5 = 2. We know v6 6∈ {5, 6, 7} because v4 = 4 is not adjacent to any of these vertices, so v6 = 3; for
the same reason, v7 6∈ {5, 6, 7}, which forces v7 = 1. Again by Lemma 4.3, v8 ∈ {5, 6, 7}, say v8 = 5;
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this implies v9 = 3, which forces v10 = 1. Now the only possible choice for v11 is v8, but this would
contradict Lemma 4.3. So now consider the case where v1 = 4 and v2, v3 ∈ {1, 2, 3}, say v2 = 2, v3 = 3.
Now v4 ∈ {1, 4}, but Lemma 4.3 forces v4 = 1, which implies v5 ∈ {5, 6, 7}, say v5 = 5. Now v6 can
only be 3, which forces v7 = 1. Finally, v8 6∈ {6, 7} because this would imply a non-existent edge {5, 6}
or {5, 7} in the graph, v8 6∈ {1, 2, 3, 4, 8} because repetitions are only allowed for pairs of vertices having
order rank difference exactly K, so v8 can only be 5, but this goes against Lemma 4.3. Thus S(3, 7) is a
DDGP YES instance which does not have a re-order, as claimed.

5 Finding discretization orders in practice

The authors’ main interest is in solving DGPs related to protein conformation [15] using the very efficient
BP algorithm. In this setting, K is fixed to the constant 3. It was shown in [13] that the TOP can be
solved in polynomial time by a greedy algorithm when K is fixed, and we do routinely solve fairly large
TOP instances in practice [25], so the issue may appear to be closed.

Since the CTOP has nice mathematical properties, however, it would be more convenient to find
KDMDGP orders than DDGP ones. We have shown above that KDMDGP orders are hard to find even
for fixed K, and for a given initial clique. To circumvent this issue, we argued in [16] that certain re-
orders which are hand-crafted for protein backbones could be profitably used instead. The fact that
these re-orders are constructed by humans rather than automatically found by computers is a feature we
exploit to accommodate many other biochemical requirements to do with proteins, so at this stage we
have no motivation to solving ReOP algorithmically (though some efforts in this sense are foreshadowed
in [24]). We do, however, have an interest in finding KDMDGP orders automatically, since these could
be of use in other applications of the DGP.

In this section we propose and discuss three MILP formulations for the CTOP: the vertex-rank formu-
lation, the clique digraph formulation, and a relaxation of the latter. The first one models the problem by
assigning a unique rank to every vertex, and the second looks for a certain path in an auxiliary digraph
whose nodes are cliques of size (K + 1) in the input graph.

5.1 The vertex-rank formulation for CTOP

This is a “natural” formulation where binary decision variables xvi decide whether vertex v should be
the i-th in the order or not. Given a graph G = (V,E) with |V | = n and a positive integer K, the Integer
Linear Programming (ILP) formulation below findsx a KDMDGP order in G if it exists, and is infeasible
otherwise. For any v ∈ V and i ∈ n̄ = {1, . . . , n}, let xvi be a binary variable, which will take value 1 if
v is the i-th vertex in the order, or 0 otherwise. This is a pure feasibility problem:

1. each vertex has a unique rank:

∀v ∈ V
∑
i∈n̄

xvi = 1;

2. each rank value is assigned a unique vertex:

∀i ∈ n̄
∑
v∈V

xvi = 1;

3. there must be an initial clique of size K:

∀v ∈ V, i ∈ {2, . . . ,K}
∑

u∈N(v)

∑
j<i

xuj ≥ (i− 1)xvi;
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4. each vertex with rank > K must have at least K contiguous predecessors

∀v ∈ V, i > K
∑

u∈N(v)

∑
i−K≤j<i

xuj ≥ Kxvi.

5.2 The clique digraph formulation for CTOP

The following formulation is suggested by the complexity reduction used in Sect. 3.2 from the Hamilto-
nian Path problem: a KDMDGP order is a sequence of embedded cliques of size (K+1), with successive
pairs sharing K vertices and covering the whole of V . Consider an example with K = 3: if v’s adjacent
predecessors are v−1, v−2, v−3 then (v+1)’s are v, v−1, v−2. This means that both {v−3, v−2, v−1, v}
and {v − 2, v − 1, v, v + 1} must induce cliques of size 4 in the input graph G = (V,E).

