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Abstract

We present a two-phase methodology to address the problem of optimally deploying indoor

wireless local area networks. In the �rst phase, we use Helmholtz's equation to simulate

electromagnetic �elds in a typical environment such as an o�ce �oor. The linear system

which results from the discretization of this partial di�erential equation is solved with a

state-of-the-art library for sparse linear algebra. In the second phase, we formulate the net-

work deployment problem in the setting of Binary Linear Programming. This formulation

employs the simulator output as input parameters, and jointly optimizes the number of

Access Points, their locations, and their emission channels. We prove that this optimization

problem is NP-Hard, and use mathematical programming based techniques and heuristics

to solve it. We present numerical experiments on medium-sized buildings.
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1 INTRODUCTION

Optimization problems related toWireless Networks deployment have attracted considerable interest in the Operations Research (OR) andMathe-
matical Programming (MP) literature, especially since the 1990s. A particularly important problem, that of optimally deploying aWireless Local Area
Network (WLAN) in indoor environments, was mostly studied in the literature from the more technological point of view of computer networks,
rather than using the algorithmic approaches afforded by OR/MP methods. This paper intends to bring the benefits of OR/MP to the Optimal
WLAN Deployment (OWLD) problem. We note that the input data for the OWLD should be a precise description of the electromagnetic field at
every point of the volume of interest. The approach proposed in this paper estimates the field intensity from a solution of the partial differential
equations of the field.

1.1 OR methods in wireless networks

We first provide a minimal survey of the impact of the OR/MP culture in some optimization problems related to wireless networks. The earliest
models for radio network planning were related to the Minimum Dominating Set (MDS) problem [1]. More realistic and application-specific models
followed, opening different research subdomains depending on the targeted application.

• Wireless Sensor Networks (WSN) are a set of spatially distributed sensors collecting and exchanging data and recording physical conditions
[2]. The Relay Node Placement (RNP) problem is one of the major questions arising in the design of WSN. Connectivity being necessary for
flow routing, RNPs are related to fondamental problems such as Minimum Connected Dominating Set (MCDS) [3], Minimum Steiner Tree
(MST) [4, 5], and their variants [6, 7, 8]. In particular, finding the maximal data-rate of wireless connections subject to edge capacities leads
to the Edge Capacited MST [9]. More technological and applied works focus on deployment processes improving network performance
[10], lifetime [11, 12], and energy-efficiency [13].

DOI: 10.1002/net.22116

Leo Liberti
published online on Networks, 2022



2 OUSTRY et al

• The Frequency Assignment Problem (FAP) is the problem of assigning a frequency to each emitter of a wireless network while maximizing
the Quality of Service (QoS) [14]. According to [15], “the FAP is probably the telecommunication application which has attracted the largest
attention in theOR literature, both for its practical relevance and for its immediate relation to classical combinatorial optimization problems".
Depending on technological objective and constraints, the FAP may assume very different forms. The main variants of this problem are
Maximum Service FAP, the Minimum Order FAP, the Minimum Span FAP, and the Minimum Interference FAP [14].

• The Universal Mobile Telecommunications System (UMTS) is a mobile cellular system for networks based on the GSM standard. Due to
the large operational cost for the mobile service operators, there is a huge need of optimizing at regional scale the base stations locations
and configurations. This requires solving problems related to frequency assignment, emission power, antenna height/tilt/orientation, and
more. The first models were simplified and based on the MDS [1] and the Capacitated Facility Location (CFL) [16] problems. In the 2000s,
much work has been carried out in order to jointly optimize the location and configuration of the base stations using MP tools [17, 18,
19, 20, 21, 22]. The overall model presented in [15] takes into account numerous technological constraints, such as uplink and downlink
minimal Signal-to-Interference Ratio (SIR), maximum emission power, antenna height constraints, antenna tilt and assumes a SIR-based
power control mechanism.

• The UMTS technology standard is becoming obsolete with the deployment of Long Term Evolution (LTE) and 5Gmobile telecommunication
networks. Such modern networks, that offer higher connectivity rates, require installing new base stations. The question of the evolution
fromUMTS to LTE/5G networks [23] raised the interest of the academic community. This poses the question of the progressive deployment
of these new technologies, in presence of the former ones: In [24] for instance, the authors consider a 5G deployment problem with some
pre-existing base stations. The hardware to be deployed for these modern wireless networks is significantly different from classical UMTS
antennas. One of the possible architecture for 5G networks is made of clusters, each of them consisting of a large number of small remote
radio heads connected by optical fiber to a pool of baseband process units (BBU), which is wired to the uplink IP/MPLS network [23]. This
architecture leads to dedicated optimization problems [25, 26, 27, 28]. Moreover, the operation of LTE/5G networks offers many flexibilities
to maximize their efficiency. For example, some authors [29] propose a dynamic on/off switching of base stations for a better trade-off
between energy consumption and quality of service. Such aspects could be taken into account in the deployment of a 5G network.

• The importance of the OWLD problem arises with the deployment of large-scale public and private WLANs, such as in aiports, hotels or
other buildings. This problem is related to the UMTS planning problem because (a) the location and the configuration of the Access Points
(APs) may be optimized jointly and (b) interferences impact on the QoS. WLAN deployment, however, differs from UTMS planning in the
following ways.

– The configuration possibilities are more limited for WLAN deployment than UTMS.
– The number of available frequencies is more limited for WLAN deployment [14]: this is why interference constraints are even more

important.
– The communication protocols used are different.
– Indoor radio propagation is far more difficult to predict than outdoor and long-range propagation of GSM frequencies: in a building

several physical effects, such as, e.g., reflections, diffractions, and self-interference, may impact the radio propagation. Hence, com-
puting the electromagnetic field generated by an emitter in a building requires advanced simulators, based on the precise knowledge
of the building’s architecture. From this point of view, the OWLD problem is closer to the problem of deploying a 5G network, with a
wavelength’s order of magnitude around one millimeter, in an urban or indoor environment. Yet, it seems that most of the approaches
found in the literature for optimal 5G deployments [24, 26, 28] still use simple empirical propagation models (see Sect. 1.2) that may
not take into account the aforementioned physical effects.

The last point is a possible explanation as to why WLAN deployment problems have not been extensively studied from the point of view
of OR/MP methods. Most of works devoted to optimize WLAN deployments appear to have been proposed by researchers in computer
networking.

In this paper, we propose a global approach for the deployment of a WLAN network, which combines simulation and optimization. First, we
provide a mathematical model for radio propagation in a building floor in order to perform accurate predictions via simulation. We overcome
some remarkable theoretical and computational obstacles posed by the indoor environments, which possess a very high number of reflection and
diffraction sources. The precision of the model and the corresponding simulation is critical for OWLD, since optimization using wrong input data
would obviously yield wrong solutions. Based on the qualitative input data provided by the simulation tool, we then propose an optimization model
for the OWLD problem, which brings together the most important features found in the literature.
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1.2 The state of the art on the OWLD problem

Many different approaches exist in order to streamline WLAN deployment processes in indoor space. In this subsection we try to summarize the
main ingredients in optimizing WLAN deployments: decision variables, input data, optimization criteria, constraints, and algorithmic approaches.

1.2.1 Decision variables

The decisions involved in deploying a WLAN are:
• AP positions, either from a continuous or discrete optimization point of view;
• AP antenna orientation;
• AP emission power;
• AP emission frequencies.

The simultaneous decision of AP placement and frequency assignment is discussed in the literature to some extent [30, 31, 32, 33]. Depending on
the approach, the spatial network coverage may be given or subject to optimization.

1.2.2 Simulating indoor radio-wave propagation

Optimizing anywireless network, and particularly aWLAN infrastructure in a building, requires a detailed knowledge of theway the electromagnetic
waves propagate in the building, so as to predict the coverage area of each AP. Since there is an uncountable number of spatial point in a Euclidean
space model of a building, it is obviously impossible to obtain such knowledge through empirical measurements. This is why it is necessary to
have a reliable model to predict how electromagnetic waves propagate in a complex indoor environment. This step is crucial since it will be the
input of the optimization problem. For more details, the strong impact of the Physical Layer (PHY) modeling on network performance prediction is
illustrated in [34].

Next, we briefly discuss some relevant propagation models for WLAN signals in building floors consisting of rooms and aisles.
• Empirical approaches. These are based on statistical models of propagation [35, 36, 37]; they predict the average behavior of waves in

typical environments, but fail to provide accurate predictions in each room of the WLAN coverage area. Such approaches are widely used
in network design because of their low computational requirements. They model the path-loss L (in dB) between emitter e and receiver r,
which is equivalent to the power gain ratio expressed in logarithmic scale: L = 10 log( Pr

Pe
), where Pe is the power emitted by e and Pr the

power received by r, both expressed in watts (W).
– One-slope model. The path-loss L (in dB) is simply a function of the distance d between transmitter and receiver antennas:

L(d) = L0 + 10n log(d),

where L0 (in dB) is a reference loss value for a unit (1m) distance, n is a power decay factor, and d is a distance (expressed in m). L0

and n are empirical parameters for a given environment, which fully control the prediction. In a barrier-free environment, theoretical
values of L0 and n can be determined for a given wavelength. In practice, there are always obstacles to signal propagation and there is
then no other way to choose values for L0 and n than calibration from measured data, using linear regression such that the difference
between the measured and estimated path losses is minimized in a mean square error sense [38].

– Multi-wall model. A semi-empirical multi-wall model provides much better accuracy than the one-slope model, and the results are
more site-specific. The path-loss L (in dB) is a function of the distance between transmitter and receiver antennas but also of simple
architectural properties. We have

L(d) = L0 + 10n log(d) +
N∑

i=1

kiLi + κf Λf ,

where ki is the number of walls of type i (for i ranging over all considered wall types) between transmitter and receiver antennas, Li

(in dB) is the attenuation factor for the i-th wall type, N is the number of wall types, κf is the number of floors between transmitter
and receiver, and Λf (in dB) is the floor attenuation factor. There are also no universal values for the parameters Li and Λf , which have
to be calibrated by means of a measurement campaign.

These models are easy to use and can produce their output quickly. However, their accuracy is limited. The loss of accuracy is mostly due
to the lack of architecture details they take into account; specifically, they neglect the physical effects of diffraction, self-interference, and
so on.
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• Geometrical optics based modelling. Ray-tracing techniques are among the most popular methodologies for indoor radiowave propagation
simulation [39, 40, 41, 42]. Ray-tracing simulations describe the physical wave propagation process, based on geometrical optics and the
uniform geometrical theory of diffraction. Using Fermat’s least time principle, a ray-tracing simulation determines a ray’s trajectory between
source point and some given field locations, which yields the propagation loss at these locations. Unlike empirical approaches, ray-tracing
simulations take physical effects and indoor architecture into account, thus giving more precise results. Yet, their computational complexity
is proportional to the number of rays launched by the source and grows exponentially with the number of reflections each ray undergoes.
Therefore, the number of simulated reflections is usually limited. This leads to some undesirable effects due to the angular discretization. An
attempt to decrease these effects, proposed by [41], consists in simulating “tubes" rather than “rays". Geometrical optic based methods are
often presented in a three-dimensional (3D) setting; it turns out, however, that it is just as accurate, but more computationally efficient, to
work withmultiple two-dimensional (2D) simulations [43]. Most of the works in the field of geometrical optic based simulation are dedicated
to the reduction of the computational complexity by designing efficient structures to represent the physical environment, so as to speed-up
the computation of ray intersections [44, 45].

