
Orbital shrinking

Matteo Fischetti1 and Leo Liberti2

1 DEI, Università di Padova, Italy
matteo.fischetti@unipd.it

2 LIX, École Polytechnique, 91128 Palaiseau, France
liberti@lix.polytechnique.fr

Abstract. Symmetry plays an important role in optimization. The usual
approach to cope with symmetry in discrete optimization is to try to
eliminate it by introducing artificial symmetry-breaking conditions into
the problem, and/or by using an ad-hoc search strategy. In this paper
we argue that symmetry is instead a beneficial feature that we should
preserve and exploit as much as possible, breaking it only as a last resort.
To this end, we outline a new approach, that we call orbital shrinking,
where additional integer variables expressing variable sums within each
symmetry orbit are introduces and used to “encapsulate” model sym-
metry. This leads to a discrete relaxation of the original problem, whose
solution yields a bound on its optimal value. Encouraging preliminary
computational experiments on the tightness and solution speed of this
relaxation are presented.
Keywords: Mathematical programming, discrete optimization, algebra,
symmetry, relaxation, MILP, convex MINLP.

1 Introduction

Nature loves symmetry. Artists love symmetry. People love symmetry. Mathe-
maticians and computer scientists also love symmetry, with the only exception of
people working in discrete optimization who always want to break it. Why? The
answer is that symmetry is of great help in simplifying optimization in a convex
setting, but in the discrete case it can trick search algorithms because symmet-
ric solutions are visited again and again. The usual approach to cope with this
redundancy source is to destroy symmetry by introducing artificial conditions
into the problem, or by using a clever branching strategy such as isomorphism
pruning [6, 7] or orbital branching [10]. We will outline a different approach,
that we call orbital shrinking, where additional integer variables expressing vari-
able sums within each orbit are introduces and used to “encapsulate” model
symmetry. This leads to a discrete relaxation of the original problem, whose
solution yields a bound on its optimal value. The underlying idea here is that
we see symmetry as a positive feature of our model, so we want to preserve it as
much as possible, breaking it only as a last resort. Preliminary computational
experiments are presented.

2 Fischetti, Liberti

2 Symmetry

We next review some main results about symmetry groups; we refer the reader
to, e.g., [1] (pp. 189-190) and [6, 7, 4] for more details. For any positive integer n
we use notation [n] := {1, · · · , n}. For any optimization problem (Z) we let v(Z)
and F (Z) denote the optimal objective function value and the feasible solution
set of (Z), respectively. To ease presentation, all problems considered in this
paper are assumed to be feasible and bounded.

Our order of business is to study the role of symmetry when addressing a
generic optimization problem of the form

(P) v(P) := min{f(x) : x ∈ F (P)} (1)

where F (P) ⊆ R
n and f : Rn → R. To this end, let G = {Q1, · · · , QK} ⊂ R

n×n

be a finite group, i.e., a finite set of nonsingular n × n matrices closed under
matrix product and inverse, and assume that, for all x ∈ R

n and for all k ∈ [K]:

(C1) the function f is G-invariant (or symmetric w.r.t. G), i.e., f(Qkx) = f(x);
(C2) x ∈ F (P) ⇒ Qkx ∈ F (P).

Let the fixed subspace of G be defined as F := {x : ∀k ∈ [K] Qkx = x}. Given a
point x, we define

x :=
1

K

K
∑

k=1

Qkx (2)

as the new point obtained by “averaging x alongG”. By elementary group theory,
left-multiplying G by any of its elements Qk leaves G unchanged, hence one has
x ∈ F because

∀k ∈ [K] Qkx =
1

K

K
∑

h=1

(QkQh)x =
1

K

K
∑

h=1

Qhx = x. (3)

In this paper we always consider the case where all Qk’s in G are permutation
matrices, i.e., 0-1 matrices with exactly one entry equal to 1 in each row and in
each column. In this case, y = Qkx if and only if there exists a permutation πk

of [n] such that yj = xi and j = πk(i) for all i ∈ [n]. In other words, the elements
of group G are just permutations πk that simply relabel the components of x.
This naturally leads to a partition of the index set [n] into m ≥ 1 disjoint sets
{ω1, · · · , ωm} = Ω, called the orbits of G, where i and j (i < j) belong to a
same orbit ω ∈ Ω if and only if there exists k ∈ [K] such that j = πk(i).