This suggests the use of a clique digraph C = (N,A) where N is the set of ordered cliques of G
of size (K + 1) and (α, β) ∈ A if and only if α = {u1, . . . , uK+1} and β = {u2, . . . , uK+2}, for some
u1, . . . , uK+2 ∈ V . For each ν ∈ N let L(ν) be the last vertex in the ordered clique ν of size K + 1. A
KDMDGP order in this setting is a path P = (ν1, . . . , νn−K) in C , and ν1 ∪ {L(νi) | i > 1} = V , i.e. the
last vertices of the cliques in P , together with ν1, cover V . Notationwise, we stipulate that, since the
cliques are ordered, νjk is the k-th vertex of the j-th clique.

Consider the following decision variables:

1. for (i, j) ∈ A, xij ∈ {0, 1} takes value 1 iff (i, j) is an arc in P ;

2. for j ∈ N , φj ∈ {0, 1} takes value 1 iff νj is the initial clique;

3. for j ∈ N , λj ∈ {0, 1} takes value 1 iff νj is the last clique;

4. for u, v ∈ V , yuv ∈ {0, 1} takes value 1 iff u is a predecessor of v in the KDMDGP order.

The constraints of the problems are:

1. P has exactly one first clique and one last clique:∑
j∈N

φj = 1

∑
j∈N

λj = 1

2. since P is a path, flow balance equations hold at each node aside from first and last:

∀i ∈ N φi +
∑
j∈N

(j,i)∈A

xji = λi +
∑
j∈N

(i,j)∈A

xij ;

3. each clique in N has at most one successor (the fact that each clique also has at most one predecessor
follows by the previous constraints):

∀i ∈ N
∑
j∈N

(i,j)∈A

xij ≤ 1;

4. the cliques in P cover the whole of V :

∀v ∈ V
∑
j∈N
v∈νj

φj +
∑

(i,j)∈A
νjrνi={v}

xij = 1;
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5. for each u, v ∈ V , either u < v or v < u but not both:

∀u, v ∈ V u 6= v → yuv + yvu = 1;

6. linear ordering on vertex triplets:

∀u, v, w ∈ V u 6= v ∧ v 6= w ∧ w 6= u→ yuv + yvw + ywu ≤ 2;

7. enforce the fact that the cliques are ordered:

∀(i, j) ∈ A, k ≤ K,h = νik, ` = νi,k+1 wh` ≥ xij (2)

∀(i, j) ∈ A, v ∈ νj r νi` = νi,k+1 |νj r νi| = 1→ w`v ≥ xij (3)

∀j ∈ N, k ≤ K,h = νjk, ` = νj,k+1 wh` ≥ φj + λj . (4)

Since these constraints allow for the possibility that some more arcs in A might be selected besides the
arcs on the path P , we impose the following objective function:

min
∑

(i,j)∈A

xij .

5.2.1 The unordered clique relaxation

One of the disadvantages of the clique digraph formulation is the size of N : in the worst case, it could
have as many as

( |V |
K+1

)
(K+ 1)! nodes — for reasonably sparse graph the first term of the product, which

denotes the number of cliques of size K+1 in the digraph is obviously smaller. By considering unordered
cliques, however, we can reduce the worst-case size of N to the smaller term

( |V |
K+1

)
. The number of arcs

remains the same.

The unordered clique relaxation can be described as a sequence of changes to the clique digraph
formulation of Sect. 5.2. First, we change the constraints in item 7 above, specifically (2)-4, to:

∀(i, j) ∈ A, u ∈ νi, v ∈ νj r νi |νj r νi| = 1→ wuv ≥ xij . (5)

Next, for each j ∈ N we add variables zj ∈ {0, 1} taking value 1 iff the unordered clique νj is used in P .
These depend on the activity of the adjacent arcs:

∀(u, j) ∈ A zj ≥ xij

∀j ∈ N zj ≥ φj .

These new variables are designed to help state the sentence:

every vertex v ∈ V except the first K and the last K should appear in exactly K + 1 cliques.