• Finite differences modelling. There exists a family of propagation models based on Maxwell’s equations. The first indoor radio propagation
simulations with finite differences were been proposed in [46, 47]. Another discrete approach, called “ParFlow”, based on the cellular
automaton formalism, and applied to urban micro-cellular GSM simulations, was proposed in [48]. The main advantage of such methods
is to naturally model all propagation effects including reflection and diffraction. The price to pay is a high computational load, specially in
a 3D setting. However, as explained in [49], such approaches appear to be well-suited to indoor environments since their computational
complexity does not depend on the number of objects and reflections. Moreover, they can handle any shape of obstacle. In [49, 50, 51],
the ParFlow theory is transposed to the frequency domain in order to compute steady-state propagation; the Multi-Resolution Frequency
Domain ParFlow (MR-FDPF) algorithm allows the efficient solution of the associated linear system of equations. This method is presented
either in a 2D or 3D setting; a so-called “2.5D" variant proposed in [50] enables the efficient simulation of radio propagation in multi-
floor buildings. MR-FDPF was the first finite differences method capable of simulating electromagnetic fields in realistic buildings, with a
prediction accuracy assessed by measurement campaigns [51].

1.2.3 Deployment optimization criteria

There is a large variety of WLAN deployment quality evaluation functions in the literature. These functions are sometimes used as optimization
criteria, and sometimes they are imposed as constraints to be satisfied.

• Cost criteria. A first optimization criterion for the deployment of a wireless network is naturally the economic cost, which mainly depends
on the number of APs used and site-specific installation costs [53, 54].

• Coverage criteria. This family of criteria, which is very common in the literature on WLAN optimization, includes indicators that describe
how well the network can cover the target area in terms of space and signal strength. One can mention the covered surface criterion or the
numbers of covered clients [56]. The “hard cover” constraint refers to the fact that each client must receive a signal with an intensity higher
than a given threshold [30, 53, 54, 57, 58]. An optimization objective used in [57, 59] is the sum of power received by each client from the
best AP server, whereas authors in [56, 59] use the min - max criterion of received power from the best server at the worse client location.

• Interference and Quality of Service criteria. Another family of criteria focuses on the QoS for the clients rather than the absolute strength
of the received signal. The QoS mainly depends on the signal strength but also on the interference sources, this is why the SIR or the
Signal Interference-plus-Noise Ratio (SINR) are often used. These criteria are either involved as a hard QoS constraint to enable data rate
guarantee for every or are used as an aggregated criteria (average). Some articles distinguish uplink and downlink SIR [53, 54, 58]. Another
QoS metric is the Maximum of Channel Utilization, which designates the maximum traffic loads assigned to an AP. This is a practical metric
for the wireless network performance, because it explains qualitatively its congestion [30]. More sophisticated approaches use simulation
tools to compute QoS metrics depending on the selected networking protocol [60].

• Client positioning accuracy criterion. In some cases, a deployment criterion may be the ability of the system to locate client devices by a
triangulation process based on Wi-Fi communication protocol [61].

• Multiobjective approach and aggregate criteria. Some authors are interested in finding deployment solutions with balanced characteristics
between different criteria among those mentioned above. In [62], a multiobjective approach is implemented to obtain such a balanced
solution. Other approaches use aggregated criteria, which often are a linear combination of some of the above-mentioned criteria [56, 59,
60]. The weights before each criterion are often chosen heuristically.
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1.2.4 Solution methods

The diversity of criteria yields a corresponding diversity of discrete, continuous, convex, and non-convex problems, as well as solution methods.
Some approaches use Binary Linear Programming (BLP) or Mixed Integer Linear Programming (MILP) formulations and employ standard branch-
and-bound solvers [30, 53, 57], or propose dedicated Dantzig-Wolfe decompositions [63]. Other approaches use convex optimization techniques,
such as the Simplex Algorithm [59], the Bundle Methods [56], the Nelder-Mead Algorithm [56], the Quasi-Newton BFGS Algorithm and the
conjugate gradient search procedure [59, 64]. A wide range of metaheuristics are also used in the literature of WLAN deployment optimization:
genetic algorithms [56, 59, 65], Simulated Annealing [59], Large-Neighbourhood and Tabu Searchs [54], Termite Colony Algorithm [55] or Particle
Swarm Optimization [66, 67]. Finally, a few authors use techniques from Constraint Programming [58, 68] and Black-Box Optimization [60, 69].

1.3 Positioning in relation with the state of the art

In this paper we propose an integrated approach in two phases: in the first phase we estimate the force of the magnetic field generate by a source
in the building floor by solving the Helmholtz differential equations. In the second phase we formulate the OWLD optimization problem using
input from the first phase, and we solve it using a number of exact and heuristic techniques based on MP. The approaches found in the literature
to address the OWLD differ in either the first or the second phase or both. An integrated approach was never proposed so far to the best of our
knowledge.

1.3.1 Simulation methodology

The main goal of the project that motivated this paper was to find a site-specific procedure that could take into account the shape of the build-
ing hosting the wireless network. We were looking for a simulation methodology more realistic than an empirical model; we were interested in
approaches based on Maxwell’s equations [46, 47, 48, 49, 50, 51] because they appeared to be the canonical point of view in physics. They took
into account the physical effects of interest, i.e. reflections, diffraction, self-interference or corridor effect. The alternative point of view, provided by
geometrical optics, appeared more complicated to implement. Inspired by the MR-FDPF method [49, 50, 51], we also chose to work in the Fourier
domain in order to obtain a partial differential equation (PDE) without time dependence and with uncoupled frequencies: the Helmholtz equation.
We therefore solved this PDE using simple finite difference schema by a state-of-the-art sparse linear solving library [70]. This way, we obtained
a similar time complexity as the MR-FDPF method, with an easier implementation.

1.3.2 Modelling the deployment problem

In this section we list the techniques on which our methodology is based:
• We use Binary Linear Programming as in [30, 53, 57] to model the overall decision problem, which employes elements from facility location,

frequency assignment and knapsack.
• We optimize jointly over client positions, AP positions and channel assignment.

– Clients: we consider a certain number of given positions to place clients at. In the case of a corporate building for instance, these
positions would correspond to workstations for employees, needing a WiFi connection. Each client requires a certain uploading and
downloading data rate. For linear modelling purposes, we consider only two possible alternatives for a client: it is either connected
and receives the demanded data rates or is disconnected.

– Access points placement: we consider also a list of predetermined available locations to place APs. A specific cost corresponds to each
of these locations, describing the installation and maintenance costs. We consider APs of only one type. We chose not to consider
repeaters, which are rarely used in large-scale deployment project due to their lack of reliability.

– Available channels and interference: we consider a set C of available communication channels (i.e. frequencies) at our disposal for the
WiFi network deployment. The IEEE 802.11 WLAN standard defines a fixed number of channels for use by APs and mobile users.
A total of 13 frequencies is available in the 2.4GHz range but these channels may be overlapping if the used bandwidth is large. In
practice, only 3 frequencies are often used in the same physical neighborhood simultaneously [14]. Therefore, we considered here
cases with three available non-interfering channels: |C| = 3. We also considered cases with 6 available channels, since one could also
simultaneously use channels in the 5GHz range.

• Abandonment of the APs orientation variables: after exchanging with network experts [52], we thought it was not realistic to optimize in
such a level of detail because the antennas orientation of WLAN routers has a negligible impact compared to impredictable perturbation
sources such as moving obstacles.
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• Presence of extra noise: our model involves an ambient noise that represents the thermal noise and the presence of perturbation sources
from the surrounding environment. Taking into account ambient noise leads to more robust solutions.

• Impact of the interference and of the noise on the QoS: it is well known that the interference between devices impacts the data communica-
tion rate. We use the Shannon-Hartley theorem to express channel capacity as a function of noise and interference levels as in [53, 54, 58],
for uplink and downlink connections. The theoretical capacity of a wireless channel is given by Shannon’s law:

C = B log2(1 +
S

N
) (1)

where B is the available bandwidth in Hz (Hertz), S the signal strength and N the interference-plus-noise level in W (Watts). For fixed
bandwidth B̄ and signal strength values C̄ and S̄, the maximal interference-plus-noise level compatible with datarate C̄ is thus:

Nmax(C̄, B̄, S̄) =
S̄

2C̄/B̄ − 1
. (2)

The presence of an ambient noise implies that any connection in our deployment will comply not only with a minimum SINR ratio but also
with a minimum signal strength in absolute value.

• Communication protocol: an important modeling issue is the role of the communication protocol, which greatly impacts the data commu-
nication rate in practice. In particular, the main issue is the interaction of multiple client devices connected to a same AP. In this article, we
refer to the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) method used in the IEEE 802.11 standard, which is the
most commonWLAN protocol [71]. The CSMA/CA method uses a collision avoidance mechanism based on a principle of prior negotiation
and reciprocal acknowledgements between sender and receiver. The station wishing to transmit listens to the network. If the network is
busy, the transmission is delayed. Otherwise, if the media is free for a given time then the station can transmit. No two clients may emit at
the same time. Hence, we can assume that clients connected to the same AP do not interfere. We denote the set of any AP and its con-
nected clients as cluster. Inside a cluster, every device is tuned to the same channel. The maximal data rate implied by CSMA/CA mode for
each cluster will be taken into account as a capacity γ for each AP. Two clusters tuned to different channels are assumed not to interfere
with each other. By contrast, two clusters tuned to the same channel do interfere: more explicitly, in Shannon’s law Eq. (1) the variable N is
a sum of a ambient noise θ and of all signals received from other clusters on the same channel, i.e. all the interfering signals.

• Economic objective: we study the trade-off between installation and maintenance costs, and the total data-rate that the infrastructure can
provide, as in the UMTS network planning problem presented in [15]. We penalize each data-flow unit that is requested by a client but not
provided by the network as deployed, at a cost ρ.

1.4 Outline of the article

The rest of this article is organized as follows: Section 2 presents our methodology for simulating the propagation of electromagnetic waves in an
indoor environment, which is based on a finite-difference scheme of the Helmholtz PDE; Section 3 introduces a BLP formulation for the OWLD
problem based on the output from the simulator, and another BLP formulation for a natural relaxation of OWLD problem; Section 4 states that
the OWLD problem and its relaxation are both strongly NP-hard; Section 5 proposes heuristic algorithms to try to find better solutions in case an
exact algorithm would fail to close the optimality gap; Finally, Section 6 presents our numerical experiments and the results obtained.

