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Abstract

The automated real time control of an electrical network is achieved through the estimation of
its state using phasor measurement units. Given an undirected graph representing the network, we
study the problem of finding the minimum number of phasor measurement units to place on the edges
such that the graph is fully observed. This problem is also known as the Power Edge Set problem,
a variant of the Power Dominating Set problem. It is naturally modelled using an iteration-indexed
binary linear program, whose size turns out to be too large for practical purposes. We use a fixed-
point argument to remove the iteration indices and obtain a more compact bilevel formulation. We
then reformulate the latter to a single-level mixed-integer linear program, which performs better than
the natural formulation. Lastly, we provide an algorithm that solves the bilevel program directly and
much faster than a commercial solver can solve the previous models. We also discuss robust variants
and extensions of the problem.
Keywords: Real time electrical network monitoring, Bilevel program, Mixed-integer linear program,
PMU placement problem, Observability, Power Dominating Set.

1 Introduction

An electrical network is represented by an undirected graph where the edges are the transmission
lines, and the nodes are

(i) their junctions, called buses or zero injection nodes;

(ii) the points of energy consumption, called loads;

(iii) the points of energy production, called generators.

The state of the network is defined to be the assignment of electrical current values to lines, of voltage
values to buses, and of power values to loads and generators. One way to make the network “smart” is
to automate the control of its state in real time, which requires continuous monitoring.

Monitoring the state of an electrical network can be done using control and measurement devices such
as Phasor Measurement Units (PMUs). A PMU is a monitoring device designed to be placed at a certain
bus in order to provide to some system monitoring centre:

• a synchronized phasor measurement (a phasor is a complex number that represents both the mag-
nitude and phase angle of the sine waves in electrical signals)

∗This work was carried out as part of the SO-grid project (www.so-grid.com), co-funded by the French agency for
Environment and Energy Management (ADEME) and developed in collaboration between participating academic and
industrial partners. A very preliminary version of the results presented in this paper has been accepted for publication [21].
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• the branch current phasor of all its outgoing transmission lines [15].

PMUs are synchronized via GPS and send large bursts of data to the system monitoring centre. Due to
their relatively high cost, their optimal placement constitutes an important challenge. The present study
is motivated by the French smart grid prototype being constructed under the auspices of the SO-grid
project www.so-grid.com.

The problem of finding the optimal placement of PMUs, called the PMU Placement problem
(PMUP), consists in the determination of the minimum number of PMUs to place on the nodes of the
graph so as to ensure its full observability. A node (resp. an edge) is said to be observed if its voltage
(resp. its current) is known. A graph is then said to be fully observed if all the node voltages and edge
currents are known. In [5], Brueni and Heath define the observability of a graph using two rules:

(i) if a PMU is installed on a node, then this node and all its neighbours are observed;

(ii) if all the neighbours of an observed node are known to be observed except one, then this latter is
also observed.

In other words, deciding whether a given node or edge is observed implies a “propagation” of observability
through the repeated application of these rules starting from the set of PMUs placed on the graph (see
Fig. 1). We want to make it absolutely clear that observability is not propagated in time, namely: either
a node/edge is observed, or it is not. What is propagated is simply the decision logic embedded in the
above rules. As such, we are not saying that nodes or edges are initially unobserved and will become
observed later in time. All we are saying is that, from an initial set of placed PMUs, the decision of
whether any node or edge is observed can be made by iteratively applying the rules above until the set
of observed nodes/edges no longer changes.

In this paper, we study the optimal placement of PMUs which can only observe the state of one
incident transmission line on networks without loads and generators. This PMUP variant turns out to
be NP-complete [20] by reduction from 3-regular vertex cover.

1.1 Literature review

Various solution methods have been proposed to solve the PMUP [15, 16]. To the best of our knowl-
edge, all of the proposed approaches so far use observability rule (ii) only locally, i.e., limited to given
propagation depths. A possible reason for this is that it makes optimization models smaller, and hence
easier to solve, by limiting the propagation steps (at the cost of sub-optimality). In this paper we take
a different approach: we apply rule (ii) globally, but replace it by its fixed-point condition, which vastly
reduces the number of decision variables. Limited to network models involving only zero injection nodes,
the PMUP is also known as the Power Dominating Set (PDS) problem [11].

The PDS has been extensively studied in the literature: for example, it is NP-complete even for
bipartite and chordal graphs, but polynomial for trees [11]; it is NP-complete for planar bipartite graphs,
but polynomial for grids [7]; and there is an O(

√
n)-approximation algorithm for planar graphs of n

vertices, but it is NP-hard to approximate (on general graphs) within a factor 2log1−ε n [1]. By inclusion
from the PDS, the PMUP is also NP-complete.