Unfortunately, expressing this sentence would involve inequalities depending on z but also on the rank
that a vertex v has in the order. While this is certainly possible (using e.g. variables as in the vertex-rank
formulation of Sect. 5.1), it would make the formulation unwieldy, and ultimately inefficient to solve. We
therefore resort to a relaxation, and simply state that each vertex should appear in at most K+1 cliques:

∀v ∈ V
∑
j∈N
v∈νj

zj ≤ K + 1.

Whenever this relaxation is feasible, the solution should be verified, as it might be an invalid KDM-
DGP order. On the other hand, if the relaxation is infeasible then certainly the given graph does not
have any KDMDGP orders. The results in Table 4 suggest that a wrong YES is a rare event. Moreover,
the relaxation approach is also justified by the fact that the clique digraph formulation is usually much
faster at proving NO than finding a solution proving YES.
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5.3 Computational evaluation

We tested the formulations given above by means of AMPL [8] and CPLEX 12.6 [12] on three sets of
instances, for K ∈ {1, 2, 3} (note that testing for K = 1 reduces to a computationally expensive way of
testing graph connectedness).

The first instance set, called minimal, contains some minimal KDMDGP instance graphs with varying
numbers of discretization edges and no pruning edges. The second instance set, called protein, contains
six graphs connected with the application to protein conformation, provided by A. Mucherino. The third
instance set, called random, contains a fairly large number of randomly generated biconnected graphs
with varying number of vertices and edge generation probability in {0.3, 0.5, 0.7}.

The tests were carried out on a two-core Intel i7 CPU at 2.0GHz with 8GB RAM, with CPLEX
running in parallel mode and the running time of both AMPL and CPLEX limited to 300s of user time.
This somewhat short time limit was set with a view to vertex ordering problems only being pre-processing
steps to the actual problem of finding a realization of the graph in RK . The user time reported by the
system, and reproduced in the results tables, is an estimation of the CPU time which a single core would
have taken to complete the task.

In general, the clique digraph formulation and its unordered relaxation are better at proving that an
instance is NO, but very poor at finding solutions of YES instances. This is partly due to the fact that
for sparse instances there may not even be sufficiently many cliques of size K + 1 in the graph, in which
case the clique digraph cannot even be constructed.

The vertex-rank formulation is somehow complementary, in that it is better at finding solutions for
YES instances, and poorer at proving NO, but it turns out to be the best overall. Both approaches
fall decidedly short of the current practical needs for this problem, which are in the hundreds and even
thousands of vertices. In this sense the vertex ordering problem is still wide open.

5.3.1 Small instances

We first present results of all formulations on a subset of small instances, namely minimal, protein and
instances in random with up to 30 vertices. Table 1 reports the number of vertices and the number of
edges in each instance.

Instance |V | |E|
dmdgp 2 05 5 7

dmdgp 2 10 10 17

dmdgp 2 15 15 27

dmdgp 2 20 20 37

dmdgp 3 10 10 24

dmdgp 3 15 15 39

dmdgp 3 20 20 54
nodvop 6 9

nodvop-minimal 6 10

pb-decremental test NO 19 54

pbackbone-nobeta 19 52

pbackbone-withbeta 24 65

pbgraph 24 53

Instance |V | |E|
random-10 0.3 10 26
random-10 0.5 10 27
random-10 0.7 10 37
random-15 0.3 15 35
random-15 0.5 15 67
random-15 0.7 15 73
random-20 0.3 20 66
random-20 0.5 20 109
random-20 0.7 20 140
random-25 0.3 25 102
random-25 0.5 25 161
random-25 0.7 25 226
random-30 0.3 30 148
random-30 0.5 30 228
random-30 0.7 30 318

Table 1: Statistics for the “small instances” set: minimal is top left, protein is bottom left, and random

is on the right.

Table 2 presents test results obtained with the vertex rank formulation.