From an algorithmic point of view, we can visualize the action of a permu-
tation group G as follows. Consider a digraph D = (V,A) whose n nodes are
associated with the indices of the xj variables. Each πk in the group then corre-
sponds to the digraph Dk = (V,Ak) whose arcset Ak := {(i, j) : i ∈ V, j = πk(i)}
defines a family of arc-disjoint circuits covering all the nodes of D. By definition,
(i, j) ∈ Ak implies that i and j belong to a same orbit. So the orbits are just the

connected component of D when taking A =
⋃K

k=1 A
k. In practice, the group is

Orbital shrinking 3

defined by a limited set of “basic” elements (called generators) whose product
and inverse lead to the entire group, and the orbits are quickly computed by ini-
tializing ωi = {i} for all i ∈ [n], scanning the generators πk, in turn, and merging
the two orbits containing the endpoints of each arc (i, πk(i)) for all i ∈ V [11].

In practical applications, the permutation group is detected automatically by
analyzing the problem formulation, i.e., the specific constraints used to define
F (P). In particular, a permutation π is part of the permutation groups only if
there exist an associated permutation σ of the indices of the constraints defining
F (P), that makes it trivial to verify condition (C2); see e.g. [4].

A key property of permutation groups is that, because of (3), the average
point x defined in (2) must have xj constant within each orbit, so it can be
computed efficiently by just taking x-averages inside the orbits, i.e.,

∀ω ∈ Ω, ∀j ∈ ω xj =
1

|ω|

∑

i∈ω

xi. (4)

3 Optimization under symmetry

We next address the role of symmetry in optimization.

3.1 Convex optimization

Assume first that (P) is a convex problem, i.e., f is a convex function and F (P) is

a convex set. Then x ∈ F (P) implies x ∈ F (P) and f(x) = f(
∑K

k=1 Q
kx/K) ≤

∑K

k=1 f(Q
kx)/K = f(x), so one needs only consider average points x when

looking for an optimal solution to (P). Because of (4), for permutation groups
this means that the only unknowns for (P) are the average x-values inside each
orbit or, equivalently, the sums zω =

∑

j∈ω xj for each ω ∈ Ω. It is known
that (P) can therefore be reformulated as follows (see Cor. 3.2): (i) introduce
a new variable zω for each orbit ω, (ii) replace variables xj for all j ∈ ω with
their optimal expression zω/|ω|. Optimizing the resulting projected problem on
the space of the z variables yields the same optimal objective function value as
for the original problem. As a result, symmetry is a very useful property in a
convex optimization setting, in that it allows one to simplify the optimization
problem—provided of course that the symmetry group (or a subgroup thereof)
can be found effectively, as is often the case [4].

3.2 Discrete optimization

We now address a discrete optimization setting where the objective function f
is still convex but the feasible set is defined as

F (P) = {x ∈ X : ∀j ∈ J xj ∈ Z},

4 Fischetti, Liberti

where X ⊂ R
n is a convex set and J ⊆ [n] identifies the variables with integrality

requirement. As customary, we assume X be defined as

X = {x ∈ R
n : ∀i ∈ [r] fi(x) ≤ 0},

where fi : R
n → R, i ∈ [r], are convex functions. This framework is quite

general in that it covers Mixed-Integer Linear Programming (MILP) as well
many relevant cases of Mixed-Integer Nonlinear Programming (MINLP).

A natural way to exploit symmetry in the above setting is based on the
observation that the well known Branch-and-Bound (BB) tree search can be
seen as a way to subdivide (P) into a number of convex subproblems, which
provide relaxations of (P) that are then used to compute bounds and henceforth
prune the search tree. At each tree node one needs to solve a convex subproblem
corresponding to X subject to the branching conditions—that we assume be
expressed by additional convex constraints—hence symmetry can exploited to
simplify this task. Note however that branching conditions alter the symmetry
group of the convex subproblem computed at the root node of the search tree,
so its recomputation (or heuristic update, as e.g. in [10]) at each node becomes
necessary. In addition, the use of symmetry inside each node does not prevent
the tree search to possibly enumerate symmetric solutions again and again, so
ad-hoc branching strategies are still of fundamental importance.

3.3 Orbital shrinking relaxation

We next propose a different approach, intended to eliminate problem symmetry
by “encapsulating” it in a new (relaxed) formulation. More specifically, instead
of trying to break symmetries as is standard in the current literature [12, 6, 7,
10, 9, 4], our approach is to solve a discrete relaxation of the original problem,
defined on a shrunken space with just one variable for each orbit.