In practice, the observability rules above are not the only way to find information about the state of
the network. For example, it is easier to estimate the state of nodes that are adjacent to (or not too far
from) other observed nodes. By carefully leveraging a reduced number of observed nodes, it makes sense
to propose fairly efficient relaxation-based heuristics which, however, often rely on the structure of the
problem instance being considered rather than addressing the whole problem in general. Examples of this
approach are [18], which proposes spanning tree search techniques; [6], which is based on solving an Integer
Linear Program (ILP); [23], which exploits a nonlinear Integer Programming (IP) formulation including

www.so-grid.com
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conventional power flow and injection measures (conventional measures are those that are provided by
non-synchronized sensors) in addition to PMUs. Moreover, [23] also allows the determination of PMU
locations that are guaranteed to be optimal: specifically, the observability rule (ii) is applied to zero
injection nodes with no limited depth. Some work has been carried out on robust variants of the PMUP:
for example, single line outages and single PMU failures have been addressed by means of some IP
formulations discussed in [3].

An inherent hardware limitation of many PMU devices, namely the number ` of incident transmission
lines (or channels) that PMUs can monitor, gives rise to a different set of restrictions of the PMUP, which
we call `-PMUP (for each `). We remark that the instances of the `-PMUP and the PMUP are the same,
namely the graph representing the electrical network. The solution of the `-PMUP is a set of couples
(v, {e1, . . . , e`}) such that we place PMUs at each node v monitoring the channels e1, . . . , e` adjacent to v.
We also remark that, differently from the PMUP, a single node can host multiple PMUs in the solution of
`-PMUP instances. A Binary Linear Program (BLP), which considers all the possible combinations
of ` channels incident to each node, is given in [12]. Another method based on node connectivity and
edge selectivity matrices, where the number of channels is less than the minimum degree of the graph, is
proposed in [13].

1.2 The problem studied in this paper

As mentioned above, this paper is concerned with the special case of PMUs that can observe at most
one channel, i.e., ` = 1, on networks that only involve zero injection nodes. Note that when ` = 1, though
PMUs are still actually placed at nodes and monitor a single adjacent channel, the output is equivalent
to a placement on the edges. To see this, it is sufficient to notice that given an edge placement we can
arbitrarily decide, for each edge, which of the two adjacent nodes hosts the PMU, since the solution
cardinality is the same. Because it concerns a selection of edges, we call this the Power Edge Set
(PES) problem. To the best of our knowledge, this is the first study concerning this problem variant.

In the PES problem, the first rule of observability must be re-written as: if a PMU is installed on an
edge, then both its adjacent nodes are observed (see Fig. 1). While the PES problem is NP-hard, we note

Figure 1: Observability propagation based on Rules (i)-(ii). The nodes adjacent to the PMU placed on edge
{1, 6} are observed by rule (i). The other nodes are observed by repeated application of rule (ii), e.g., node 2 is
observed because 1 is observed, its star consists of 2 and 6, and 2 is the only yet unobserved node in the star.

in passing that if we relax rule (ii), the corresponding problem is equivalent to minimum edge cover
[8], which can be solved in polynomial time. A localized version of the second observability rule which
only considers a given depth (similar to [6]) is discussed for zero injection nodes in [9], together with
some variants that are robust to line outages.



2 THE POWER EDGE SET PROBLEM 4

1.3 Contents of this paper

The rest of this paper is divided into two parts:

• In Section 2 we define the PES problem formally. We present a natural BLP model for the PES
problem in Section 2.2, which explicitly makes use of variables indexed on the iteration of the
observability propagation process based on rules (i)-(ii). We then model the fixed-point conditions
(Section 2.3) of the propagation process as constraints and propose in Section 2.3.2 a bilevel BLP
model with fewer decision variables. In Section 2.4, we further reformulate the latter to a Mixed-
Integer Linear Program (MILP) with binary variables. In Section 2.5, we propose a cutting-plane
algorithm to solve the bilevel BLP formulation directly and improve the convergence speed of this
algorithm by means of a lower bound on the optimal objective function value (Section 2.6). In
Section 2.7 we integrate conventional measures into our models. We discuss robust variants of the
PES problem to protect against a single line outage in Section 2.8 and against a single measurement
loss in Section 2.9. Computational results are presented in Section 2.10.

• In Section 3, we consider a generalization of the PES problem, called the Generalized PES
(GPES) problem, where we apply the second observability rule to a cut instead of a star. We
adapt in Section 3.2 the bilevel modelproposed for the PES problem to solve the GPES problem
and propose in Section 3.3 a polynomial-time algorithm to compute the observability propagation.
Computational results are discussed in Section 3.4.

2 The Power Edge Set problem

Let G = (V,E) be a graph modelling the electrical network where V = {1, . . . , n} is the set of nodes
representing the buses and E is the set of edges corresponding to channels. An edge linking nodes i and
j is denoted {i, j}. For i ∈ V , Γ(i) = {j | {i, j} ∈ E} is the set of neighbours (adjacent nodes) of i. For
graph-theoretical notions, see [10, 22].

