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Abstract The Distance Geometry Problem (DGP) is the problem of deter-
mining whether a realization for a simple weighted undirected graph G =
(V,E, d) in a given Euclidean space exists so that the distances between pairs
of realized vertices u, v ∈ V correspond to the weights duv, for each {u, v} ∈ E.
We focus on a special class of DGP instances, referred to as the Discretizable
DGP (DDGP), and we introduce the K-discretization and the K-incident
graphs for the DDGP class. The K-discretization graph is independent on
the vertex order that can be assigned to V , and can be useful for discovering
whether one of such orders actually exists so that the DDGP assumptions are
satisfied. The use of a given vertex order allows the definition of another im-
portant graph, theK-incident graph, which is potentially useful for performing
pre-processing analysis on the solution set of DDGP instances.

1 Introduction

Given a simple weighted undirected graph G = (V,E, d) and a positive integer
K, the Distance Geometry Problem (DGP) asks whether a realization

x : V −→ R
K
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of G in the Euclidean space R
K exists so that

∀{u, v} ∈ E, ||xu − xv|| = duv, (1)

where duv is the weight on the edge {u, v} ∈ E and || · || represents the Eu-
clidean norm. We say that the realization x, satisfying the distance constraints
in eq. (1), is a valid realization of G [8]. The DGP is NP-hard [13].

This paper concerns a particular class of DGP instances, where the search
space of the problem can be discretized and, this way, reduced to a search tree
that is binary under the hypothesis that all distances duv are precise [9,11].
Let n be the number of vertices in V and let G[·] be the subgraph of G induced
by the subset of V given as an argument. Given K vertices u1, u2, . . . , uK ,
let S(u1, u2, . . . , uK) be the volume of the simplex that is a valid embedding
of such vertices.

Definition 1 The Discretizable DGP (DDGP).
Given a DGP instance (formed by an integerK > 0 and a graphG = (V,E, d))
and a vertex order on V such that for each v ∈ {K + 1, . . . , n} there exist K
reference vertices u1(v), u2(v), . . . , uK(v) (simply denoted by u1, . . . , uK for
simplicity) with the following properties:

(a) G[{u1, . . . , uK}] is a clique;
(b) u1 < v, . . . , uK < v (where < is w.r.t. the vertex order);
(c) {{u1, v}, {u2, v}, . . . , {uK , v}} ⊂ E;
(d) S(u1, u2, . . . , uK) > 0,

determine whether there exists a realization x : V → R
K of the given graph

in the K-dimensional Euclidean space such that eq. (1) holds.

We call a graph G satisfying Defn. 1 discretizable.
Property (a) in Defn. 1 allows us to fix the coordinate space where all so-

lutions can be constructed, so that no solutions can be obtained from others
by applying total translations, rotations and reflections (except the reflection
around the (hyper-)plane defined by the vertices of the initial clique). Proper-
ties (b)-(d) ensure that, for every vertex v that does not belong to the initial
clique, there exist at least K reference vertices, with known reference distances

(i.e. the weights of the edges mentioned in Property (c)), that can be used for
finding possible positions for v.

As is well-known, the DDGP can be solved using an algorithm called
Branch-and-Prune (BP) [9,8]. The BP algorithm is based on the idea of recur-
sively constructing the search tree by initializing, at each step, two new tree
branches, and to verify the feasibility of candidate vertex positions as soon
as they are generated [7]. As such, BP generates algorithmic traces that are
essentially search trees. The BP algorithm was shown to be very efficient on
DDGP instances consisting of exact distances [5], and extensions of this algo-
rithm are under study for the more general case where some distances may be
imprecise or represented by suitable real-valued intervals [1,3,6].

The search trees generated by BP are organized so that all possible posi-
tions for the same vertex v belong to a common layer of the tree. A solution
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can be represented as a path from the root node (the first vertex of the initial
clique) to one of its leaf nodes (representing positions for the last vertex in V ).
We will refer to the associated vertex orders r as discretization orders, where
|r| indicates their length.