Let G be the group for (P) (found e.g. as in [4]) and let Ω = {ω1, . . . , ωm}
be its set of orbits (by construction integer and continuous variables will be in
different orbits). WLOG, assume the first m̃ orbits involve integer variables only,
and let Θ = {ω1, . . . , ωm̃}, while the remaining orbits (if any) involve continuous
variables only (if any). In addition, for each x ∈ R

n, let z(x) ∈ R
m be defined as

∀ω ∈ Ω zω(x) :=
∑

j∈ω

xj .

For any g : Rn → R let g : Rm → R be obtained from g(x) by replacing each
xj by zω/|ω| (j ∈ ω, ω ∈ Ω). Note that g(z(x)) = g(x) holds whenever xj is
constant within each orbit, hence because of (4) one has the identity

g(z(x)) = g(x). (5)

Our Orbital Shrinking Relaxation (OSR) is constructed from (P) in two steps:

Orbital shrinking 5

1. Let (PREL) be the relaxed problem obtained from (P) by replacing the inte-
grality conditions xj ∈ Z (j ∈ J) by their surrogate version

∀ω ∈ Θ (
∑

j∈ω

xj) ∈ Z ; (6)

2. Reformulate (PREL) as

(POSR) v(POSR) := min{f(z) : ∀i ∈ [r] f i(z) ≤ 0, ∀ω ∈ Θ zω ∈ Z} (7)

3.1 Theorem

v(POSR) = v(PREL) ≤ v(P).

Proof. Inequality v(PREL) ≤ v(P) is obvious, so we only need to prove v(POSR) =
v(PREL).

Let x be any optimal solution to (PREL). We claim that x is an equivalent
optimal solution to (PREL). Indeed, because of (C2) one has Qkx ∈ X for all

k ∈ [K], hence x =
(

1
K

∑

k∈[K] Q
kx

)

∈ X because of the convexity of X. In

addition, because of (4),
∑

j∈ω xj =
∑

j∈ω xj for all ω ∈ Θ, hence x also satisfies
(6) and is therefore feasible for (PREL). The optimality of x for (PREL) then follows

immediately from the convexity of f , which implies f(x) = f
(

1
K

∑

k∈[K] Q
kx

)

≤
1
K

∑

k∈[K] f(Q
kx) = f(x), i.e., f(x) = v(PREL).

Now take the point z(x). Because of (5) and since x ∈ X, for all i ∈ [r] we have
f i(z(x)) = fi(x) ≤ 0. In addition, zω(x) ∈ Z for all ω ∈ Θ because x ∈ F (PREL)
satisfies (6), hence z(x) ∈ F (POSR) and then v(POSR) ≤ f(z(x)) = f(x) = v(PREL),
thus proving v(POSR) ≤ v(PREL).

To show v(POSR) ≥ v(PREL), let z be any optimal solution to (POSR) and consider
the point x ∈ R

n with xj := zω/|ω| for all j ∈ ω and ω ∈ Ω. By construction,
x = x and z(x) = z. Because of (5), for all i ∈ [r] one then has fi(x) = fi(x) =
f i(z(x)) = f i(z) ≤ 0, i.e., x ∈ X. In addition, for all ω ∈ Θ,

∑

j∈ω xj = zω ∈ Z,
i.e., x also satisfies (6) and therefore x ∈ F (PREL). Finally, again because of (5),
v(PREL) ≤ f(x) = f(x) = f(z(x)) = f(z) = v(POSR), i.e., v(PREL) ≤ v(POSR) as
required.

3.2 Corollary

For convex optimization (case J = ∅), (POSR) is a reformulation of (P), in the
sense that v(POSR) = v(P).

Proof. Just observe that (PREL) coincides with (P) when J = ∅.

4 Experiments on finding the best subgroup

Theorem 3.1 remains obviously valid if a subgroup G′ of G is used (instead of G)
in the construction of (POSR). Different choices of G′ lead to different relaxations
and hence to different bounds v(POSR). If G′ is the trivial group induced by

6 Fischetti, Liberti

the identity permutation, no shrinking at all is performed and the relaxation
coincides with the original problem. As G′ grows in size, it generates longer
orbits and the relaxation becomes more compact and easier to solve (also because
more symmetry is encapsulated into the relaxation), but the lower bound quality
decreases.

Ideally, we wish the relaxation to be (a) as tight as possible and (b) as
efficient as possible with respect to the CPU time taken to solve it. In this section
we discuss and computationally evaluate a few ideas for generating subgroups
G′ which should intuitively yield “good” relaxations in a MILP context. All
experiments were conducted on a 1.4GHz Intel Core 2 Duo 64bit with 3GB of
RAM. The MILP solver of choice is IBM ILOG Cplex 12.2.