2 SOLVING THE HELMHOLTZ EQUATION

In this section, we introduce a numerical methodology used to predict radio propagation in any building whose shape and materials are known
precisely, as detailed below. Our approach is freely inspired by the MR-FDPF method of Gorce et al. [49, 50, 51] but it leads to an easier imple-
mentation based on the sparse linear algebra library SuperLU [70]. It is a simple finite difference schema to simulate Helmholtz equation, a PDE
defined on complex numbers which is the transposition of the classic wave equation in frequency domain.
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2.1 Why the Helmholtz equation?

2.1.1 The classical wave equation

Following the same modelling simplifications from [48] and [72], for instance, we consider a 2D environment and a transverse electromagnetic
field, enabling us to model it as scalar wave. We start from the following classical two-dimensional wave equation in an heterogeneous medium:

∆u(x, y, t)− µε∂2
t u(x, y, t) = −s(x, y, t) (3)

where u(x, y, t) is the unknown real-valued function reprensenting the scalar wave, s(x, y, t) is a source term, ε(x, y) is the local electric permittivity
and µ(x, y) the local permeability. The physical values ε and µ depend on the material: they represent the architecture of the floor.

2.1.2 The frequency domain

In order to eliminate the time differential, the Fourier transform is applied to the wave equation (3), which gives the Helmholtz equation:
∆Ψ(x, y, ω) + ω2µεΨ(x, y, ω) = −S(x, y, ω) (4)

where Ψ is the Fourier transform of u and S is the Fourier transform of s. The main advantage of this wave equation in the frequency domain is the
absence of partial derivative with respect to (w.r.t.) ω, the angular frequency variable: every frequency can be studied independently, leading to the
case of one single harmonic source. In the following, we assume that the source signal is only made of its carrier frequency fc, which corresponds
to the angular frequency ωc = 2πfc. The Helmholtz equation can thus be written:

∆Ψ(x, y) + ω2
cµεΨ(x, y) = −S(x, y, ωc). (5)

The scalar field Ψ represents the intensity of the electromagnetic field in the steady state corresponding to frequency fc. In such a steady state
there is no propagation anymore. We let c0 denote the light speed in vacuum and λc = c0

fc
denotes the carrier wavelength.

2.2 Boundary conditions and the additional di�usive term

2.2.1 Boundary conditions

In any PDE, it is crucial to set the boundary conditions of the equation in order to define the problem exactly. Here we impose a Dirichlet condition:
the definition domain is a rectangle [0, L] × [0, `] and Ψ has to be null on the boundary. However, setting a null field value on the boundary
creates fictitious reflections in the simulation. Indeed this Dirichlet condition corresponds to a situation where the boundary is a perfectly reflecting
material: no outgoing energy transfer.

2.2.2 Avoiding spurious re�ections

In preliminary simulations, fictitious patterns of interference were observed: the reflections on the walls and on the boundary were overestimated.
A solution employed in [50] consists in adding a diffusive term in the boundary, in the walls. This diffusive term models walls energy absorption
and the energy transfer to the outside. Helmholtz equation (5) can now be written:

∆Ψ(x, y) + µ(x, y)
(
ω2

c ε(x, y)− iωcσ(x, y)
)

Ψ(x, y) = −S(x, y, ωc) (6)
where σ(x, y) is a fictive electric conductivity that is strictly positive in the walls and in the boundary (see Assumption 1). The complex two-
dimensional equation (6) is the ultimate PDE that we simulate.

2.3 Finite di�erence approach

2.3.1 Discretization

The rectangle [0, L] × [0, `] is discretized into a grid {0, . . . ,Nx − 1} × {0, . . . ,Ny − 1}, using the same step h > 0 for both dimensions. We let
d denote the integer NxNy and index the grid by the set {0, . . . , d − 1}. We assume that Nx ≥ 3. We will discretize the field Ψ so that, for any
(p, q) ∈ {0, . . . ,Nx − 1} × {0, . . . ,Ny − 1} the scalar ΨjNx+i is an approximation of Ψ(hp, hq). We define G = ({0, . . . d− 1}, E) the unoriented
graph associated to grid {0, . . . ,Nx − 1} × {0, . . . ,Ny − 1}. The classic discretization of Laplacian operator in (6) leads to the following equation:∑

l=0,...,d−1

{k,l}∈E

Ψl + (β2n2
k − 4− ih2ωcαk)Ψk = Fk, ∀k ∈ {0, . . . , d− 1} (7)

with the following conventions:
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• normalization constant: β = ωch
c0

• diffusive term: αqNx+p = µ(hp, hq) σ(hp, hq), ∀(p, q) ∈ {0, . . . ,Nx − 1} × {0, . . . ,Ny − 1}

• refractive index: nqNx+p = c0

√
µ(hp, hq) ε(hp, hq), ∀(p, q) ∈ {0, . . . ,Nx − 1} × {0, . . . ,Ny − 1}

• source term: FqNx+p = −h2S(hp, hq, ω), ∀(p, q) ∈ {0, . . . ,Nx − 1} × {0, . . . ,Ny − 1}.
We define the matrix U ∈ Rd×d as the adjacency matrix associated to the grid graph G and let L = 4Id−U, where Id is the d×d identity matrix.

We also define the diagonal matrix D ∈ Rd×d associated to vector (β2n2
k − ih2ωcαk)0≤k≤d−1. Defining also A = D− L ∈ Rd×d, the problem to be

solved can be cast as following linear system
AΨ = F, Ψ ∈ Rd. (8)

Broadly speaking, the A matrix represents the architecture of the building while F represents the intensities and source positions. In the application
caseswe present here, we have to calculate the electromagnetic field produced fromeach source points, whose set is designated byV ⊂ {0, . . . , d−
1}. For each source point i ∈ V we need to solve a linear system with the same system matrix A but with specific right-hand side (RHS) member
Fi = Piei ∈ Rd where Pi ∈ R is the power of device i and ei ∈ Rd is the canonical basis vector associated to i. In practice, Pi has only two possible
values in our experiments, depending on whether i is a client device (Pclient) or a candidate point to host an AP (PAP). The electromagnetic field
generated by i ∈ V is the solution of linear system (8) with F = Fi ; this solution is denoted Ψi. For any (i, j) ∈ V×V, the power pij ∈ R+ received
by j from emitter i is:

pij = |Ψi
j| (9)

where Ψi is the solution of (8) associated to Fi. The matrix p = (pij) provides the input to the optimization problem introduced in Sect. 3. Before
proving the invertibility of the system to be solved, we make a modeling assumption. This numerical condition avoids spurious reflections (see
Sect. 2.2) and is useful to prove the invertibility.
Assumption 1. For any cell (p, q) such that p ∈ {0, 1,Nx − 2,Nx − 1} or q ∈ {0, 1,Ny − 2,Ny − 1}, we have αqNx+p > 0.
Proposition 1. Under Assumption 1, the system matrix A is invertible.
Proof. We take any complex vector Ψ ∈ Cd such that AΨ = 0, and we are going to prove that Ψ = 0. This will prove the proposition since A is a
square matrix.

1. First, we prove that for any k ∈ {0, . . . , d− 1} such that αk > 0, we have Ψk = 0. Decomposing matrix D = R− iJ, where R is the diagonal
matrix associated to vector (β2n2

k)0≤k≤d−1 and J the diagonal matrix associated to vector (h2ωcαk)0≤k≤d−1, matrix A can be written as
A = R− iJ− L. Since AΨ = 0, the following holds

Ψ?RΨ− i(Ψ?JΨ)−Ψ?LΨ = 0 (10)
Since matrices R, J, and L are real symmetric matrices, we know that (Ψ?RΨ,Ψ?JΨ,Ψ?LΨ) ∈ R3. Hence, we can deduce from (10) that
Ψ?JΨ = 0, by unicity of the imaginary part. Reformulating this, we have that h2ωc

∑d−1
k=0 αk|Ψk|2 = 0. Dividing by h2ωc > 0, we have∑d−1

k=0 αk|Ψk|2 = 0. Since αk|Ψk|2 ≥ 0 for all k ∈ {0, . . . , d− 1}, we deduce that αk|Ψk|2 = 0 and thus (αk > 0) =⇒ (Ψk = 0).
2. Based on this first point and using Assumption 1, we deduce that ΨqNx+p = 0 for all (p, q) such that p ∈ {0, 1,Nx − 2,Nx − 1} or

q ∈ {0, 1,Ny − 2,Ny − 1}. This means that field vector Ψ is null in the proximity of boundaries.
3. We are now going to prove by finite strong induction over k ∈ {0, 1, . . . , d− 1} that Ψk = 0.

• Initialization: in the second argumentation point above, we proved that Ψ0 = 0.
• Induction step: we take k ∈ {0, . . . d − 2} and we assume that Ψl = 0 for all l ∈ {0, . . . k}. We decompose k as qNx + p. In a first

case, we have that p ∈ {0, 1,Nx − 2,Nx − 1} or q ∈ {0, 1,Ny − 2,Ny − 1}, and thus Ψk = 0 (see second argumentation point). In a
second case, we have that (p, q) ∈ {2, . . .Nx − 3}× {2, . . .Ny − 3}. We apply then the system equation (7) with a null RHS member
and for index k̃ = k + 1− Nx, which gives

Ψk+2−Nx
+ Ψk−Nx

+ Ψk+1 + Ψk+1−2Nx
+ (β2n2

k − 4− ih2ωcαk)Ψk+1−Nx
= 0. (11)

We recall that Nx ≥ 3 by assumption, thus the integers k + 2−Nx, k−Nx, k + 1− 2Nx, k + 1−Nx are less than or equal to k. Using
the strong induction hypothesis, we know that Ψk+2−Nx

= Ψk−Nx
= Ψk+1−2Nx

= Ψk+1−Nx
= 0. Hence, equation (11) gives that

Ψk+1 = 0.
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By strong induction, we proved that Ψk = 0 for all k = 0, . . . , d− 1.

2.3.2 Solution algorithm and time complexity

We need to solve |V| linear systems sharing the same matrix A ∈ Rd×d but corresponding to different RHS member F ∈ Rd. Hence, it is worth
computing the LU factorization of this matrix as a first step in order to speed up the solution time of every single linear system thereafter, see
the next paragraph for the complexity details. One can benefit from the non-zero structure of the entries of A by ordering the eliminations such
that as few non-zeros as possible are generated in L and U, because the number of non-zeros determines the storage and time complexities of
the triangular solves [73, 74]. For a 2-D regular grid like matrix A, we need O(d

3

2 ) floating point operations for a sparse factorization, and the L,U
factors one obtains have O(d log d) non-zeros, see [75, 76]. Hence, based on the LU decomposition, a system is solved in O(d log d) floating point
operations. Considering that Nx ≥ Ny , the time complexity of the two algorithmic steps are thus the following:

• O(N3
x) for the LU factorization of the system

• O(N2
x log Nx) to compute the system solution based on the LU factorization.

