
Mathematical programming based debugging

Leo Liberti, Stéphane Le Roux 1,2

LIX, École Polytechnique, 91128 Palaiseau, France

Jeremy Leconte 3

DI, École Normale Supérieure, 45 Rue d’Ulm, 75230 Paris, France

Fabrizio Marinelli 4

DIIGA, Università Politecnica delle Marche, Ancona, Italy

Abstract

Verifying that a piece of software has no bugs means proving that it has cer-
tain desired properties, such as an array index not taking values outside certain
bounds. Abstract interpretation is used in the static analysis of code to establish
the inclusion-wise smallest set of values (numerical invariant) that the program vari-
ables can attain during program execution. Such sets can be used to detect run-time
errors without actually running the program. We present a mathematical program
that determines guaranteed smallest interval invariants of computer programs with
integer affine arithmetics and compare our results to existing techniques.

Keywords: verification, static analysis, abstract interpretation, reformulation.

1 Partially supported by grants: System@tic “EDONA”and an Île-de-France postdoctoral
fellowship.
2 E-mail:{liberti,leroux}@lix.polytechnique.fr. Corresponding author: liberti.
3 E-mail:jeremy.leconte1@ens.fr
4 E-mail:marinelli@diiga.univpm.it

1 Introduction

Static Analysis (SA) by Abstract Interpretation (AI) [4,5] aims to find pro-
gram invariants as over-approximations (also called abstract semantics) of the
sets of values (also called concrete semantics) that the program variables can
take at each control point of the program during the whole execution. We
usually restrict abstract semantics to belong to a pre-specified class of sets,
e.g. intervals, spheres, polyhedra and so on. Given one such class L and a
lattice (L,⊆), the action of the program can be seen as a function F from
L to itself. Thus a domain X ∈ L is invariant with respect to F if it does
not change when F is applied to it. In other words, it must obey the fixpoint
equations:

X = F (X),(1)

usually called semantic equations. In particular, the least fixed point of F in L
is the smallest invariant (for the given domain type) of the computer program
encoded by F . Invariants are used to verify given properties of computer pro-
grams, such as for example “the variable xi never exceeds the bounds [0, 10]”:
if we are able to show that the smallest invariant for xi is, say, [1, 5], then
we are sure that the property is verified. This should also explain why large
invariants are less interesting: the interval [−∞,∞] might be an invariant,
but it can only prove the trivial property xi ∈ [−∞,∞].

Two well-known solution methods for (1) are Kleene’s Iteration (KI) [4]
and Policy Iteration (PI) [2,6,7]. KI is an iterative, possibly unbounded pro-
cedure based on applying F to the largest possible domain in the L until
convergence to a fixed point is attained. PI is a sort of “Newton’s method”
borrowed from Markov Decision Processes [10,12] and adapted to lattices,
which only converges to a guaranteed least fixed point under some additional
conditions on F , namely non-expansiveness, playing the same role as convex-
ity in the traditional Newton’s method. The alternative approach proposed
in this paper (limited for now to interval domains and addressing imperative
languages) consists in using Mathematical Programming (MP) for describ-
ing the feasible set of (1) and employing a standard Branch-and-Bound (BB)
algorithm to solve it exactly. We remark that mathematical programming
and numerical optimization techniques were previously employed in software
verification [3,13,15] but in different contexts.

The main innovation proposed in this paper is that, at least for computer
programs with integer affine arithmetic, our approach provides both an op-
timality guarantee for all such programs and a finite, though exponential,
bound on the computation time, which is an improvement with respect to

KI or PI (we remark that PI might also be naturally extended to work on
expansive programs in exponential time, but such an extension was never de-
scribed). The second innovation is that we use an essentially static modelling
language (namely MP) to describe the dynamic execution of a computer pro-
gram: modelling occurs recursively on the program operators translated into
semantic equations. Furthermore, this work establishes an interesting, pre-
cisely defined relation between an imperative language (C) and a declarative
one (MP).

2 The computational model

It is well known that flowcharts (i.e., graph representations of computer pro-
grams) are Turing-equivalent to a Universal Turing Machine (UTM) [9]. It is
not too difficult to show that Turing-equivalence is not lost if we require that
no flowchart node has more than two incoming arcs. Given such a flowchart
(also called a program graph) G = (V,A) representing a computer program,
where V is the set of control points of the program and A = {a1, . . . , am} is
the set of flow-carrying arcs in the program, we assign a sequence of intervals
Xi to each arc ai, for all i ≤ m. The interval Xi is an over-approximation
of the set of values taken by variable x on the arc i over the whole program
execution. For the sake of clarity we describe the computational model for
computer programs with only one variable; when more then one variable are
involved, the mathematical model can be easily updated in order to deal with
unreachability issues.