4.1 Automatic generation of the whole symmetry group

The formulation group is detected automatically using the techniques discussed
in [4]: the MILP is transformed into a Directed Acyclic Graph (DAG) encoding
the incidence of variables in objective and constraints, and a graph automor-
phism software (nauty [8]) is then called on the DAG. The orbital-shrinking
relaxation is constructed automatically using a mixture of bash scripting, GAP
[3], AMPL [2], and ROSE [5].

4.2 The instance set

We considered the following 39 symmetric MILP instances:

ca36243 ca57245 ca77247 clique9 cod105 cod105r cod83 cod83r cod93 cod93r

cov1053 cov1054 cov1075 cov1076 cov1174 cov954 flosn52 flosn60 flosn84

jgt18 jgt30 mered O4 35 oa25332 oa26332 oa36243 oa57245 oa77247 of5 14 7

of7 18 9 ofsub9 pa36243 pa57245 pa77247 sts135 sts27 sts45 sts63 sts81

all taken from F. Margot’s website.

4.3 Generator ranking

Using orbital shrinking with the whole symmetry group G has the merit of yield-
ing the most compact relaxation. On our test set, however, this approach yields
a relaxation bound which is not better than the LP bound 31 times out of 39,
and for the remaining 8 times it is not better than the root-node Cplex’s bound
(i.e., LP plus root node cuts)—although this will not necessarily be the case for
other symmetric instances (e.g., for instances with small symmetry groups).

We observe that the final OSR only depends on the orbits of G′ rather than
on G′ itself, and the smaller G′ the more (and/or shorter) orbits it yields. We
therefore consider the idea of testing subgroups with orbits of varying size, from
small to large. Since testing all subgroups of G is out of the question, we look
at its generator list Π = (π0, . . . , πk) (including the identity permutation). For

Orbital shrinking 7

any permutation π we let fix(π) be the subset of [n] fixed by π, i.e., containing
those i such that π(i) = i. We then reorder our list Π so that

| fix(π0)| ≥ · · · ≥ | fix(πk)|

and for all ℓ ≤ k we define Gℓ as the subgroup of G induced by the sublist
(π0, · · · , πℓ). This leads to a subgroup chain

G0, G1, · · · , Gk = G

with increasing number of generators and hence larger and larger orbits (G0 be-
ing the trivial group induced by the identity permutation). In our view, the first
generators in the list are the most attractive ones in terms of bound quality—
having a large fix(π) implies that the generated subgroup is likely to remain
valid for (P) even when several variables are fixed by branching.

For each instance in our test set, we generated the relaxations corresponding
to each Gℓ and recorded bound values and CPU times, plotting the results
against ℓ. We set a maximum user CPU time of 1800s, as we deemed a relaxation
useless if it takes too long to solve. The typical behavior of the relaxation in
terms of bound value and CPU time was observed to be mostly monotonically
decreasing in function of the number ℓ of involved generators. Figure 1 shows an
example of these results on the sts81 instance.

4.4 Choosing a good set of generators

Our generator ranking provides a “dial” to trade bound quality versus CPU
time. We now consider the question of how to set this dial automatically, i.e.,
how to choose a value of ℓ ∈ [k] leading to a good subgroup Gℓ.

Out of the 39 instances in our test set, 16 yields the same bound indepen-
dently of ℓ, and were hence discarded from this test. The remaining 23 instances:

ca36243 clique9 cod105 cod105r cod83 cod83r cod93 cod93r cov1075 cov1076

cov954 mered O4 35 oa36243 oa77247 of5 14 7 of7 18 9 pa36243 sts135 sts27

sts45 sts63 sts81

yields a nonzero decrease in bound value as ℓ increases, so they are of interest
for our test.

Having generated and solved relaxations for all ℓ ≤ k, we hand-picked good
values of ℓ for each instance, based on these prioritized criteria:

1. bound provided by Gℓ strictly tighter than LP bound;

2. minimize user CPU time, with strong penalty for choices of ℓ leading to
excess of 10 seconds;

3. on lack of other priorities, choose ℓ leading to bounds around midrange in
[bnd(Gk), bnd(G1)], where bnd(G′) denotes the bound value obtained by
solving the orbital-shrinking relaxation based on the subgroup G′.