In this paper, we are interested in the optimal placement of PMUs with one channel, so as to ensure a
full observability of G. We first consider that no conventional measures exist, which reduces the number
of PMUs to install. We show how to take them into account in the model in Section 2.7.

A PMU is placed on an edge {i, j} close to node i, for i ∈ V and {i, j} ∈ E. The fact that PMU
placement occurs closer to one of the adjacent node is relevant for physical reasons, but irrelevant for
our abstract modelling purposes. Henceforth, we shall simply assume that placement occurs on an edge
{i, j} ∈ E. A graph is said to be observable if all node voltages and current edges are known either
measured by a PMU or estimated using electrical laws. The two electrical laws we use are Ohm’s law
and Kirchhoff ’s current law. Ohm’s law states that for a given channel {u, v},

∆V(u, v) = R I(u, v),

where

• ∆V(u, v) = V(u)−V(v);

• V(u) and V(v) are the voltages at nodes u and v ∈ V respectively;

• I(u, v) is the current flowing between u and v;

• R is the resistance of the channel {u, v}.

Kirchhoff’s Current Law (KCL) applied at a given node v ∈ V states that the sum of all currents on
edges incident to v is zero. If all the currents are known, save one, then this latter can be computed.
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The problem of interest is formally defined as follows:

Power Edge Set (PES) problem. Given a graph G = (V,E), find an edge subset Π ⊆ E of
minimum cardinality such that a placement of PMUs on edges in Π yields the full observation
of G.

We describe in the following the mathematical models and solution methods we propose to solve the
PMU placement problem with and without conventional measures. We also consider the case of a
single line outage and a single PMU failure.

2.1 Observability rules

Let Π be a given PMU placement on E and let Ω be the set of observed nodes in V . The observability
propagation rules (i)-(ii) above can be formally reformulated in the PES setting as follows.

R1: If a PMU is placed on an edge {i, j}, then nodes i and j are observed:

{i, j} ∈ Π⇒ i, j ∈ Ω.

R2: If an observed node i has all its neighbour nodes observed, except one, then this latter node is
observed :

i ∈ Ω ∧ |Γ(i) r Ω| ≤ 1⇒ Γ(i) ⊆ Ω.

By rule R1, the PMU placed at {i, j} measures V(i) and I(i, j). Using Ohm’s law, we can deduce V(j).
Then i and j are both observed. By rule R2, if a node i and all its neighbours k ∈ Γ(i)\{j} are observed,
except a single node j, then using Ohm’s law we can determine I(i, k) for k ∈ Γ(i) \ {j}; knowing all
I(i, k) we can deduce I(i, j) using KCL. Then, knowing V(i) and I(i, j), we determine V(j) using Ohm’s
law. Hence, j is observed.

We remark that these rules define an “observability propagation” dynamics, strictly in an algorithmic
sense. Moreover, the rules imply one further “minimality” rule, namely that no other nodes are observed
aside from those which can be observed with rules R1 and R2.

With the notation Π and Ω in place, the PES problem consists in finding min |Π| such that Ω = V ,
where R1 and R2 represent the link between Π and Ω.

2.2 Iteration-indexed binary linear programming

In this section we describe a “natural” Mathematical Programming (MP) formulation for the PES
problem. This formulation is not particularly computationally efficient, as we shall see in Section 2.10,
and we only use it as a starting point for a reformulation that will lead to a bilevel formulation (see Section
2.3). Our motivation in explicitly stating this MP formulation is to actually showcase the reformulation
process, which we believe has some degree of generality.

MP is a formal language for describing optimization problems, and its main purpose is that, by provid-
ing many different “generic solvers” for solving MP formulations with varying mathematical properties,
shifts the focus from “solving” to “modelling” a problem, which can be achieved faster than inventing
a solution algorithm. An MP formulation consists of parameters (which encode the instance), decision
variables (which encode the solution), an objective function, and constraints. Modelling a logical process
is a way of transforming an informal natural language description of the process into a formal one, given
in the language of MP. Moreover, many possible formalizations are possible for any given informal prob-
lem description. In the vast majority of cases, the first modelling effort produces what is often called a
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natural formulation, meaning that the decision variables are linked to concepts referred to in the natural
language description of the problem. Natural formulations are often reformulated to achieve improved
computational efficiency of the solvers. Unlike modelling, reformulation methods are entirely formal. Re-
searchers in MP are usually interested in reformulations that can be applied to some degree of generality,
which we believe is the case here.