In this paper, we introduce two auxiliary graphs that can be derived from
the given graph G: the K-discretization and the K-incidence graph. The K-

discretization graph can be exploited for verifying whether a DGP instance
satisfies the properties in Defn. 1 and to identify a valid discretization order.
The K-incident graph, which depends on the discretization order, can instead
be at the basis of new theoretical results concerning a priori analysis of the
cardinality of DDGP solution sets. We present some initial theoretical results
related to these two auxiliary graphs.

After providing a list of main notations in Section 1.1, the rest of the paper
is organized as follows. In Section 2, we will introduce the K-discretization
graph and study its main properties. In Section 3, we will introduce the K-
incident graph, which depends instead on a given discretization order r on V .
In Section 4, we will provide a detailed example showing how the K-incident
graph can come to help in the study of the solution set of DDGP instances.
In Section 5, we will rewrite a previously proposed algorithm for the search of
discretization orders [4] in terms of K-discretization and K-incident graphs.
Section 6 will conclude the paper with some directions for future research
involving these newly introduced auxiliary graphs.

1.1 Main notations

– K, embedding dimension;
– G = (V,E, d), the original DGP instance graph;
– r, vertex order associated to the vertex set V of G;
– v, vertex of G (without information about its rank in r);
– ui, vertex of G (having rank i in r);
– N(v), the set of all vertices that are adjacent to v ∈ V in G;
– G = (VG , EG), the K-discretization graph;
– u (or v), vertex of G (without information about its rank in r);
– N (v), the set of all vertices that are adjacent to v ∈ VG in G;
– I = (VI , EI), the K-incident graph;
– ui, the set of adjacent predecessors of ui in G, for a given r;
– ūi, the set of adjacent successors of ui in G, for a given r;
– ûi, the set of reference vertices of ui in G used for the discretization, for a

given r.

Notice that we will use the same letters of the alphabet, but in different styles,
for making reference to related vertices in graphs G, G and I. For example,
the set u ∈ VG is the one corresponding to the vertex u ∈ V . The same style is
used for the vertices of G and I, because I is isomorphic to a subgraph of G.
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Fig. 1 The original DGP graph G (left) and its 2-discretization graph (right).

2 The K-discretization graph

Let K > 0 and G = (V,E, d) be an instance of the DGP with exact distances.
Let N(v) be the set containing the adjacent vertices of v ∈ V :

N(v) = {u ∈ V | {u, v} ∈ E} .

Definition 2 A K-discretization graph G = (VG , EG) of G is a simple undi-
rected graph defined as follows:

– for all v ∈ V , the vertex v ∈ VG is the set N(v) ∪ {v};
– {u, v} ∈ EG if and only if |u ∩ v| ≥ K.

By definition, the cardinality of the vertex set VG of the K-discretization graph
corresponds to |V |.

Consider for example the following graph, with n = |V | = 6 and K = 2:

E = { {u1, u2}, {u1, u3}, {u2, u3}, {u2, u4}, {u2, u5}, {u3, u4}, {u3, u5},
{u3, u6}, {u4, u5}, {u4, u6} }.

This graph is shown in Fig. 1, with its 2-discretization graph. Table 1 shows
the sets ui ∈ VG in correspondence with every vertex ui of G. By definition,
the edges in G depend upon the cardinality of the set intersections between
pairs of vertices: for example, {u2, u6} ∈ EG because |u2 ∩ u6| = 2; conversely,
{u1, u6} 6∈ EG because |u2 ∩ u6| = 1.

Notice that, if the K-discretization graph G is not connected, then the
instance represented by G cannot be discretizable (although each of the con-
nected components might still be discretizable). Moreover, if no subset of
v ∈ VG induces a subgraph containing a K-clique, then the instance repre-
sented by G cannot be discretizable either.

Defn. 2 immediately implies Lemma 1.

Lemma 1 If no K-tuple of vertices of G induces a K-clique subgraph of G,

then the instance represented by G is not discretizable in dimension K.
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u1 u1 = {u1, u2, u3}
u2 u2 = {u1, u2, u3, u4, u5}
u3 u3 = {u1, u2, u3, u4, u5, u6}
u4 u4 = {u2, u3, u4, u5.u6}
u5 u5 = {u2, u3, u4, u5}
u6 u6 = {u3, u4, u6}

Table 1 The sets ui associated to each vertex of G.