Since we want to compute the electromagnetic field generated by |V| different sources, we can see that the preliminar factorization enables to
achieve it in O(N3

x + |V|N2
x log Nx) instead of O(|V|N3

x). The resulting time complexity is similar to the complexity of 2D MR-FDPF claimed in [49]
but our approach lead to a more direct implementation by using a state-of-the-art linear algebra library.

2.4 The �2.5-th� dimension

To make the model fit reality, it is crucial to model indoor radio wave propagation in 3D environment. Transposing this finite-difference method
in 3D would yield an excessive increase of the time required to solve the systems. Instead, we consider the 2.5D empirical approach presented in
[50], which relies on the projections of the field in the floor k− 1 and k + 1 to compute the field in the floor k, using one of these alternatives:

• Field Projectingmodels the 3D propagation by projecting the field map (of the floor k−1 and k+1) through the ceilings with an attenuation
coefficient depending on the nature of the ceilings.

• Source Projecting consists in projecting the sources (on floors k − 1 and k + 1) in floor k with an attenuation factor and then in computing
the 2D propagation in floor k from this virtual source.

• A linear combination thereof.

3 OPTIMAL WLAN DEPLOYMENT: MP FORMULATIONS

In this section, we introduce a newWLAN deployment optimization problem that addresses many of the challenges that we found in the literature.
We also introduce a simple relaxation of this deployment problem and we prove that both the problem and this relaxation are strongly NP-hard.
Finally, we introduce in this section several solution algorithms.

3.1 Binary linear programming formulation

We denote by (P) the BLP formulation introduced in this subsection. This is the OWLD problem.

Sets of points

We consider subsets of a 2D or 3D simulation grid:
• I defines the set of users (clients) to be covered.
• J defines the set of eligible positions for APs. A point which has to be covered and which is also a potential AP position is duplicated. We

can therefore assume that I ∩ J = ∅.
• V = I ∪ J.
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Set of channels

C denotes the set of available frequencies.

Parameters

Table 1 introduces the parameters involved in our BLP formulation.Wemake two assumptions: (a) the data flows ui and di are scaled by the available
bandwidth, which is known to be the same for every channel; (b) the different channel carrier frequencies are distinct enough not to interfere, but
close enough to assume that the signal strength pij does not depend on the channel. These assumptions are satisfied for any deployment in the
IEEE 802.11 protocol with sufficiently separated channels [14]. Moreover, the fact that the signal strength does not significantly depend on the
channel can be numerically checked with the simulation tool. Finally the last parameter of this optimization problem is a “big-M" constant defined
as M = θ +

∑
(i,j)∈V2 pij.

Notation Index set Meaning
pij ∈ R+ V × V Signal emitted by i and received by j computed with methodology presented in Sect. 2
cj ∈ R+ J AP installation cost at position j

ui ∈ R+ I Data flow (normalised by the bandwith) client i wants to upload
di ∈ R+ I Data flow (normalised by the bandwith) client i wants to download
Ku

ij ∈ R+ I× J Maximal interference-plus-noise level at i for uplink connection between client i and AP j

Kd
ij ∈ R+ I× J Maximal interference-plus-noise level at j for downlink connection between client i and AP j

γ ∈ R+ Flow capacity of any AP
θ ∈ R+ Ambient noise level
ρ ∈ R+ Marginal penalty cost for non-provided flow unit

TABLE 1 Parameters

Set of edges

Given an ambient noise level θ > 0, the set
Eθ = {(i, j) ∈ I× J | (θ ≤ Ku

ij) ∧ (θ ≤ Kd
ij)}

is the set of potential wireless connections, i.e. the set of all the user-AP pairs such that the signal strengh is strong enough to enable uplink and
downlink flow in spite of the ambient noise. We actually consider the undirected graph induced by G = (V,Eθ), which we denote in the same way
with a slight abuse of notation. This undirected graph is bipartite.

Decision variables

Table 2 introduces the decision variables of our BLP formulation. Having xi = 1 means that device i is on, wic = 1 means that device i is tuned
on channel c and yc

ij = 1 describes that client i is served by the AP j on channel c. In this BLP problem, the total number of decision variables is
(1 + |C|)× |V|+ |C| × |Eθ|.

Notation Index set Meaning
xi ∈ {0, 1} V Device i is on/off

wic ∈ {0, 1} V × C Device i emits on channel c

yc
ij ∈ {0, 1} Eθ × C Client i communicates with AP j on channel c

TABLE 2 Decision variables
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Objective

Minimize the sum of the device installation costs, and the cost for not covering some of the clients:∑
j∈J

cjxj + ρ
∑
i∈I

(di + ui)(1− xi). (12)

Constraints

One coupling constraint:
• Each device is tuned to a unique channel: ∑

c∈C
wic = xi, ∀i ∈ V (13)

The other constraints are channel dependant (uncoupled):
• Each client communicates with one AP: ∑

j∈J

(i,j)∈Eθ

yc
ij = wic, ∀c ∈ C, ∀i ∈ I (14)

• Maximal capacity of an AP: ∑
i∈I

(i,j)∈Eθ

(di + ui)y
c
ij ≤ γwjc, ∀c ∈ C, ∀j ∈ J (15)

• A client can communicate with an AP only if both are tuned to the same channel:

yc
ij ≤ wic, ∀c ∈ C, ∀(i, j) ∈ Eθ (16)

yc
ij ≤ wjc, ∀c ∈ C, ∀(i, j) ∈ Eθ (17)

• Interference-plus-noise constraints at clients, to enable downlink flow:
θ +

∑
k∈I

k 6=i

pki(wkc − yc
kj) +

∑
k∈J

k 6=j

pkiwkc ≤ Kd
ij + M(1− yc

ij), ∀c ∈ C, ∀(i, j) ∈ Eθ (18)

• Interference-plus-noise constraints at candidates, to enable uplink flow:
θ +

∑
k∈I

k6=i

pkj(wkc − yc
kj) +

∑
k∈J

k6=j

pkjwkc ≤ Ku
ij + M(1− yc

ij), ∀c ∈ C, ∀(i, j) ∈ Eθ. (19)

Constraint (18) enables to certify that, if yc
ij = 1 i.e. if client i is connected to AP j on channel c, the sum of the ambient noise and the interference

from other clusters tuned on the same channel will not exceed themaximal bearable levelKd
ij. On the contrary if yc

ij = 0, this constraint is necessarily
satisfied by definition of constant M. Constraint (19) is similar to Constraint (18) but looking at the maximal interference-plus-noise level at APs so
as to make the uplink flows possible.

3.2 Relaxing the interference-plus-noise constraints

In the case where the number of available channels is large (i.e. greater than the number of deployed APs), there is no interference problem between
“clusters" anymore since each used channel is assigned to a unique AP. In such a case one can model the problem with less variables. We let (R)
be the relaxation of (P) obtained by removing the channel bound constraints.

Decision variables

Table 3 introduces the decision variables of this relaxed problem.
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Notation Index set Meaning
xi ∈ {0, 1} V Device i is on/off
yij ∈ {0, 1} Eθ Client i communicates with AP j

TABLE 3 Decision variables

Objective

Minimize the sum of the installation and penalty cost: ∑
j∈J

cjxj + ρ
∑
i∈I

(di + ui)(1− xi).

Constraints

• Each client communicates with one AP: ∑
j∈J

(i,j)∈Eθ

yij = xi, ∀i ∈ I (20)

• Maximal capacity of an AP: ∑
i∈I

(i,j)∈Eθ

(di + ui)yij ≤ γxj, ∀j ∈ J (21)

• A client can communicate with an AP only if both are on:

yij ≤ xi, ∀(i, j) ∈ Eθ (22)
yij ≤ xj, ∀(i, j) ∈ Eθ. (23)

We underline that the problem (R) depends on signal strength data computed with the simulator and on the parameters Ku
ij,K

d
ij through the

definition of the set of edges Eθ . This relaxation has the advantage of providing a better lower bound than the continuous relaxation. Admittedly,
we will show in the Sect. 4 that this optimization problem is NP-hard, but in practice it is easier to solve than the initial problem. Hence, we use
this relaxation to build heuristic algorithms, see Sect. 5.

4 COMPLEXITY RESULTS

4.1 Complexity of the interference-free relaxation

Proposition 2. The decision problem associated with (R) is strongly NP-complete.
Proof. Table 4 introduces (RD), the decision problem associated with (R), whereas Table 5 introduces the classic (BinPacking) problem, which
is known to be strongly NP-complete [77]. We now show a polynomial reduction of (BinPacking) to problem (RD), which prove the proposition

Problem: (RD)

Instance: Sets I, J

Rational numbers pij, cj, ui, di,Ku
ij , Kd

ij ,γ, θ, ρ as detailed in Table 1
Rational number Q

Question: Does there exist a feasible solution of (R) with cost less than or equal to Q?
TABLE 4 Decision problem (RD)

since (RD), as a BLP feasibility problem, is in NP. For any instance I = (N,K, s1, . . . , sN, L) of (BinPacking), we define an instance Φ(I) of (RD) as:
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Problem: (BinPacking)

Instance: Positive integers N, K with K ≤ N

Positive integers s1, . . . , sN, L

Question: Can we pack N objects of size s1, . . . , sN in K boxes of capacity L?
TABLE 5 Decision problem (BinPacking)

• Sets: I = {1, . . . ,N} (clients), J = {N + 1, . . . ,N + K} (APs), V = I ∪ J

• Parameters:
– pij = 1, ∀(i, j) ∈ V2

– cj = 0, ∀j ∈ J

– ui = di =
si

2
, ∀i ∈ I

– Ku
ij = Kd

ij = 1, ∀(i, j) ∈ I× J

– γ = L

– θ = 0

– ρ = 1

In such an instance, the graph Gθ is the complete bipartite graph associated to sets I and J.
• Level parameter Q = 0

With such a definition, it is clear that I is a YES instance of (BinPacking) if and only if Φ(I) is a YES instance of (RD):
• If I is a YES instance of (BinPacking), we can define the binaries yij associated to the presence of object i in box j. We also define xi = 1

for all i ∈ V. Since∑i∈I siyij ≤ L for all j ∈ J, we have∑i∈I(ui + di)yij ≤ γxj for all j ∈ J. Hence, (x,y) is a feasible solution of problem
(R) associated to parameters of instance Φ(I), and has an objective value equal to 0 ≤ Q. This is why (x,y) certifies that Φ(I) is a YES
instance of (RD).

• If Φ(I) is a YES instance of (RD), it exists (x,y) feasible in (RD) and with value equal to zero. This means, in particular, that
– xi = 1 and∑j∈J yij = 1 for all i ∈ I

–
∑

i∈I(ui + di)yij =
∑

i∈I siyij ≤ Lxj for all j ∈ J

Thus, the vector y is an explicit allocation of N objects of size s1, . . . , sN in K boxes of capacity L, and certifies that I is a YES instance of
(BinPacking).