Control points in the program are assigned one of the following labels:
Entry, eXit, Assignment, Join (i.e. the loop start), Test. An operator Fv is
assigned to each control point v ∈ V according to its label. For every flow
arc ai = (v, u), we state the rules that change Xi according to the program as
Xi = Fv(X), where X = (X1, . . . , Xm). Since each arc has exactly one head
vertex, we can index the operators by arc i instead of control point v, so that
we obtain the fixpoint equations (1) in the form:

∀i ≤ m Xi = Fi(X).(2)

Notationwise, we let F = (F1 . . . , Fm). An example is given in Fig. 1.

The operator for labels E,X is the identity Id, the operators for label A

are the integer interval arithmetic operators +, c×, ↑ d,×, 1÷ (where +,×
are binary operators, c× is the constant multiplication, ↑ d is the power to
constant, c and d > 0 are integer constants) [8], the operator for label J is
intervalwise ∪ (i.e. the union of two disjoint intervals is the smallest interval

//(1)

int x = 1; //(2)

//(3)

while(x <= 100){ //(4)

x = x + 1; //(5)

}

//(6)

1(E)

6(X)

2(A) 4(T)3(J)

5(A)

τ4=
[−∞,100]

F2(x) = 1

F5(x) = x + 1

n = 1; a1 = (1, 2), a2 = (2, 3), a3 = (3, 4), a4 = (4, 5), a5 = (4, 6), a6 = (5, 3)

X1 = Id(input)

X2 = F2(X1)

X3 = X2 ∪ X6

X4 = X3 ∩ τ4

X5 = X3 ∩ (X r τ4)

X6 = F5(X4).

X1 = [−∞,∞]

X2 = [1, 1]

X3 = [1, 1] ∪ X6

X4 = X3 ∩ [−∞, 100]

X5 = X3 ∩ [101,∞]

X6 = X4 + [1, 1].

Fig. 1. A simple example: program graph, concrete semantic equations, abstract
semantic equations.

containing them) and the operator for label T is ∩.

3 The mathematical program

We only consider intervals in the inclusion-wise interval lattice (I(M),⊆) of
all integer intervals in [−M,M] for some constant M > 0. For all i ≤ m,
we represent the interval Xi by a triplet (xL

i , xU
i , x̄i) ∈ Z

2 × {0, 1} (subject to
xL

i ≤ xU
i) such that Xi = [xL

i , xU
i] if and only if x̄i = 0 and Xi = ∅ otherwise.

We also define a width |Xi| = xU
i − xL

i if x̄i = 0 and |Xi| = −1 otherwise,
and extend it to |X| =

∑

i |Xi|. This width function is such that the bottom
element of any sublattice of I(M) is minimum in the width function restricted
to the sublattice. It is not difficult to establish that all the considered operators
are ⊆-monotonic in I(M). By Tarski’s lattice fixpoint theorem [14], the least
fixpoint of (2) is

argmin{|X| : X ⊇ F (X)}.(3)

Eq. (3) can be used to construct a mathematical program as follows. For
every operator Fi appearing in the computer program, we define the set

{X | Xi ⊇ Fi(X)} in terms of inequality constraints gi(xL, xU , x̄, z) ≤ 0
involving the decision variables xL, xU , x̄ and possibly some added binary de-
cision variables z for controlling the relative ordering of the intervals and
whether an interval bound exceeds −M,M . For brevity, we only present here
three operators: +,∪,∩.

3.1 Sum

The semantic of the sum operator Xi = Xh +Xk in the arithmetic of intervals
must be extended to the set of closed intervals in Z∪ {±∞}. To this aim the
following binary variables and constraints are needed:

• zLh
+ = 1 if and only if xL

h > −∞;

• zUh
+ = 1 if and only if xU

h < +∞;

• zLk
+ = 1 if and only if xL

k > −∞;

• zUk
+ = 1 if and only if xU

k < +∞;

• zL
+ = 1 if xL

h = −∞ or xL
k = −∞;

• zU
+ = 1 if xU

h = +∞ or xU
k = +∞.