8 Fischetti, Liberti

sts81

ℓ/k obj CPU

1/14 45 3.60
2/14 45 1.51
3/14 45 1.18
4/14 45 1.13
5/14 33 0.01
6/14 33 0.01
7/14 33 0.02
8/14 33 0.00
9/14 29 0.02
10/14 29 0.00
11/14 29 0.01
12/14 28 0.01
13/14 28 0.00
14/14 27 0.00

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 0 2 4 6 8 10 12 14

obj

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14

CPU

Fig. 1. Bound values and CPU times against the number ℓ of generators for instance
sts81.

Orbital shrinking 9

Instance Gℓ LP CPU inc(Gℓ)
inc(G)

ca36243 49 48 0.07 0.50
clique9 ∞ 36 0.06 0.87
cod105 -16 -18 4.91 0.99
cod105r -13 -15 0.25 0.99
cod83 -26 -28 0.12 0.98
cod83r -22 -25 4.44 0.88
cod93 -48 -51 3.07 0.98
cod93r -46 -47 2.74 0.97
cov1075 19 18 3.03 0.86
cov1076 44 43 185.83 0.73
cov954 28 26 0.45 0.79
mered ∞ 140 0.12 0.92
O4 35 ∞ 70 0.07 0.75
oa36243 ∞ 48 0.75 0.50
oa77247 ∞ 112 0.00 0.98
of5 14 7 ∞ 35 0.13 0.62
of7 18 9 ∞ 63 0.04 0.91
pa36243 -44 -48 1.26 0.50
sts135 60 45 0.05 0.88
sts27 12 9 0.01 0.88
sts45 24 15 0.39 0.66
sts63 27 21 0.00 1.00
sts81 33 27 0.00 0.88

Table 1. Hand-picked choice of the subgroup Gℓ.

This choice led to the first three columns of Table 1 (the fourth will be explained
later). Next we looked for a feature of the solution data over all ℓ ≤ k and over
all instances, whose average value corresponds to values of ℓ that are close to the
hand-picked ones in Table 1. Again, intuition led our choice for this feature. Our
reasoning is as follows. We observe that, given any orbit ω, our OSR replaces
∑

j∈ω xj with a single variable zω. Suppose now that a constraint
∑

j∈ω xj ≤ bi
happens to exist in the MILP formulation (P): this is simply reformulated to
a bound constraint zω ≤ bi, thus replacing a |ω|-ary original relation on the
decision variables x with a unary relation on the decision variables z. Intuitively,
this will over-simplify the problem and will likely yield a poor relaxation. Instead,
we would like to deal with orbits that are somehow “orthogonal” to the problem
constraints.

To this aim, consider the i-th (out of, say, r) MILP constraint, namely
∑

j∈[n] aijxj ≤ bi, and define the incidence of an orbit ω with respect to the

support of this constraint as |ω ∩ {j ∈ [n] : aij 6= 0}|. Intuitively, the lower
the incidence of an orbit, the farther we are from the situation where problem
constraints become over-simplified range constraints in the relaxation. Lower in-
cidence orbits should yield tighter relaxations, albeit perhaps harder to solve.
Given a subgroup G′ with orbits Ω′ = {ω′

1, · · · , ω
′

m′}, we then extend the inci-

10 Fischetti, Liberti

dence notion to G′

inc(G′, i) :=

∣

∣

∣

∣

∣

⋃

ω′∈Ω′

ω′ ∩ {j ∈ [n] : aij 6= 0}

∣

∣

∣

∣

∣

, (8)

and finally to the whole MILP formulation

inc(G′) =
∑

i∈[r]

inc(G′, i). (9)

The rightmost column of Table 1 reports the relative incidence of Gℓ, computed
as inc(Gℓ)/ inc(G), for those ℓ that were hand-chosen to be “best” according to
the prioritized criteria listed above. Its average is 0.82 with standard deviation
0.17. This value allows us to generate a relaxation which is hopefully “good”,
by automatically selecting the value of ℓ such that inc(Gℓ)/ inc(G) is as close to
0.82 as possible.

5 Computational experiments

The quality of the OSR we obtain with the method of Section 4.4 is reported in
Table 2 whose columns include: the instance name, the automatically determined
value of ℓ and the total number k of generators, the best-known optimal objective
function value for the instance (starred values correspond to guaranteed optima),
the bound given by G1 which provides the tightest non-trivial OSR bound, the
bound given by Gℓ and the associated CPU time, the CPU time “cpx t” spent
by CPLEX 12.2 (default settings) on the original formulation to get the same
bound as OSR (only reported when the OSR bound is strictly better than the
LP bound), and the LP bound. Entry limit marks an exceeded time limit of 1800
sec.s, while boldface highlights the best results for each instance.