Moreover, Φ(I) is computable with a time complexity polynomial in N and, thus, polynomial in the coding size of I , since N ≤ |I|.

4.2 Complexity of the OWLD problem

From the previous complexity result, the complexity of the OWLD problem can now be addressed.
Corollary 1. The decision problem associated with (P) is strongly NP-complete.
Proof. Table 6 introduces (PD), the decision problem associated with (P). We are going to show a polynomial reduction of (RD) to problem (PD),
which will prove the proposition since (PD), as a BLP feasibility problem, is in NP.
For any instance I = (I, J, pij, cj, ui, di,Ku

ij,K
d
ij, γ, θ, ρ,Q) of (RD), we define an instance Ψ(I) of (PD)with same coefficients and C = J. With such

a definition, it is clear that I is a YES instance of (RD) if and only if Ψ(I) is a YES instance of (PD):
• If I is a YES instance of (RD), it exists a solution (x,y) ∈ {0, 1}V × {0, 1}Eθ feasible for this instance of problem (RD) and with value less

than or equal to Q. In order to construct a feasible solution of (P), each cluster will be assigned its own channel. Formally, we define the
binary vectors ỹ ∈ {0, 1}Eθ×C andw ∈ {0, 1}V×C as follow:
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Problem: (PD)

Instance: Sets I, J, C
Rational numbers pij, cj, ui, di,Ku

ij , Kd
ij , γ, θ, ρ as detailed in Table 1

Rational number Q

Question: Does there exist a feasible solution of (P) with cost less than or equal to Q?
TABLE 6 Decision problem (PD)

– ỹc
ij = yijδjc for all (i, j) ∈ Eθ and c ∈ C, where δjc denotes the Kronecker product between j and c

– wic = xiδic for all i ∈ J and c ∈ C

– wic =
∑
j∈V

(i,j)∈Eθ

ỹc
ij for all i ∈ I and c ∈ C.

By construction (x, ỹ,w) is feasible for the instance Φ(I) of problem (P) and has value∑j∈J cjxj + ρ
∑

i∈I(di + ui)(1− xi) which is lower
or equal to Q by definition of (x,y). It certifies that Φ(I) is a YES instance of (PD).

• If Φ(I) is a YES instance of (PD), it exists then a solution (x, ỹ,w) ∈ {0, 1}V × {0, 1}Eθ×C × {0, 1}V×C of this instance of problem (PD)

with value less than or equal to Q. We define then vector y ∈ {0, 1}Eθ as: yij =
∑

c∈C yc
ij for all (i, j) ∈ Eθ . By construction, (x,y) is feasible

for the instance I of problem (R), and has value∑j∈J cjxj + ρ
∑

i∈I(di + ui)(1− xi) which is lower or equal to Q. It certifies that I is a YES
instance of (RD).

Moreover the time complexity to compute Ψ(I) is clearly polynomial in coding size of instance I.
One can legitimately question the interest of introducing relaxation (R) which is NP-hard, as the original problem (P) is. In fact, we will see in

in Sect. 6 that the commercial branch-and-bound algorithm that we used solves this relaxation considerably faster than (P), due to its smaller size
and due to the absence of “big-M” constant in (R). This provides good and fast lower bounds on the value of problem (P).

5 SOLUTION ALGORITHMS

To solve problem (P), we first used a standard MILP solver implementation (see Sect. 6). It turns out, however, that this commercial solver cannot
solve all the tested instances to optimality with a practically reasonable time limit. This is why we also propose several heuristic algorithms, in order
to find better solutions for the cases where the MILP solver does not close the optimality gap in due time.

5.1 Greedy heuristics

The two first heuristic algorithms proposed here are based on a greedy approach. The second algorithm is a “multi-start" variant of the first one.

5.1.1 First greedy heuristic

This algorithm sequentially treats the different available frequencies. For a given frequency, the following steps are repeated as long it is possible
to generate a new cluster with a positive score:

• For each AP that is not turned-on yet, the clients that can be associated with it are selected in a greedy way. The construction of each
potential cluster must respect the bandwith limitation of the AP, and the interfence caused by these new devices must not prevent pre-
existing connections on the same frequency. A score is assigned to each potential cluster, made of gains of connecting the selected clients
minus the AP cost.

• The cluster with highest score is selected, the corresponding devices are turned-on if and only if the score is nonnegative. If the score is
negative, the channel is considered “full".

When the channel is “full", all devices switched on this channel are filtered out and the process is repeated for a new channel. In order to present a
pseudo-code of this first greedy heuristic, we need to introduce three auxiliary procedures. In all these procedures, the variable ChannelEnv stands
for “channel environment" and designates the set of APs already selected and switched on this channel, jointly with the client devices connected
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Algorithm 1 Procedure CompatibleDevice
1: procedure CompatibleDevice(k,ChannelEnv)
2: for each pair (i, j) of client-AP connection in ChannelEnv do
3: Let Nup be the interference-plus-noise level for uplink connection (i, j) in ChannelEnv

4: Let Ndown be the interference-plus-noise level for downlink connection (i, j) in ChannelEnv

5: if Nup + pkj > Ku
ij then . If the AP k hinders the (i,j) uplink connection.

6: return FALSE
7: end if
8: if Ndown + pki > Kd

ij then . If the AP k hinders the (i,j) downlink connection.
9: return FALSE
10: end if
11: end for
12: return TRUE
13: end procedure

to them. Given a device index k ∈ V and a “channel environment", i.e. a set of pairs (client, AP), the first auxiliary procedure (Algorithm 1) aims
at checking if turning-on device k is possible in the sense that it does not hinder a connection present in the environment. Given an AP that we
denote by a, given a set of possible client devices and a “channel environment", the second auxiliary procedure (Algorithm 2) aims at checking if
AP a may be turned-on without impacting the existing connections already set on this channel, and then compute a set of client devices (a cluster)
in a greedy approach, knowing that the connection possibilities also depend on the “channel environment". This procedure returns the “score" of
this cluster, i.e. its contribution to the Objective Function (12).
Thanks to the ScoreCluster procedure, the third auxiliary procedure (Algorithm 3) tests all the possible new clusters to add on a current channel

Algorithm 2 Procedure ScoreCluster
1: procedure ScoreCluster(a, I,ChannelEnv)
2: if compatible-device(a,ChannelEnv) then
3: Sort clients by decreasing order of di + ui

4: S← ca

5: ChannelEnv2← ChannelEnv ∪ {a}
6: Γ← γ

7: for i in I do . Loop adding client devices in the cluster.
8: if di + ui < Γ ∧ CompatibleDevice(i, env2) then
9: Let Nup be the interference-plus-noise level for the (i, a) uplink connection in env2

10: Let Ndown be the interference-plus-noise level for the (i, a) downlink connection in env2

11: if Nup ≤ Ku
ia ∧ Ndown ≤ Kd

ia then . If the connection (i, a) is possible.
12: S← S− ρ(di + ui)

13: Γ← Γ− (di + ui)

14: ChannelEnv2← ChannelEnv2 ∪ {i}
15: end if
16: end if
17: end for
18: return S, ChannelEnv2

19: else
20: return 0, ChannelEnv

21: end if
22: end procedure

and select the “best" one, in a greedy approach too. With this auxiliary procedures we can now introduce Algorithm 4, the pseudo-code of the
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Algorithm 3 Procedure ClusterSelection
1: procedure ClusterSelection(I, J,ChannelEnv)
2: S← 0

3: ChannelEnv2← ChannelEnv

4: for a in J do
5: Saux,ChannelEnvAux← ScoreCluster(a, I,ChannelEnv)

6: if Saux < S then
7: S← Saux

8: ChannelEnv2← ChannelEnvAux

9: end if
10: end for
11: return S, ChannelEnv2

12: end procedure

Greedy Heuristic 1 (GH1). In this algorithm, the size of array patterns is |C|, the number of available channels. At the end of the algorithm, patterns[i]

contains the list of (client, AP) pairs set on this channel.

Algorithm 4 Procedure GreedyHeuristic1 (GH1)
1: procedure GreedyHeuristic1(I, J, C)
2: val← ρ

∑
i∈I(di + ui)

3: Declare patterns as an array indexed by C
4: for c in C do . Loop over the channels.
5: ChannelEnv← ∅
6: S,ChannelEnv← ClusterSelection(I, J,ChannelEnv)

7: while S < 0 do
8: val← val + S

9: patterns[c]← ChannelEnv

10: I← I\clients(ChannelEnv)

11: J← J\APs(ChannelEnv)

12: S,ChannelEnv← ClusterSelection(I, J,ChannelEnv)

13: end while
14: end for
15: return val, patterns

16: end procedure

5.1.2 Multistart greedy heuristic

The idea of theGreedyHeuristic 2 (GH2) comes from the observation that the first selected AP in the previous greedy heuristic highly influences the
final results. Hence, it is relevant to run several times the greedy heuristic with a different AP selected first in the process: at iteration i ∈ {0, J−1}
of GH2, we run GH1 but with i AP positions being in the TabuList, i.e. that cannot be used for the first AP placed in GH1.

5.2 Relaxation-based heuristics

We now present two heuristic algorithms based on the fact that the interference-free relaxation problem (R) presented in Sect. 3.2 is more
efficiently solved by the used MILP solver than the original problem (P).
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Algorithm 5 Procedure GreedyHeuristic2 (GH2)
1: procedure GreedyHeuristic2(I, J, C)
2: TabuList← []

3: for i = 0, . . . , J− 1 do
4: Run GreedyHeuristic(I, J, C), but forbidding the APs in the TabuList for the first AP selection of the first channel.
5: A← the first selected AP in the computed solution
6: Append TabuList with A
7: end for
8: return Best encountered solution
9: end procedure

5.2.1 First relaxation-based heuristic

The principle of this algorithm is to use the solution of the interference-free relaxation (R) to build a solution of the original problem (P), by
assigning a channel to each cluster and possibly switching off the devices to make the solution feasible. Thus, this heuristic consists in successively
solving two easier BLP problems:

1. Positioning step: Choose the AP-hosting candidate points, select the client devices to serve, and design “clusters" (set of client devices
connected to a same AP) by solving the interference-free relaxation (R). This allows us to obtain a solution (x̄, ȳ) ∈ {0, 1}V×{0, 1}Eθ that
represents clusters.