Proof By contradiction, let us suppose that G is discretizable. In this case, a
K-clique C exists in G by Property (a) of Defn. 1. Let us consider the sets
u ∈ VG related to the vertices u ∈ C. Every set u contains u and all the other
vertices belonging to C, by definition. Therefore the intersection of all these
sets u needs to contain the K-clique C, against the hypothesis. ✷

By definition, the K-discretization graph does not depend on the choice of
a particular discretization order r. We introduce two new sets that are instead
strongly related to the chosen discretization order. We use the subscripts i

in ui and ui to refer to the rank of these vertices in a given discretization
order. The definition of a discretization order for the vertex set V induces the
definition of an equivalent order for the vertex set VG , and vice versa. The set

ui = ui ∩ {uj ∈ V | j ≤ i} (2)

contains all the adjacent vertices of ui ∈ V that can be used as reference
vertices. By contrast, the set

ūi = ui ∩ {uj ∈ V | j > i} (3)

contains all the adjacent vertices of ui ∈ V that do not play the role of refer-
ence for ui in the given choice for the vertex order (the vertices in ūi can be
references for higher-ranked vertices). Since ui appears in the two sets inter-
sected in eq. (2), the set ui always contains the vertex ui. From a given vertex
order r, the two sequences

{ui}i∈{K+1,...,|r|}, {ūi}i∈{K+1,...,|r|}

can be defined. Fig. 2 shows a graphical illustration of the definitions of ui and
ūi from ui.

In order to apply the BP algorithm to a DDGP instance (see Section 1),
it is necessary to identify a particular subset ûi out of each of the sets ui,
containing the reference vertices. We remark that ui r ûi contains vertices
which might, at level i, be incident to edges that are used for pruning, and
generally named “pruning edges”. Naturally, when the cardinality of ui isK+1,
then all the vertices it contains need to be considered for the discretization
process. However, when this cardinality is strictly larger than K + 1, then
there are many choices for the set ûi. This is likely to have an impact on the
performance of the BP algorithm [2].
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Fig. 2 Definition of ui, ūi and ûi.

Definition 3 A sequence {ûi}i∈{K+1,...,|r|} is a valid list of reference vertices
for G if, for each i ∈ {K + 1, . . . , |r|}, we have:

ûi ⊆ ui, |ûi| = K + 1, ui ∈ ûi.

In other words, the set ûi contains the original vertex ui of G, as well as the
K reference vertices that are supposed to be used for the discretization (see
Fig. 2).

3 The K-incident graph

Definition 4 Given a DGP graph G with a vertex order r associated to its
vertex set, and given a valid list of reference vertices {ûi}i∈{K+1,...,|r|}, the
K-incident graph I = (VI , EI) of G is such that

– VI = {ûi : i ∈ {K + 1, . . . , |r|}};
– {ûi, ûj} ∈ EI if and only if |ûi ∩ ûj | = K.

By definition, the K-incident graph is isometric to a subgraph of the K-
discretization graph, which can be identified once a valid list of reference
vertices is associated to the original graph G. The cardinality of the vertex
set VI of the K-incident graph is always |V | −K.

Lemma 2 If C is a clique of the K-incident graph I, and û
′, û′′ and û

′′′ are

three distinct vertices of the clique, then

û
′ ∩ û

′′ = û
′ ∩ û

′′′.

Proof We proceed by induction on the numberm of vertices forming the clique.
The case m = 2 is trivial but it cannot be used as a basis for the induction.
We consider therefore the case m = 3: C is induced by {û′, û′′, û′′′}, related to
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the vertices u′, u′′ and u′′′ of G. We assume WLOG that the superscript order
corresponds to the order in r. As a consequence, u′′′ 6∈ û

′ because u′′′ appears
in the order after u′ and it cannot be reference vertex for u′. Similarly, we
have that u′′′ 6∈ û

′′. Since, by definition, every vertex û has cardinality K + 1,
and every intersection of distinct sets û

′, û′′ and û
′′′ has cardinality K (see

Defn. 4), we can state that

û
′ ∩ û

′′′ = û
′′′
r {u′′′}, (4)

and

û
′′ ∩ û

′′′ = û
′′′
r {u′′′}. (5)

Let us consider now the last possible intersection in the clique, which is the
one between û

′ and û
′′. Because of eqs. (4) and (5), both û

′ and û
′′ contain the

set û′′′ r {u′′′}. Since this set has cardinality K, which is also the cardinality
of the intersection, we have

û
′ ∩ û

′′ = û
′′′
r {u′′′},

and hence the lemma is proved for m = 3.
Let us now suppose that this property is true for m-cliques, with m ≥ 3.