1 − M(3 − 2zLh
+)≤ xL

h ≤M(2zLh
+ − 1)(4)

M(1 − 2zUh
+)≤ xU

h ≤M(3 − 2zUh
+) − 1(5)

1 − M(3 − 2zLk
+)≤ xL

k ≤M(2zLk
+ − 1)(6)

M(1 − 2zUk
+)≤ xU

k ≤M(3 − 2zUk
+) − 1(7)

2zL
+ ≥ 2 − zLh

+ − zLk
+(8)

2zU
+ ≥ 2 − zUh

+ − zUk
+(9)

xL
i ≤ (xL

h + xL
k)(1 − zL

+)(10)

−MzL
+ + 2Mx̄i

xU
i ≥ (xU

h + xU
k)(1 − zU

+)(11)

+MzU
+ − 2Mx̄i

2x̄i ≥ x̄h + x̄k(12)

x̄i ≤ x̄h + x̄k.(13)

Observe that Constraints (10) and (11) are needed to guarantee model feasibil-
ity since they correctly allow the operations xU

i +M = M and xL
i −M = −M .

Moreover, it is easy to provide cases having least fixpoints with at least one
interval that diverges to infinity.

3.2 Union

The ∪ operator Xi = Xh ∪ Xk is modelled as follows:

x̄i = x̄hx̄k, xL
i ≤ xL

h + 2Mx̄i, xL
i ≤ xL

k + 2Mx̄i

xU
i ≥ xU

h − 2Mx̄i, xU
i ≥ xU

k − 2Mx̄i.

3.3 Intersection

The ∩ operator Xi = Xh ∩ Xk has the following properties:

(i) if xU
h < xL

k then Xi = ∅;

(ii) if xL
h > xU

k then Xi = ∅;

(iii) if xL
h ≤ xL

k and xU
h ≤ xU

k and xU
h ≥ xL

k then Xi = [xL
k , xU

h];

(iv) if xL
h ≤ xL

k and xU
h ≥ xU

k then Xi = [xL
k , xU

k];

(v) if xL
h ≥ xL

k and xU
h ≤ xU

k then Xi = [xL
h , xU

h];

(vi) if xL
h ≥ xL

k and xU
h ≥ xU

k and xL
h ≤ xU

k then Xi = [xL
h , xU

k].

Moreover Xi is empty if at least one between Xh and Xk is empty. The
intersection Xh ∩ Xk can be modeled by the following binary variables and
constraints:

• zUL
∩

= 1 if and only if xU
h < xL

k (case i.);

• zLU
∩

= 1 if and only if xL
h > xU

k (case ii.);

• zLk
∩

= 1 if and only if xL
i = xL

k (cases iii. or iv.);

• zLh
∩

= 1 if and only if xL
i = xL

h (cases v. or vi.);

• zUh
∩

= 1 if and only if xU
i = xU

h (cases iii. or v.);

• zUk
∩

= 1 if and only if xU
i = xU

k (cases iv. or vi.).

(1 − zUL
∩

)(xL
k − xU

h)≤ 0(14)

zUL
∩

(xL
k − xU

h − 1)≥ 0(15)

(1 − zLU
∩

)(xL
h − xU

k)≤ 0(16)

zLU
∩

(xL
h − xU

k − 1)≥ 0(17)

x̄h + x̄k ≤ 2x̄i(18)

zUL
∩

+ zLU
∩

≤ 2x̄i(19)

zUL
∩

+ zLU
∩

+ x̄h + x̄k ≥ x̄i(20)

zLk
∩

+ zLh
∩

+ x̄i = 1(21)

zUh
∩

+ zUk
∩

+ x̄i = 1(22)

zLk
∩

(

xL
i − xL

k

)

= 0(23)

zLh
∩

(

xL
i − xL

h

)

= 0(24)

zUk
∩

(

xU
i − xU

k

)

= 0(25)

zUh
∩

(

xU
i − xU

h

)

= 0.(26)

3.4 Mathematical programming classes

If the computer program only uses integer affine arithmetic, the output is a
MINLP that can be reformulated exactly to a MILP and solved in practice
(provided a correct choice of M) using BB. With integer non-affine arithmetic
we obtain a MINLP that can be solved exactly by spatial Branch-and-Bound
(sBB) [1]. If floating point arithmetic is used, then we need to introduce a
“small” constant ε > 0 that, even if precisely chosen, would yield only over-
approximated solutions.