Table 3 presents test results obtained with the clique digraph formulation.
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K = 1 K = 2 K = 3
Instance Y/N CPU Y/N CPU Y/N CPU

minimal

dmdgp 2 05 Yes 0.01 Yes 0.00 No 0.01
dmdgp 2 10 Yes 0.00 Yes 0.00 No 0.01
dmdgp 2 15 Yes 0.00 Yes 0.00 No 0.02
dmdgp 2 20 Yes 0.00 Yes 0.01 No 0.02
dmdgp 3 10 Yes 0.00 Yes 0.00 Yes 0.00
dmdgp 3 15 Yes 0.00 Yes 0.00 Yes 0.01
dmdgp 3 20 Yes 0.01 Yes 0.01 Yes 0.01

protein

nodvop-minimal Yes 0.00 Yes 0.00 No 0.01
nodvop Yes 0.00 Yes 0.00 No 0.01
pb-decremental test NO Yes 0.01 No 39.13 No 60.13
pbackbone-nobeta Yes 0.01 No 101.96 No 50.12
pbackbone-withbeta Yes 0.86 No 114.98 Limit
pbgraph Yes 31.81 No 20.24 No 0.03

random

random-10 0.3 Yes 0.00 Yes 0.02 No 0.01
random-10 0.5 Yes 0.01 Yes 0.14 No 0.37
random-10 0.7 Yes 0.00 Yes 0.00 Yes 0.02
random-15 0.3 Yes 0.00 No 1.42 No 0.02
random-15 0.5 Yes 0.01 Yes 0.04 Yes 37.09
random-15 0.7 Yes 0.01 Yes 0.02 Yes 1.17
random-20 0.3 Yes 0.01 No 43.47 No 179.77
random-20 0.5 Yes 0.01 Yes 1.54 Limit
random-20 0.7 Yes 0.01 Yes 0.10 Yes 1.12
random-25 0.3 Yes 0.01 Limit Limit
random-25 0.5 Yes 0.01 Yes 2.58 Limit
random-25 0.7 Yes 0.02 Yes 0.33 Yes 1.86
random-30 0.3 Yes 0.01 Limit Limit
random-30 0.5 Yes 0.02 Yes 8.92 Limit
random-30 0.7 Yes 0.02 Yes 0.39 Yes 9.83

Table 2: Results for the vertex rank formulation on the small instances; Limit indicates that the 300s
time limit was exceeded.

K = 1 K = 2 K = 3
Instance Y/N CPU Y/N CPU Y/N CPU

minimal

dmdgp 2 05 Yes 0.01 Yes 0.01 No 0.00
dmdgp 2 10 Yes 0.02 Yes 0.02 No 0.00
dmdgp 2 15 Yes 0.05 Yes 0.07 No 0.00
dmdgp 2 20 Yes 0.08 Yes 0.21 No 0.00
dmdgp 3 10 Yes 0.03 Yes 0.09 Yes 0.03
dmdgp 3 15 Yes 0.06 Yes 0.21 Yes 0.10
dmdgp 3 20 Yes 0.13 Yes 0.52 Yes 0.25

protein

nodvop-minimal Yes 0.01 Yes 0.01 No 0.00
nodvop Yes 0.01 Yes 0.01 No 0.00
pb-decremental test NO Yes 0.09 No 0.27 No 0.02
pbackbone-nobeta Yes 0.09 No 0.41 No 0.08
pbackbone-withbeta Yes 2.43 No 0.29 No 0.04
pbgraph Yes 0.23 No 0.14 No 0.03

random

random-10 0.3 Yes 0.04 Yes 0.12 No 0.01
random-10 0.5 Yes 0.03 Yes 0.07 No 0.01
random-10 0.7 Yes 0.06 Yes 0.30 Yes 20.37
random-15 0.3 Yes 0.06 No 0.01 No 0.00
random-15 0.5 Yes 0.10 Yes 20.63 Yes 9.52
random-15 0.7 Yes 0.17 Yes 26.35 Limit
random-20 0.3 Yes 0.17 No 0.04 No 0.02
random-20 0.5 Yes 0.26 Yes 159.84 No 210.98
random-20 0.7 Yes 0.33 Yes Limit
random-25 0.3 Yes 0.29 No 5.19 No 0.03
random-25 0.5 Yes 0.43 Yes 602.21 Limit
random-25 0.7 Yes 0.71 Limit Limit
random-30 0.3 Yes 0.56 Limit No 0.05
random-30 0.5 Yes 0.82 Limit Limit
random-30 0.7 Yes 1.17 Limit Limit

Table 3: Results for the clique digraph formulation on the small instances; Limit indicates that the 300s
time limit was exceeded.
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Table 4 presents test results obtained with the unordered clique relaxation.