Let û
′ and û

′′ be two distinct vertices of the (m + 1)-clique C, appearing in
the order r as specified by their superscripts. The two subgraphs C′ and C′′

obtained by removing either û′ or û′′, respectively, from the (m+ 1)-clique C

are cliques formed by m vertices, for which the property is supposed to be
true. By the induction hypothesis, the property holds for all triplets in C′ and
all those in C′′; this just leaves the case of triplets containing both û

′ and û
′′.

So, let us consider a triplet containing both û
′ and û

′′: let û
′′′ be the third

vertex in the triplet, which belongs to both C′ and C′′. Since the property
is true for C′, there exists a triplet in C′ containing û

′′ and û
′′′ for which all

intersections give the same set P having cardinality K. In particular,

û
′′ ∩ û

′′′ = P.

Similarly, by considering the clique C′′, we can state that

û
′ ∩ û

′′′ = P.

The property is therefore true also for C, because both û
′ and û

′′ contain P ,
and their intersection needs to have the same cardinality K:

û
′ ∩ û

′′ = P.

✷

Lemma 3 Every cycle in the K-incident graph I is contained in a clique of

I.
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unique
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unique
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unique
path

û v̂

û
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Fig. 3 By contradiction, we suppose that two shortest paths exist. They may intersect or
not.

Proof We proceed by induction. For m = 3, every 3-cycle is a 3-clique. Let us
suppose now that the property is true for size m, and let us consider a cycle C
in the K-incident graph that is incident to m+ 1 vertices. Let û′′′ be the last
cycle vertex in the given discretization order, and û

′, û′′ be the two vertices
adjacent to u′′ in C. In this situation, both eq. (4) and (5) hold, which implies
that

û
′ ∩ û

′′ = û
′′′
r {u′′′} and {û′, û′′} ∈ EI .

For simplicity, let us denote P = û
′′′
r{u′′′}. We can then identify two cycles on

the K-incident graph. One is formed by the subset of vertices {û′, û′′, û′′′} with
three vertices, and the other is formed by the subset of vertices VCr{û′′′}, with
m vertices and {û′, û′′} as an edge. This last cycle, by hypothesis, is contained
in a clique and, by Lemma 2, all the edges of this clique are the set P since
{û′, û′′} is an edge of the cycle. In other words, all the vertices in the clique
has P as subset. Thus, all vertices in this clique are connected to û

′′′, which
means that C is contained in a clique. ✷

In the following, we will consider the symbol P (û, v̂) to indicate a path
between the two vertices û and v̂ in the K-incident graph. The subscript in
PS(û, v̂) indicates that this is a shortest path, which, by the next proposition,
is unique.

Proposition 1 Every shortest path over the K-incident graph I is unique.

Proof By contradiction, let us suppose that two shortest paths between û and
v̂ exist. If they have only intersection at the two extreme vertices (see top of
Fig. 3), then they form a cycle, and, by Lemma 3, a clique containing such
a cycle exists in I. Therefore, a path between û and v̂ is the unique edge
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u1

u3

u2
u4

u5

u6

u7

u8

u9

û3

û4

û9

û6 û8

û5
û7

pruning edge
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Fig. 4 A graph G representing a DDGP instance (on the left-hand side), with the 2-
incident graph (on the right-hand side) corresponding to the vertex order given by the
vertex subscripts.

connecting these two vertices in the graph. This path is the unique shortest
path: contradiction.