4 Implementation

We implemented a C parser (recognizing a subset of C which is sufficiently
rich to be Turing-universal) that outputs the corresponding MP. We compared
our results to the PI algorithm on several (small) C programs 5 with integer
affine arithmetic, yielding MILPs which we solved using CPLEX 11 [11] on a
2.4GHz Intel Xeon CPU with 8GB RAM. In all of them, we obtained fixed
points of width equal or smaller than those obtained by PI, thus validating
the approach. CPU time-wise, we are slower than PI by a factor of around 10
(the computational price of the optimality guarantee).

The comparison on the largest instances, qualitywise favourable to MP, is
given below. We report the number of lines of code, variables and loops, and
the maximum nesting level of loops. For the MP based approach we report
the number of CPLEX simplex iterations and BB nodes, the CPU time in
seconds and least fixpoint interval width, whereas we report the CPU time
and interval width for the PI method (a ‘-’ means PI failed to find a fixpoint;
to be fair to PI, we used a very old implementation, the only one which was
made available to us for testing).

Instance CPLEX 11 Policy Iteration

name lines vars loops nesting simplex nodes CPU (sec.) width CPU (sec.) width

PI1 13 2 1 1 29 0 0.017 20398 0.003 50392

PI2 14 2 2 2 278 46 0.042 20084 0.001 60048

PI3 13 2 2 2 83 0 0.026 21374 0.004 60582

arrays 22 6 2 1 56 0 0.068 600139 - -

functions 62 11 3 1 509 58 0.144 444430 - -

fun+arrays 53 10 2 2 96 0 0.048 340105 - -

References

[1] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter. Branching and
bounds tightening techniques for non-convex MINLP. Optimization Methods
and Software, 24(4):597–634, 2009.

[2] A. Costan, S. Gaubert, E. Goubault, M. Martel, and S. Putot. A policy
iteration algorithm for computing fixed points in tatic analysis of programs. In
K. Etessami and S.K. Rajamani, editors, Computer Aided Verification, volume
3576 of LNCS, pages 462–475. Springer, 2005.

5 http://www.lix.polytechnique.fr/~liberti/verif-instances.zip

http://www.lix.polytechnique.fr/~liberti/verif-instances.zip

[3] P. Cousot. Proving program invariance and termination by parametric
abstraction, lagrangian relaxation and semidefinite programming. In R. Cousot,
editor, Verification, Model Checking and Abstract Interpretation, volume 3385
of LNCS, pages 17–19. Springer, 2005.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction of approximations of fixed points.
Principles of Programming Languages, 4:238–252, 1977.

[5] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 269–282, San Antonio, Texas,
1979. ACM Press, New York, NY.

[6] S. Gaubert, E. Goubault, A. Taly, and S. Zennou. Static analysis by policy
iteration on relational domains. In R. De Nicola, editor, European Symposium
on Programming (ESOP), volume 4421 of LNCS, pages 237–252. Springer, 2007.

[7] T. Gawlitza and H. Seidl. Precise fixpoint computation through strategy
iteration. In R. De Nicola, editor, European Symposium on Programming
(ESOP), volume 4421 of LNCS, pages 300–315. Springer, 2007.

[8] E. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, Inc.,
New York, 1992.

[9] D. Harel, P. Norvig, J. Rood, and T. To. A universal flowcharter. In 2nd
Computers in Aerospace Conference, volume A79-54378/24-59, pages 218–224,
New York, 1979. AAIA.

[10] R. Howard. Dynamic Programming and Markov Processes. MIT Press,
Cambridge, 1960.

[11] ILOG. ILOG CPLEX 11.0 User’s Manual. ILOG S.A., Gentilly, France, 2008.

[12] M. Puterman and S. Brumelle. On the convergence of policy iteration
in stationary dynamic programming. Mathematics of Operations Research,
4(1):60–69, 1979.

[13] M. Roozbehani, A. Megretski, and E. Feron. Convex optimization proves
software correctness. In Proceedings of the American Control Conference, 2005.

[14] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5(2):285–309, 1955.

[15] Hirotoshi Yasuoka and Tachio Terauchi. Polymorphic fractional capabilities.
In Jens Palsberg and Zhendong Su, editors, SAS, volume 5673 of Lecture Notes
in Computer Science, pages 36–51. Springer, 2009.

	Introduction
	The computational model
	The mathematical program
	Sum
	Union
	Intersection
	Mathematical programming classes

	Implementation
	References