K = 1 K = 2 K = 3
Instance Y/N CPU Y/N CPU Y/N CPU

minimal

dmdgp 2 05 Yes 0.01 Fail No 0.00
dmdgp 2 10 Yes 0.02 Yes 0.01 No 0.00
dmdgp 2 15 Yes 0.04 Yes 0.05 No 0.00
dmdgp 2 20 Yes 0.09 Yes 0.17 No 0.00
dmdgp 3 10 Yes 0.30 Yes 0.03 Yes 0.01
dmdgp 3 15 Yes 0.06 Yes 0.10 Yes 0.06
dmdgp 3 20 Yes 0.15 Yes 0.20 Yes 0.16

protein

nodvop-minimal Yes 0.01 Yes 0.01 No 0.00
nodvop Yes 0.01 Yes 0.01 No 0.00
pb-decremental test NO Yes 5.33 No 17.98 No 0.00
pbackbone-nobeta Yes 3.89 No 38.11 No 0.04
pbackbone-withbeta Yes 1.13 No 7.64 No 0.00
pbgraph Yes 7.83 No 0.11 No 0.00

random

random-10 0.3 Yes 0.52 Yes 0.04 No 0.00
random-10 0.5 Yes 0.06 Yes 0.44 No 0.00
random-10 0.7 Yes 0.40 Yes 0.17 Yes 1.97
random-15 0.3 Yes 1.28 No 0.00 No 0.00
random-15 0.5 Yes 3.54 Yes 10.50 Yes 20.05
random-15 0.7 Yes 5.03 Yes 24.52 Yes 47.87
random-20 0.3 Yes 13.10 No 0.07 No 0.00
random-20 0.5 Yes 36.18 Yes 127.04 Limit
random-20 0.7 Yes 58.82 Yes 17.43 Limit
random-25 0.3 Yes 79.91 No 545.11 No 0.00
random-25 0.5 Yes 101.74 Yes 395.88 Limit
random-25 0.7 Yes 295.01 Limit Limit
random-30 0.3 Yes 347.66 Limit No 0.00
random-30 0.5 Limit Limit Limit
random-30 0.7 Limit Limit Limit

Table 4: Results for the unordered clique relaxation on the small instances. Limit indicates that the
300s time limit was exceeded; Fail indicates a YES answer not corresponding to a valid order.

Since it is clear that the vertex rank formulation is the best overall, we focus the comparison over
those instances where it takes more than 10s of CPU time; results are shown in Table 5.

CPU
Instance K Y/N v-r c-d u-c

protein

pb-decremental test NO 2 No 39.13 0.27 17.98
pb-decremental test NO 3 No 60.13 0.02 0
pbackbone-nobeta 2 No 101.96 0.41 38.11
pbackbone-nobeta 3 No 50.12 0.08 0.04
pbackbone-withbeta 2 No 114.98 0.29 7.64
pbackbone-withbeta 3 No Limit 0.04 0
pbgraph 1 Yes 31.81 0.23 0.11
pbgraph 2 No 20.24 0.14 0

random

random-20 0.3 2 No 43.47 0.04 0.07
random-20 0.3 3 No 179.77 0.02 0
random-20 0.5 3 No Limit 210.98 Limit
random-25 0.3 2 No Limit 5.19 545.11
random-25 0.3 3 No Limit 0.03 0
random-25 0.5 3 ? Limit Limit Limit
random-30 0.3 2 ? Limit Limit Limit
random-30 0.3 3 No Limit 0.05 0
random-30 0.5 3 ? Limit Limit Limit

Table 5: Comparative results over small instances where the vertex rank formulation takes more than 10s
of user CPU time. In the three leftmost columns, v-r stands for vertex rank formulation, c-d for clique
digraph formulation, and u-c for unordered clique relaxation. Best performances are in boldface.
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5.3.2 Medium-sized random instances

We also tested the best formulation, i.e. the vertex rank formulation, on moderately larger instances, with
|V | ∈ {35, 40, 45, . . . , 95} and edge sparsity ratios given in the instance names (see the results in Table
6. The same pattern emerged as for smaller instances, namely the vertex rank formulation is better at