2. Frequency assignment step: Assigning channels to clusters and potentially turning-off devices if needed. We define this frequency
assignment problem as the initial problem (P) with the (x̄, ȳ)-based additional constraints:

xi ≤ x̄i, ∀i ∈ V

yij ≤ ȳij, ∀(i, j) ∈ Eθ
(24)

These constraints reduce the combinatorial nature of the problem by specifying that only devices and connections existing in (x̄, ȳ) may
be used in the final deployment. Introducing the set of allowable edges E(ȳ) = {(i, j) ∈ Eθ : ȳij = 1}, this frequency assignment problem
(Px̄,ȳ) can be written in a compact way:

min
∑
j∈J

cjxj + ρ
∑
i∈I

(di + ui)(1− xi)

s.t. xi ≤ x̄i, ∀i ∈ V∑
c∈C

wic = xi, ∀i ∈ V

wic ≤ wjc, ∀(i, j) ∈ E(ȳ), ∀c ∈ C
θ +

∑
(k,l)∈E(ȳ)

l6=j

pkiwkc +
∑
k∈J

k6=j

pkiwkc ≤ Kd
ij + M(1− wic), ∀(i, j) ∈ E(ȳ), ∀c ∈ C

θ +
∑

(k,l)∈E(ȳ)

l6=j

pkjwkc +
∑
k∈J

k 6=j

pkjwkc ≤ Ku
ij + M(1− wic), ∀(i, j) ∈ E(ȳ), ∀c ∈ C

x ∈ {0, 1}V,w ∈ {0, 1}V×C .

(Px̄,ȳ)

This optimization problem has a number of variables and constraints linear in |C| × |V|. Indeed we have |E(ȳ)| ≤ V. We underline that
problem (Px̄,ȳ) does not only aim at assigning frequencies to each device of the relaxation solution (x̄, ȳ), but also at turning off devices
to get a feasible solution of (P). From any (x,w) solution of (Px̄,ȳ), one can deduce a solution (x,y) of (P) by setting yc

ij = ȳijwic. This
property is used in the following algorithms: for a matter of simplicity, we consider (x,w) and (x,y) as being equivalent, if the definition
of ȳ is unambiguous.

With those definitions we can now introduce Algorithm 6, the pseudocode of the Relaxation-based Heuristic (RH1).

5.2.2 Second relaxation-based heuristic

We introduce an iterative variant of the relaxation-based heuristic consisting in repeating positioning step and frequency assignment step alter-
nately. The APs and clients positioning step is modified to benefit from the feedback of the frequency assignment step. We assume we have a
threshold value τ ∈ R+ and a non-negative vector φ ∈ RV

+ and we are looking for a solution (x,y) of the relaxation problem (R)whose objective
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Algorithm 6 Procedure RelaxHeuristic1 (RH1)
1: procedure RelaxHeuristic1(I, J, C)
2: Solve interference-free relaxation (R).
3: Let (x̄, ȳ) be an optimal solution of the relaxation.
4: Solve the frequency assignment problem Px̄,ȳ .
5: Let sol be the optimal solution found and val be its value.
6: return val, sol

7: end procedure

value is lower than τ and with minimal score ∑
i∈V

xi=1

φi

∑
j∈V

¬∃H∈F(y) i,j∈H

pji (25)

where F(y) denotes the set of clusters associated to deployment y. We recall that a cluster is a set gathering an AP and all clients connected to
it. Hence, the set F(y) is formally defined as

F(y) = { {j} ∪ {i ∈ I|yij = 1} | j ∈ J, xj = 1 } . (26)
The Objective Function (25) is chosen to come up with solution of the relaxation that avoid the overlapping of clusters. The problem of looking
such a solution can be formulated as a BLP problem:

min
∑
i∈V

φini

s.t.
∑
j∈J

cjxj + ρ
∑
i∈I

(di + ui)(1− xi) ≤ τ∑
j∈J|(i,j)∈Eθ

yij = xi, ∀i ∈ I∑
i∈I|(i,j)∈Eθ

(di + ui)yij ≤ γxj, ∀j ∈ J

yij ≤ xj, ∀(i, j) ∈ Eθ

yij ≤ xi, ∀(i, j) ∈ Eθ∑
j∈J,j6=i

pjixj +
∑
j∈I

pji(xj − yji) ≤ ni + M(1− xi), ∀i ∈ J∑
j∈J

pji(xj − yij) +
∑

(j,k)∈Eθ

pji(yjk − yik) ≤ ni + M(1− xi), ∀i ∈ I

x ∈ {0, 1}V,y ∈ {0, 1}Eθ ,n ∈ RV
+

(Rτ,φ)

In this BLP model, the variable ni represents the sum of the signal powers received by i and emitted by devices j that are not in the same cluster
as i. Now that problem (Rτ,φ) is defined, we are able to present Algorithm 7, the Relaxation-based Heuristic 2 (RH2). This algorithm depends on a
parameter r > 1 that determines the increase of the penalty associated to a node that is turned off during the frequency assignement step. During
this process, the parameter τ stores the current target for a solution value.

6 COMPUTATIONAL EXPERIMENTS

This last section is dedicated to computational experiments that we led to assess the proposed methodology. We present the numerical setup for
the simulation and the optimization parts, as well as the performance of both algorithmic steps.

6.1 Instances generation

6.1.1 Map generation and simulation

The first experimental step was to design building plans. Our solution to produce examples was to design make-believe building maps with a
graphical raster editor. Table 7 introduces the physical coefficients for the simulation, that we used for all the maps. First of all, we performed the
simulations with two standard wavelengths for the IEEE 802.11 protocol: 2.4GHz and 5GHz. Classically, the refractive index nair of the ambient
air was assimilated with the refractive index of the vacuum, i.e. 1. As concerns the refractive index nwalls of the walls, we took a classical value for
the concrete [78] at a close frequency (50GHz), since the refractive index value for the specific frequencies 2.4GHz and 5GHz was not available.
The diffusive coefficient αair is null, since there is no absorption in the air; as regards the calibration of αwalls, we empirically chose the lowest value
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Algorithm 7 Procedure RelaxHeuristic2 (RH2)
1: procedure RelaxHeuristic2(I, J, C, r)
2: Solve interference-free (and channel free) relaxation (R).
3: Let (x̄, ȳ) be the optimal solution found and τ be its value.
4: Solve the frequency assignment problem Px̄,ȳ associated with (x̄, ȳ) and let (x̃, ỹ) be its optimal solution found and v be its value.
5: δ ← min{minj cj,mini ρ(ui + di)}
6: Gap← v − τ , nb_it← Gap/δ, φ← 1

7: if Gap = 0 then
return v, (x̃, ỹ)

8: end if
9: for i = 1, . . . nb_it do
10: Solve (Rτ,φ) and let (x̄, ȳ) be the optimal solution found.
11: Solve the frequency assignment problem Px̄,ȳ associated with (x̄, ȳ) and let (x̃, ỹ) be its optimal solution found and v be its value.
12: if v ≤ τ then return v, (x̃, ỹ)
13: else
14: τ ← τ + δ

15: For any i ∈ V such that x̄i = 1 and x̃i = 0, φi ← rφi

16: end if
17: end for
18: return Best encountered solution (x̃, ỹ) and its value.
19: end procedure

enabling to eliminate the fictitious interference patterns observed in simulation with a graphical display, when the walls behave like perfect mirror
with no absorption (see Subsect. 2.2). As concerns the AP emission power, we chose the value provided in the technical specifications of the Cisco
Catalyst 9100 Wi-Fi 6 AP; the emission power for the client devices is taken one order of magnitude below.

Parameter fc h nair nwalls αair αwalls PAP Pclient

Value A: 2.4 GHz/ B: 5 GHz 3 cm 1 2.5 0 s/m2 10 s/m2 200 mW 10 mW

TABLE 7 Simulation parameters

We produced 6 different types of floors (MAP1, MAP2, MAP3, MAP4, MAP5, MAP6). The dimensions of such 2D maps are detailed in the
Sect. 6.2. For each floor, we produced a one-level, a two-level and a three-level building based on this (duplicated) floor: hence, we obtained 18

different buildings. In order to calculate the field generated by devices on another floor, we used the field projection method (see Sect. 2.4) with
an attenuation gain g = 0.001 = −30dB per floor. Indeed we considered a 3cm-thick ceiling in concrete between floors: according to [78], the
attenuation of the concrete is around -10dB/cm for frequencies in the GHz range.

For each building, the client and APs positions (2D coordinates and floor) were chosen at random. The choice of the discretization step h is
consistent with the common knowledge in simulation, of using a step smaller than the wavelength (12.5cm for 2.4GHz and 6cm for 5GHz).

6.1.2 Parameters of the optimization problems

We consider uniform uplink and downlink data flows demanded by the clients: the normalised data flows are ui = di = 0.5. For each client, it
corresponds to a full use of the bandwidth B in a balanced situation between uplink and downlink flow. The maximum flow capacity (normalized by
the bandwidth) that an AP can process is set to γ = 8, meaning that an AP can handle at most 8 clients simultaneously. This number of clients per
AP typically corresponds to a high-quality service requirement: the clients can have full use of their bandwidth at any time.We leave for future work
the case where more customers per AP (up to 50) are tolerated, at the cost of a lower quality of service. According to Shannon’s law (see Sect. 1.3)
and using notations introduced in (2), the parameters Ku

ij and Kd
ij are taken in accordance to the normalised data rates and the signal strengths:

Ku
ij = Nmax(ui, 1, pij) =

pij

2ui−1
,

Kd
ij = Nmax(di, 1, pji) =

pji

2di−1
.

(27)
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The value 0.1mW (resp. 0.01mW) for the noise parameter θ corresponds to the power of a client device attenuated by a 2cm-thick (resp. 3cm-
thick) concrete wall, considering again, an attenuation of −10dB/cm [78]. This range for the noise thus corresponds to the presence of a client
device emitting in an adjacent room.

We produced instances with uniform AP costs cj = c = 10. We do not specify any monetary units for these costs since the dimension-free
value c just serve as a reference with which we compare different values of ρ, the cost attributed with each client that is not covered. As concerns
ρ, we considered two possible cases: either the deployer is indifferent between installing 1 AP and not covering 1 client (ρ = c) or the deployer
wants to cover as many clients as possible, even if covering a client requires a fully dedicated AP (ρ = 10c). Table 8 presents 3 configurations
for the pair of parameters (θ, ρ). For the 18 building configurations, we tested each of the 3 sets of parameters presented in Table 8 with each of
the two considered frequencies (2.4GHz and 5GHz), giving us a total of 108 cases. Finally, all of these 108 deployment cases were tested with a
number of channels of 3 and 6, giving an total of 216 optimization problems.We now discuss the implementation and the results of the simulations
in Sect. 6.2 and then the optimization algorithms in Sect. 6.3.

Set of parameters θ ρ

Set 0 0.01 mW 100
Set 1 0.01 mW 10
Set 2 0.1 mW 100
TABLE 8 Set of parameters

6.2 Simulation experiments

6.2.1 Implementation

The numerical experiments presented here were ran on a computer with the following characteristics:
• CentOS Linux 7 operating system;
• 32 processors Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz;
• 64 GB of RAM.