Let us consider now the case where the two shortest paths do have in-
tersections in vertices that do not coincide with neither û nor v̂ (see bottom
picture in Fig. 3). When the intersection occurs, the sub-path is unique, be-
cause it is common to both shortest paths. For the other sub-paths, cycles can
be identified, which imply the existence of cliques. As above, therefore, such
sub-paths can be replaced with unique and shortest paths formed by only one
edge, which is a contradiction. ✷

4 Potential uses of the K-incident graph

As already mentioned in the Introduction, the K-incident graph can provide
very important information about the solution set of DDGP instances. In this
section, we will go in details over an example to show this potential use; for
lack of space, we will leave the formal study of the content of this section to
future works.

Let us consider the DDGP instance in Fig. 4. The instance is composed by
9 vertices and 17 edges, connecting the vertices as shown in Fig 4. We suppose
that the realization dimension K is fixed to 2. Moreover, a vertex order is
associated to the instance, as indicated by the vertex subscripts. Therefore,
from the 2-discretization graph (not shown in Fig 4 for clearness), it is possible
to “extract” the 2-incident graph related to this vertex order. Notice that,
together with the vertex order, the information about the fact that {u1, u9}
and {u7, u8} can serve as pruning edges is also considered in the definition
of 2-incident graph (in particular, in the definition of the sets ûi, with i ∈
{3, . . . , 9}).

Let us initially consider the sub-instance G[{u1, u2, u3, u4, u9}]. It is evi-
dent that it satisfies the DDGP assumptions, and, moreover, this sub-instance
has a pruning edge connecting its first and last vertex, in the given order.
Following [10], we can state that this sub-instance admits only one realiza-
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tion, modulo total translations, rotations and reflections. We can come to the
same conclusion while analyzing the sub-instance G[{u5, u6, u7, u8}], because,
with the pruning edge {u7, u8}, it forms a 4-clique. Notice however that the
“connection bridge” between these two sub-instances, represented by the edge
{û5, û6} in the K-incident graph, is flexible, for the absence of pruning edges.
Since this is a DDGP instance, flexibility means that there exist two feasible
positions for u6 w.r.t. its predecessors in û6.

The study of the properties of these sub-instances can help discovering,
before the explicit computation of the realizations, some properties of the
solution set of the original instance. Recall that solutions obtained from others
by a total reflection around (a realization of) the initial clique are included
in the solution set: pairs of solutions separated by this transformation are
said to be symmetric [10,12]. Therefore, the realization corresponding to the
sub-instance G[{u1, u2, u3, u4, u9}], together with its symmetric, need to be
considered in the construction of the solution set of the original instance. Then,
as remarked above, the “connection bridge” {û5, û6} is flexible, and therefore
4 total possible solutions can be obtained up to the vertex u6. Finally, the sub-
instance G[{u5, u6, u7, u8}] admits as well one realization, and, by counting its
symmetric, we have a total of 8 solutions for the original instance.

The entire discussion above can be deduced, in a much simpler way, by
using the K-incident graph associated to the DDGP instance (see Fig. 4). Let
us consider the two pruning edges {u1, u9} and {u7, u8}, and let us compute the
shortest paths over the K-incident graph between the corresponding vertices
of I (recall that u1 ∈ û3). By Prop. 1, these two shortest paths are unique.
Moreover, they allow to automatically identify the sub-instances that we have
considered above. Instead of studying in details the properties of each sub-
instance, we propose to perform the following operation on the K-incident
graph: for every shortest path, we replace the vertices it covers with one unique
vertex, represented by the set union of the covered vertices (see Fig. 5). Let
V c
I be the vertex set of I after having performed this transformation: we

conjecture that the number of solutions of the original instance is 2|V
c

I
|−1.

5 Extracting the K-incident graph from G

Given a DGP graph G, its K-discretization graph can be immediately con-
structed. The definition of the K-incident graph, on the other hand, needs
a discretization order associated to V . In this section we re-cast in this new
abstract setting a greedy algorithm previously proposed in [4] in order to find
discretization orders in DDGP instances. We also describe an additional fea-
ture designed to select subsets of reference vertices for the BP algorithm (see
Section 2).

The basic idea of the greedy algorithm can be summarized in the following
two steps. First, an initial K-clique of G is identified and its vertices are placed
at the beginning of the new order; then, the rest of the order is constructed
by choosing as next one the vertex that maximizes the number of adjacent
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û3

û4

û9

û6

û8

û5

û7

û3 ∪ û4 ∪ û9

û6

û7 ∪ û8

û5

Fig. 5 The 2-incident graph in Fig. 4 where we marked with bold lines the identified shortest
paths; on the right-hand side, the same graph after having replaced the vertices covered by
the shortest paths with one unique vertex represented by a set union.

vertices already included in the order (for more details, the reader is referred
to [4]).