The results are quite encouraging: our bound is very often stronger than the
LP bound, whilst often taking only a fraction of a second to solve. The effect
of orbital shrinking can be noticed by looking at the “cpx t” column, where it
is evident that normal branching takes significantly longer to reach the bound
given by our relaxation.

6 Conclusions

We discussed a new methodology for deriving a tight relaxation of a given dis-
crete optimization problem, based on orbit shrinking. Results on a testbed of
MILP instances are quite encouraging. Our work opens up several directions:
how to find a good generator set, whether it is possible to find extensions to
general MINLPs, how will the relaxation perform when used within a Branch-
and-Bound algorithm and how to dynamically change it along the search tree,
and which insights for heuristics can be derived from the integer solution of the
relaxed problem.

Orbital shrinking 11

Instance ℓ/k best G1 Gℓ CPU cpx t LP

ca36243 3/6 49∗ 49 48 0.02 48
clique9 5/15 ∞

∗
∞ ∞ 0.06 0.17 36

cod105 3/11 -12∗ limit -14.09† limit -18
cod105r 3/10 -11∗ -11 -11 24.12 28.36 -15
cod83 3/9 -20∗ -21 -24 16.78 9.54 -28
cod83r 3/7 -19∗ -21 -22 4.44 7.85 -25
cod93 3/10 -40 -46.11† limit -51
cod93r 3/8 -38 -39 -44 271.74 446.48 -47
cov1075 3/9 20∗ 20 19 3.03 79.79 18
cov1076 3/9 45 44 43 2.78 43
cov954 3/8 30∗ 28 26 0.11 26
mered 21/31 ∞

∗
∞ ∞ 0.15 3.37 140

O4 35 3/9 ∞
∗

∞ 70 0.00 70
oa36243 3/6 ∞

∗
∞ 48 0.01 48

oa77247 3/7 ∞
∗

∞ ∞ 0.10 265.92 112
of5 14 7 7/9 ∞

∗
∞ 35 0.00 35

of7 18 9 7/16 ∞
∗

∞ ∞ 0.09 0.15 63
pa36243 3/6 -44∗ -44 -48 0.01 -48
sts135 3/8 106 75 60 0.11 109.81 45
sts27 4/8 18∗ 14 12 0.01 1.05 9
sts45 2/5 30∗ 24 15 0.00 15
sts63 4/9 45∗ 36 27 0.02 1.99 21
sts81 5/14 61 45 33 0.01 3.92 27

Table 2. OSR performance (in the Gℓ/CPU columns). Entries marked ∗ denote guar-
anteed optimal values; those marked † denote the best lower bound at the time limit.
In sts27, CPLEX closes the gap at the root node. Values for cpx t are only present
when the OSR bound is integer and better than the LP bound.

Acknowledgements

The first author was supported by the Progetto di Ateneo on “Computational
Integer Programming” of the University of Padova. The second author was par-
tially supported by grants Digiteo Chair 2009-14D “RMNCCO” and Digiteo
2009-55D “ARM”. We thank Mauro Diligenti who asked the question that origi-
nated the present work—Why do you discrete optimization guys hate symmetry
and want to destroy it?

References

1. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004.

2. R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.
3. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10,

2007.
4. L. Liberti. Reformulations in mathematical programming: Automatic symmetry

detection and exploitation. Mathematical Programming A, DOI 10.1007/s10107-
010-0351-0.

12 Fischetti, Liberti

5. L. Liberti, S. Cafieri, and D. Savourey. Reformulation optimization software en-
gine. In K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, editors,
Mathematical Software, volume 6327 of LNCS, pages 303–314, New York, 2010.
Springer.

6. F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Program-
ming, 94:71–90, 2002.

7. F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming B,
98:3–21, 2003.

8. B. McKay. nauty User’s Guide (Version 2.4). Computer Science Dept. , Australian
National University, 2007.

9. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Constraint orbital branching.
In A. Lodi, A. Panconesi, and G. Rinaldi, editors, IPCO, volume 5035 of LNCS,
pages 225–239. Springer, 2008.

10. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathe-
matical Programming, 126:147–178, 2011.

11. A. Seress. Permutation Group Algorithms. Cambridge University Press, Cam-
bridge, 2003.

12. H. Sherali and C. Smith. Improving discrete model representations via symmetry
considerations. Management Science, 47(10):1396–1407, 2001.