We recall that the simulation process for a given building is in two steps: (i) we compute the LU factorization of the matrix A and (ii) based on
this factorization, we solve |I| + |J| linear systems Aψ = F with the second member F corresponding to each possible emitting device position
so as to compute the corresponding field. The LU factorization, as well as the linear system solution, are computed with linear algebra algorithms
implemented in the SuperLU library [70], which is accessed through the Scipywrapper [79] for Python. The simulation code, as well as the simulation
instances and results are available online at the following link: github.com/aoustry/FDFDRadiowaveSimulator.

6.2.2 Results

In Table 9 , the column “LU decomposition time" corresponds to the computational time to perform a LU factorization of the matrix A in Eq. (8).
The column “Solution time (average)" describes the average time required to compute, using the pre-computed LU decomposition, Ψi the solution
of Eq. (8) for a RHS vector Fi corresponding to the emitting device i ∈ V. The column “Solution time (standard deviation)" corresponds to the
standard deviation of the solution time of Eq. (8), for all the tested sources. The time for the field projection step on other floors (see Sect. 2.4), i.e.
the time needed to compute pij ← g|floor(i)−floor(j)||Ψi

j| for all (i, j) ∈ V2, is less than 1s for all instances.

6.3 Optimization experiments

6.3.1 Implementation

All the optimization algorithms were implemented in the C++ programming langage and ran on the same machine that the one used for the
simulation experiments. We used a commercial MILP solver, namely IBM ILOG CPLEX 12.8 [80] that we called through the Concert Technology
API for C++. At most 16 processors were allocated to CPLEX, and we set a time limit of 3600 seconds. For the implementation and solution

github.com/aoustry/FDFDRadiowaveSimulator
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Floor type Ground surface Nx Ny LU decomposition Solution time Solution time
time (average) (standard deviation)

Map 1 153m2 523 325 12 s 0.12 s 0.02 s

Map 2 293m2 1000 325 20 s 0.24 s 0.01 s

Map 3 472m2 898 584 49 s 0.53 s 0.03 s

Map 4 683m2 1200 632 74 s 0.65 s 0.02 s

Map 5 593m2 1067 618 63 s 0.66 s 0.03 s

Map 6 817m2 1230 738 120 s 0.72 s 0.03 s

TABLE 9 Simulation results

of the MILP problem (P), we noticed that using the CPLEX logical constraint feature, that compute dynamically the best “Big-M” to use, led to
better results than the model with a pre-determined “Big-M” equals to θ +∑(i,j)∈V2 pij. Similarly for the implementation of (Px̄,ȳ) and (Rτ,φ),
we used the CPLEX logical constraint feature to compute automatically the “Big-M” constants. As concerns the heuristics, we also set a time limit
of 3600 seconds, but this limit is never reached in the experiments. For the iterative relaxation-based heuristic RH2, we calibrated the choice of
the parameter r by doing preliminary experiments, testing r ∈ {1.2, 1.5, 2, 3, 4}. As illustrated in Appendix, it appeared that the performance of
this algorithm was not very sensitive to the choice of r. We chose the value r = 3, that seemed to be slightly better, although we cannot say that
this advantage is statistically significant. The implementation of all the presented algorithms, as well as the optimization instances and full tables
of results, including the preliminary tests for the choice of r, are available online at the following link: github.com/aoustry/Odewine.

6.3.2 CPLEX performance

We start by presenting the numerical results obtained with the B&B algorithm of the solver CPLEX v12.8. We notice that CPLEX is able to find a
global minimumwithin the time limit (3600s) for 96 instances out of 108 with the 3-channel configuration, i.e. 89% of the cases, and 100 instances
out of 108 with the 6-channel configuration, i.e. 94% of the cases. In total, the average solution time for CPLEX is 480s, with a standard deviation
of 1100s; the median solution time is only 4.3s. So as to visualize the solution time distribution more in detail, Figure 4 presents the performance
profile, i.e. the number of instances (in y-axis) that requires less than t seconds (in x-axis) to be solved to global optimality by CPLEX. For instance,
we see that around 80 instances with 6 channels (dark curve) require less than 20s to be solved to global optimality. Figure 2 shows a linear relation
between the logarithm of the solution time and the instance size, i.e. the total number of clients and candidates; in other words, this reflects an
exponential relation between the solution time and the instance size.

In the scatter plot displayed in Figure 3 , each point represents, for a given instance (building and parameters fc/ρ/θ) the solution time for
the 3-channel configuration (in x-axis) and for the 6-channel configuration (in y axis). We see that for many instances, these computational times
are very similar, since the cluster of points fits very well the y = x line on the left-hand side of the chart. Yet, for the most difficult instances (on
the right-hand side of the chart), we see that the cluster is clearly below the y = x line, meaning that the 6-channel configuration seems easier
to solve; this corroborates the observation that the rate of globally solved instances is higher for the 6-channel configuration. Focusing on the
unsolved cases, Figure 4 represents the cumulative distribution of the optimality gap, for the 3-channel and 6-channel configuration. It displays
the number of instances (in y-axis) for which the optimality gap obtained by CPLEX in less than a given value (in x-axis). For instance, we see that
the duality gap is less than 20% for 106 instances in the 3-channels configuration and also for 106 instances in the 6-channels configuration. We
also see that for the 4 remaining cases, the optimality gap is very important (more than 80%).

We now turn to the performance analysis of the heuristic algorithms. We start by comparing the Greedy Heuristic GH1 with its iterative variant
GH2, then the Relaxation-based Heuristic RH1 with its iterative variant RH2, to evaluate if it is worthwhile to increase the sophistication of these
heuristics. Finally, we compare the heuristics with CPLEX.

6.3.3 Comparison of the greedy heuristics

In this paragraph, we compare the two greedy heuristics: the basic version (Algorithm GH1) and the iterative version (Algorithm GH2). We will
show that Algorithm GH2 presents a real advantage compared to Algorithm GH1.

First we emphasize that, by design of Algorithm GH2, the best objective value computed by Algorithm GH2 is necessarily lower than Algorithm
GH1: if we move from GH1’s solution to GH2’s solution, the objective value is thus necessarily improving. We are now going to demonstrate that
this improvement is statistically significant over the test set. In the following, what we call the “relative improvement of the objective value” is the

github.com/aoustry/Odewine
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FIGURE 1 CPLEX v.12.8 performance profile FIGURE 2 CPLEX v.12.8 solution time versus instance size

FIGURE 3 Time for 3 channels vs. Time for 6 channels FIGURE 4 CPLEX v.12.8 optimality gap distribution

ratio obj(GH1)−obj(GH2)
obj(GH1)

expressed in%, where obj designates the best objective value. Table 10 shows that in average, the relative improvement of
the objective value from GH1 to GH2 is 11%; the median relative improvement is 6%. For a tenth of the instances, the relative improvement of the
objective value is more than 30%. To estimate the statistical significance of these observations, we performed a Wilcoxon signed-rank test on the
best objective value series of GH1 and GH2 (over all instances); we obtained a p-value of the order of 10−25, meaning that the null hypothesis “The
two distributions are equal” can be rejected with very high confidence. To better visualize the distribution of the relative objective improvement

Statistic Avg. Std. dev. Min. Q 25% Q 50 % Q 75 % Q 90 % Max
Value 11% 15% 0% 0% 6% 16% 30% 87%

TABLE 10 Statistics of the relative objective improvement from GH1 to GH2.

offered by the iterative version of the algorithm, Figure 5 presents a histogram for the 3-channel configuration and for the 6-channel configuration.
We see that the shape of the distribution is quite similar for both numbers of channels, meaning that algorithm GH2 has a significant impact on the
objective function in both configurations. Yet, we see more extreme values (above 70% of improvement) for the 3-channel configuration, meaning
that the question of the robustness of these heuristics seems even more important in this configuration of scarce channel resource, where the
frequency assignment plays an important role. Figure 6 is a scatter plot of the relative objective improvement as a function of the size of the
instances. We see that the relative spread between the best objective value computed by GH1 and the best objective value computed by GH2 is
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substantial for all instance sizes. The Pearson correlation index between the relative improvement and the instance sizes is 0.19, which denotes a
weak but positive correlation. This lets us think that the advantage of GH2 w.r.t. GH1 in terms of objective value may still be significant for larger
instances.

FIGURE 5 Histogram of objective improvement FIGURE 6 Objective improvement and instance size

Another point of comparison of the two greedy algorithms is their execution time: AlgorithmGH2 is certainly more efficient in terms of objective
value, but at what computational cost? The performance curve in Figure 7 shows the number of instances that require less than a given amount
of time (in x-axis) to be solved by GH1, and by GH2. We clearly see that GH2’s performance curve is positioned to the right of the GH1’s curve,
meaning that GH2’s execution time is greater. For instance, around 200 instances require less than 0.1s of execution time for GH1, whereas 200
instances require less than 10s of execution time for GH2; the maximal execution time is 0.2s for GH1 and 34s for GH2. Nevertheless, the additional
computational time of GH2w.r.t. GH1 is less than 2s for the largemajority of the instances, as illustrated by Figure 8 ; themaximum time difference
between the two algorithms is 34s. Hence, we can consider that this increase in computation time remains limited and is worthwhile, in light of the
improvements achieved by the GH2 algorithm for the objective function.

6.3.4 Comparison of the relaxation-based heuristics

In this paragraph, we compare the two relaxation-based heuristics: the basic version RH1 and the iterative version RH2. We will show that for a
limited number of cases, Algorithm RH2 allows a great improvement of the objective function w.r.t. the solution of Algorithm RH1.

FIGURE 7 Performance curve of GH1 and GH2 FIGURE 8 Histogram of time difference between GH1 and GH2
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In a similar way to the greedy heuristics, we emphasize first that, by design of Algorithm RH2, the best objective value computed by Algorithm
RH2 is necessarily lower than Algorithm RH1: if we move from RH1’s solution to RH2’s solution, the objective value is thus necessarily improving.
In the following, what we call the “relative improvement of the objective value” is the ratio obj(RH1)−obj(RH2)

obj(RH1)
expressed in%. Table 11 shows that,

in average, the objective value’s relative improvement from Algorithm RH1 to Algorithm RH2 is 7%. As illustrated by Figure 9 , the distribution of
the objective value’s relative improvement is skewed to the left, meaning that the improvement is null for many instances, but there are several
instances for which it is large. More precisely, both Algorithm RH1 and Algorithm RH2 yield the same value for more than 3 instances out of 4; yet,
for 1 instance over 10, the relative improvement is more than 30%. These major improvements yielded by Algorithm RH2 mainly occur for cases
with 3 available channels (see Figure 9 ), but regardless of the instance size (see Figure 10 ).

So as to assess the statistical significance of these observations, we also performed a Wilcoxon signed-rank test on the best objective value
series of Algorithm RH1 and Algorithm RH2 (over all instances); we obtained a p-value of the order of 10−9, meaning that the null hypothesis “The
two distributions are equal” can be rejected with very high confidence.