In terms of K-discretization graph, the selection of the initial clique can
be performed by selecting K vertices of G for which the intersection induces a
subgraph of G containing a K-clique (which, by Lemma 1, does exist when G

is a DDGP graph). All these vertices are placed at the beginning of the order
(we can assign to them the ranks from 1 to K, in any internal order).

For constructing the rest of the order, we consider the set

N (v) = {w ∈ VG | {w, v} ∈ EG}

of adjacent vertices to a given v of G. At each iteration i = K + 1, . . . , |r| of
the algorithm, we compute the set N (ui−1) and select the w ∈ N (ui−1) such
that

|w ∩ ui−1|

is maximized.
The greedy algorithm in [4] can be therefore rewritten in terms of K-

discretization graph, as shown in Alg. 1. We point out that, in our notations,
the operation of assigning a rank to a vertex u is represented by the nu-
merical subscript i associated to it. The theoretical results presented in [4]
ensure that, when they exist, the greedy algorithm is able to find discretiza-
tion orders for G; it provides otherwise a certificate of non-existence. The
definition of a vertex order on V is equivalent to defining the two sequences
{ui}i∈{K+1,...,|r|} and {ūi}i∈{K+1,...,|r|}. From the former sequence, moreover,

a valid list {ûi}i∈{K+1,...,|r|} of reference vertices can be defined, and hence
the corresponding K-incident graph.

At iteration i of Alg. 1, if the set ui has a cardinality larger than K + 1,
then several subsets ûi can be defined (see Fig. 6). As remarked above, these
subsets can bring to the definition of different K-incident graphs (see Fig. 7).
In this work, we simply define every ûi so that the vertices that are closer
in rank to ui are exploited as reference vertices in the discretization process.



12 Abud, Alencar, Lavor, Liberti, Mucherino

û1
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û4

û5
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Fig. 6 A 2-discretization graph (left-hand side) with different associated sequences {ûi}
(which imply different sets of pruning edges, in red dashed lines.)
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û3 = {u1, u2, u3}

{u2, u3, u4} = û4

û9 = {u3, u4, u9} û8 = {u4, u5, u8}

û6

û5 = {u3, u4, u5} û7

û3

û4

û9 û8 = {u3, u4, u8}

û5 = {u3, u4, u5}

û6 = {u4, u5, u6}

û7{u5, u6, u7}

Fig. 7 Two 2-incident graphs related to the two different choices for û8 depicted in Fig. 6
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Algorithm 1 Extracting a K-incident graph I from G
1: input: graphs G and G
2: fix K vertices u ∈ VG whose intersection gives a K-clique C

3: assign the first K ranks to the vertices of C
4: let VI = ∅
5: for (i = K + 1 to |VG |) do

6: // defining vertex order
7: compute N (ui−1)
8: choose w ∈ N (ui−1) such that |w ∩ ui−1| is maximized
9: let ui = w = {vj(1) , vj(2) , . . . , vj(K+h), ui};
10: // defining reference list
11: if (h = 0) then

12: let ûi = ui;
13: else

14: let M be the set of K vertices in ui \ {ui} such that their ranks j are closer to i;
15: let ûi = M ∪ {ui};
16: end if

17: let VI = VI ∪ {ui};
18: end for

19: // defining edge set of K-incident graph
20: let EI = {{hatui, v̂j} ∈ VI × VI : |ûi ∩ v̂j | = K}
21: output: graph I

However, future works will be devoted to studying the impact of different
reference lists {ûi} on the performances of the BP algorithm, that can be
associated to K-incident graphs having different properties.

6 Conclusions

We have introduced the K-discretization graph and the K-incident graph for
the DDGP. Future works will be aimed at exploiting these two auxiliary graphs
of the DDGP for studying the properties of its solution set, as for example for
determining the cardinality of the solution set before the solution of DDGP
instances (see our conjecture in Section 4).
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