K = 1 K = 2 K = 3
Instance Y/N CPU Y/N CPU Y/N CPU
random-35 0.3 Yes 0.01 Limit Limit
random-35 0.5 Yes 0.01 Yes 3.49 Limit
random-35 0.7 Yes 0.01 Yes 0.37 Yes 10.01
random-40 0.3 Yes 0.01 Limit Limit
random-40 0.5 Yes 0.02 Yes 33.46 Limit
random-40 0.7 Yes 0.02 Yes 0.66 Yes 12.07
random-45 0.3 Yes 0.02 Limit Limit
random-45 0.5 Yes 0.02 Yes 82.17 Limit
random-45 0.7 Yes 0.03 Yes 1.35 Yes 23.71
random-50 0.3 Yes 0.02 Limit Limit
random-50 0.5 Yes 0.03 Yes 125.51 Limit
random-50 0.7 Yes 0.04 Yes 2.03 Yes 80.77
random-55 0.3 Yes 0.03 Limit Limit
random-55 0.5 Yes 0.04 Yes Limit
random-55 0.7 Yes 0.04 Yes 3.76 Yes 58.81
random-60 0.3 Yes 0.03 Limit Limit
random-60 0.5 Yes 0.04 Yes 43.43 Limit
random-60 0.7 Yes 0.05 Yes 5.05 Yes 63.45
random-65 0.3 Yes 0.04 Limit Limit
random-65 0.5 Yes 0.05 Limit Limit
random-65 0.7 Yes 0.06 Yes 6.71 Limit
random-70 0.3 Yes 0.04 Limit Limit
random-70 0.5 Yes 0.05 Limit Limit
random-70 0.7 Yes 0.07 Yes 9.31 Yes 112.48
random-75 0.3 Yes 0.05 Limit Limit
random-75 0.5 Yes 0.07 Limit Limit
random-75 0.7 Yes 0.08 Yes 11.92 Limit
random-80 0.3 Yes 0.06 Limit Limit
random-80 0.5 Yes 0.08 Limit Limit
random-80 0.7 Yes 0.11 Yes 17.32 Limit
random-85 0.3 Yes 0.07 Limit Limit
random-85 0.5 Yes 0.11 Limit Limit
random-85 0.7 Yes 0.12 Yes 23.69 Limit
random-90 0.3 Yes 0.09 Limit Limit
random-90 0.5 Yes 0.12 Limit Limit
random-90 0.7 Yes 0.13 Yes 28.52 Limit
random-95 0.3 Yes 0.09 Limit Limit
random-95 0.5 Yes 0.12 Limit Limit
random-95 0.7 Yes 0.16 Yes 32.63 Limit

Table 6: The vertex rank formulation tested on larger instances.

finding the order in YES instances than proving an instance NO. Indeed, this formulation was unable to
prove any instance NO for this larger test set.

By contrast, some of the larger sparse instances could be proven to be NO for K = 3 by the clique-
based formulations within 300 seconds of user CPU time, as shown in Table 7. It is worth mentioning

CPU
Instance K Y/N v-r c-d u-c

protein

random-35 0.3 3 No Limit 0.09 0.07
random-40 0.3 3 No Limit 0.13 0.1
random-45 0.3 3 No Limit 61.54 875.27
random-50 0.3 3 No Limit 129.24 Limit
random-55 0.3 3 No Limit 238.86 Limit
random-60 0.3 3 No Limit Limit Limit

Table 7: Proving larger instances NO by means of the cliques formulations. See the caption to Table 5
for a legenda of the columns.

that none of the other larger instances could be solved by either clique formulation.
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6 Conclusion

The significance of discretization vertex orders concerns the possibility of using the BP algorithm for
finding all incongruent solutions to certain DGP instances (e.g., related to protein conformation). In
this paper we considered three such orders: KDMDGP orders, re-orders and DDGP orders. We proved
the NP-completeness of their existence problems (respectively CTOP, ReOP and TOP), and showed
specifically that, unlike the TOP, the CTOP and the ReOP problems are also NP-complete for any fixed
K. We then discussed the inclusionwise relation of these problems, establishing that: CTOP ( ReOP (
TOP. Lastly, we proposed three MILP formulations for the CTOP.
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