Statistic Avg. Std. dev. Min. Q 25% Q 50 % Q 75 % Q 90 % Max.
Value 7% 18% 0% 0% 0% 0% 30% 93%

TABLE 11 Statistics of the relative objective improvement from RH1 to RH2.

FIGURE 9 Histogram of objective improvement FIGURE 10 Objective improvement and instance size

As regards the computational time, the performance profiles (see Figure 11 ) of Algorithm RH1 and Algorithm RH2 are fitting well on the left
hand side of the curve: for 1 instance over 2, the computational time of both algorithms is less than 0.2s. On the right hand side of the curve
(highest computational times), the difference between the two algorithms is more important. For instance, 200 instances are solved by RH1 in less
than 10 seconds, whereas the equivalent time threshold is 100 seconds for RH2. In average, the additional computation time of Algorithm RH2
w.r.t. Algorithm RH1 is 27s, with a standard deviation of 184s. In only 2 cases, this computational time difference excesses 800s. Over all instances,
the maximum computation time for RH2 is around 2500s, which is below the maximum time limit that we set. Thus, we can conclude that given
the time limit we have set, Algorithm RH2 is worth using, despite its longer time w.r.t. Algorithm RH1, because it potentially allows, for some cases,
to drastically improve the result of the RH1 algorithm.

6.3.5 CPLEX vs. iterative heuristics

We conclude the presentation of our numerical experiments with a comparison of the results given by CPLEX and those given by the heuristics. For
the sake of readability, we only include the heuristic Algorithms GH2 and RH2 in this comparative analysis; this makes sense since we demonstrated
in the previous paragraphs the superiority of the iterative versions of the heuristics (AlgorithmGH2 and RH2) over their baseline versions (Algorithm
GH1 and RH1) in terms of objective value.
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FIGURE 11 Performance curve of RH1 and RH2 FIGURE 12 Histogram of time difference between RH1 and RH2

FIGURE 13 Performance curve of GH2, RH2 and CPLEX

Time statistic Avg. Std. dev. Q 25% Q 50 % Q 75 %
GH2 2.6s 5.6s 0.02s 0.12s 0.78s
RH2 28s 160s 0.06 0.19s 3.4s
CPLEX 480s 120s 0.94s 4.29s 93s

FIGURE 14 Time statistics

We first compare the computation time. The performance profiles in Figure 13 clearly show that the time distribution of Algorithm GH2 lies
to the left of Algorithm RH2’s time distribution, which lies to the left of CPLEX’s time distribution. For instance, 168 instances are solved by
Algorithm GH2 in less than 1s, 141 instances are solved by Algorithm RH2 in less than 1s and only 57 instances are solved by CPLEX in less than
1s. The average, the standard deviation and some quantiles of the computing time are available in Figure 14 . To assess the statistical significance
of these findings, we perform two Wilcoxon signed-rank tests. The first one compares the time distributions of GH2 and RH2; the second one
compares the time distributions of RH2 and CPLEX. In both cases, the obtain lower bound is below 10−7, meaning that the null hypothesis ("The
two distributions are equal") can be ruled out.

Figure 15 (resp. Figure 16 ) shows the histogram of the relative objective value advantage of CPLEX over the heuristics in the 3-channel (resp.
6-channel) configuration; more precisely, the relative advantage of CPLEX over GH2 is computed as val(GH2)−val(CPLEX)

val(CPLEX)
and expressed in %, and

similarly for RH2. A positive value means that CPLEX is better, a negative value means that the heuristic is better. In the 3-channel configuration,
we see that the heuristic algorithms provides as good solutions as CPLEX in more than 70 cases. Yet, they also appear to provide bad solutions
with more than 100% gap w.r.t. CPLEX solution. In this respect, the Algorithm GH2 seems more robust than Algorithm RH2, since it returns less
solutions with a optimality gap w.r.t CPLEX solution that is higher than 50%: there are 4 such cases for GH2 but 14 for RH2. Looking at Figure 16 ,
we see that the heuristics are more robust in the 6-channel configuration: the maximal optimality gap of the heuristic is much lower (less than
30%). In this configuration, Algorithm RH2 appears to be better than GH2, since it finds a solution that is as good as CPLEX’s solution (or strictly
better) in 107 cases over 108: this seems natural, since the interference-free relaxation is more likely to yield feasible deployment in the 6-channel
configuration than in the 3-channel configuration. As concerns Algorithm GH2, it finds a 6-channel solution that is as good as CPLEX’s solution
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FIGURE 15 Obj. value advantage of CPLEX over the Algorithms
GH2 and RH2 (3 channels)

FIGURE 16 Obj. value advantage of CPLEX over the Algorithms
GH2 and RH2 (6 channels)

(or strictly better) in 66 instances. These observations in both 3-channel and 6-channel configurations suggest that neither of the two iterative
heuristics dominates the other; rather they are complementary.

Finally, Table 12 presents the numerical results obtained for the open cases, for which the best upper bound in strictly greater than the best
lower bound obtained. We remark first that despite the 3600s time limit, CPLEX may take a longer computational time: the solution process seems
not to be immediately stopped by CPLEX when the time limit is reached. In 4 cases (Instance_MAP6A_2_3 and Instance_MAP6B_2_3 with 3 or 6
channels), we observe that the objective values computed by the heuristic algorithms are clearly better than CPLEX’s solution value, with a relative
improvement greater than 80%. A posteriori, we remark that the case Instance_MAP6B_2_3 with 6 channels is solved: since the lower bound
computed byCPLEX is 1231.3 and since the only possible objective values in our instances aremultiples of 10 since c = 10 and ρ(ui+di) = c or 10c,
this means that 1240 is a valid lower-bound; Precisely, Algorithm RH2 finds a solution with value 1240, which is thus optimal. These observations
suggest that in cases where CPLEX is not able to close the optimality gap, the proposed heuristics have a real interest because they allow to find
potentially better solutions. This is not systematically the case, but considering the low execution time of the heuristics compared to CPLEX, it is
worth running these heuristics to try beating CPLEX’s incumbent solution. This seems all the more relevant as the size of the deployment increases.
Table 12 also shows that neither of the iterative heuristics seems to dominate the other, and again, seem complementary.

7 CONCLUSION

We proposed a protocol to optimize the deployment of a WLAN, taking full account of the building’s architecture, which we tested on mid-size
buildings with a floor area of up to 1000m2 and several floors. The strength of our approach is a sophisticated but fast to code simulator that
is based on the physical equations of radio wave propagation. This simulator allows us to calculate the electromagnetic field produced by any
source in the building. We then introduce a stylized network deployment optimization problem, which consists of optimizing the positioning and
frequency assignment of the APs to provide WiFi access to customers whose positions are given. This problem, which is formulated as a BLP, has
the particularity of fully exploiting the data produced by the radio propagation simulator. We show that this problem is strongly NP-difficult, and
the extensive numerical experiments that we have carried out with a standard MILP solver implementation have confirmed the difficulty of the
problem, in the sense that the execution time seems to increase exponentially with the instance size. This commercial solver was typically able to
solve, within one hour, 196 instances over 216. Within this time limit, the optimality gap could exceed 80% for the largest instances encountered,
with more than 300 nodes. This is the reason why we also proposed several heuristic algorithms: a greedy heuristic and its iterative variant; and
another heuristic based on a natural relaxation of the original problem, and its iterative variant. We identified that the iterative heuristics clearly
outperforms their baseline counterpart. We also observed that neither the iterative greedy algorithm or the iterative relaxation-based algorithm
dominates the other in terms of objective value: the first one seems more robust in a context with a limited number of channels, the second one is
more robust in a context with abundant channel resources. The two of these heuristic algorithms find better solutions than the commercial solver
for some of the largest instances. This illustrates the interest of the developed heuristic algorithms, whose computation time is, moreover, clearly
lower than the exact approach.
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Instance name |V| |C| Time (s) Lower bound Best solution value
CPLEX GH2 RH2 CPLEX CPLEX GH2 RH2

Instance_MAP5A_1_1 148 3 3603 <1 61 123.8 150 150 150
Instance_MAP5A_2_3 216 3 3614 3 65 177.5 190 190 380
Instance_MAP6A_0_3 176 3 3610 1 72 228.8 250 280 1330
Instance_MAP6A_1_3 267 3 3624 7 74 708.8 830 870 1600
Instance_MAP6A_2_1 356 3 3677 18 2009 347.9 400 460 470
Instance_MAP6A_2_2 356 3 3612 21 263 2854.9 3430 4430 5100
Instance_MAP6A_2_3 356 3 3683 15 1032 1231.3 11910 2970 2140
Instance_MAP5B_1_1 148 3 3602 <1 60 123.8 150 150 150
Instance_MAP6B_1_3 267 3 3620 7 167 710.0 840 870 1780
Instance_MAP6B_2_1 356 3 3635 19 167 373.4 420 460 490
Instance_MAP6B_2_2 356 3 3610 29 263 2880.000 3210 4120 5100
Instance_MAP6B_2_3 356 3 3682 15 268 1231.3 17920 2570 5910
Instance_MAP5A_1_1 148 6 3608 <1 <1 123.8 150 150 150
Instance_MAP6A_1_3 267 6 3664 9 3 708.8 720 760 720
Instance_MAP6A_2_1 356 6 3753 22 5 345.4 360 400 360
Instance_MAP6A_2_2 356 6 3642 31 265 2320.0 2330 2390 2510
Instance_MAP6A_2_3 356 6 4362 20 9 1231.3 17920 1280 1240
Instance_MAP5B_1_1 148 6 3608 <1 <1 127.5 150 150 150
Instance_MAP6B_2_1 356 6 3729 23 4 371.8 390 440 390
Instance_MAP6B_2_3 356 6 3893 20 18 1231.3 17920 1280 1240

TABLE 12 Numerical results for the open instances

In future work we will be able to test our simulator for even larger buildings, albeit at the cost of longer computation times. Future work will also
consist of testing the different optimization algorithms, exact or heuristic, for even larger instances so as to get closer to the thousand, regarding the
cumulated number of clients and APs. It is likely that such cases would confirm the relevance of using heuristic algorithms. Another future research
line is to implement an exact approach that can better scale, as a column-generation algorithm for instance. Finally, we also plan to propose a
stochastic or robust variant of this optimization problem to take into account several scenarios concerning the use of the network or the presence
of moving obstacles in the building.
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APPENDIX

Table 13 lists, for different values of the parameter r, the sum of the objective values computed by Algorithm RH2 with this parametrization r over
the 208 test cases. The third column is the spread (in %) with the average of the second column (108884). We observe that the impact of r on the
performance of Algorithm RH2 is quite limited.

Value of Sum of objective Relative gap to the
parameter r values over all instances average (over r ∈ {1.2, 1.5, 2, 3, 4})

performance
1.2 109020 0.12%
1.5 108730 -0.14%
2 109190 0.28%
3 108480 -0.37%
4 109000 0.11%

TABLE 13 Performance of Algorithm RH2, depending on the choice of r
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