The iteration-indexed formulation we present here is based on the iterative process used to determine
the observability of the nodes of G and given by rules R1 and R2. Assuming the problem instance to be
a feasible one, Ω can be found in at most n−1 iterations. This worst-case bound is given by disregarding
R2: we choose an arbitrary order on the nodes, and then we place a PMU on an edge incident to each
vertex in the order; but since the first edge allows the observation of two vertices, we see that n − 1
PMUs are needed at most. A better worst-case bound is given by the observation that, without R2,
the problem can be solved in polynomial-time by finding a minimum sized edge cover: so the number of
iterations is at most equal to the size of a minimum edge cover. Accordingly, we set ι to either of these
upper bounds.

The parameters of the formulation are: the network graph G = (V,E), given as the set V and the
set of neighbourhoods Γ(i) for each i ∈ V , and the set I = {0, 1, . . . , ι} of iteration indices, where ι is a
worst-case bound on the maximum number of iterations. We also let I ′ = I r {ι}. The decision variable
tensors have the following components:

(i) sij , a binary variable equal to one if and only if we place a PMU on the edge {i, j} ∈ E, for each
i ∈ V and j ∈ Γ(i);

(ii) ωid, a binary variable equal to one if and only if the propagation rules prove that i is in the observed
set Ω at iteration d ∈ I;

(iii) yijd, a binary variable equal to one if and only if rule R2 is used at iteration d ∈ I to observe node
j ∈ Γ(i) using node i ∈ V as already observed.

Here follows the formulation:

min
s,ω,y

∑
i∈V

∑
j∈Γ(i)
j>i

sij (1)

∀i ∈ V, j ∈ Γ(i) sij = sji (2)

∀i ∈ V ωiι = 1 (3)

∀i ∈ V
∑
j∈Γ(i)

sij ≥ ωi0 (4)

∀j ∈ V, d ∈ I ′ ωj,d+1 − ωjd ≤
∑
i∈V
j∈Γ(i)

yijd (5)
(PIT)



∀i ∈ V, j ∈ Γ(i), d ∈ I ′ ωj,d+1 − ωjd ≤ ωid − yijd + 1 (6)

∀i ∈ V, j, k ∈ Γ(i) r {j}, d ∈ I ′ ωj,d+1 − ωjd ≤ ωkd − yijd + 1 (7)

∀i ∈ V, d ∈ I ′ ωid ≤ ωi,d+1 (8)

∀i ∈ V, j ∈ Γ(i) sij ∈ {0, 1} (9)

∀i ∈ V, d ∈ I ωid ∈ {0, 1} (10)

∀i ∈ V, j ∈ Γ(i), d ∈ I yijd ∈ {0, 1}. (11)

The objective function Eq. (1) aims at minimizing the number of installed PMUs. Constraints (2)
enforce the undirectedness of the graph. Constraints (3) state that every node must be observed by the
last iteration. Constraints (4) essentially state that R1 is enforced at the zero-th iteration: if a node is
observed at the outset, it is because there must be a PMU installed at some incident edge. Constraints
(5)-(7) describe the dynamics of rule R2: the left-hand sides can only be zero, one, or minus one; the
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latter possibility is excluded by Constraints (8). If the left-hand sides are zero, it is because the node in
question has not entered Ω at iteration d; and, as a consequence, since the right-hand sides are always
non-negative, the constraints are inactive. The only way these constraints can be active is if a node enters
Ω at iteration d, in which case the left-hand side has value one. Each of these left-hand sides forces a
one in the right-hand sides, which means that the right-hand size condition is true: in Constraints (5), if
node j is observed at iteration d, it must have been in consequence of rule R2 being applied with some
i ∈ V as the center of the neighbourhood to which j belongs; Constraints (6) state that i is already
observed at iteration d, and Constraints (7) that every other node k in the neighbourhood, aside from j,
is also already observed. Constraints (8) state monotonicity of observability: once observed, a node stays
observed (in other words, nodes can never be removed from Ω). Constraints (9)-(11) are the variable
domains.

Many discrete dynamical processes have been previously formulated using MP and iteration indices.
The authors of [19], for example, formulated the problem of minimizing the number of agents placed
in the nodes of a given graph in order to clean node contamination in a similar way. The propagation
dynamics described in [19], however, are non-monotonic both in terms of moving agents and contamination
evolution, whereas our observability propagation is monotonic. This allows us to propose a fixed-point
reformulation as detailed in Section 2.3, which would be impossible for the problem described in [19].

2.3 Bilevel programming via fixed-point reformulation

As shown in Table 1, the iteration-indexed formulation can only be used in practice for rather small
instances. We proceed to reformulate it using an innovative fixed-point technique which, though not
completely general, can be applied in many other settings, given a monotonic propagation algorithm on
a graph.

For any d ∈ I, let ωd = (ωid | i ∈ V ) be the characteristic vector describing the observability of the
nodes at iteration d. Formulation (PIT) computes the vector values for d ∈ {1, . . . , ι}. With a small
abuse of notation, we denote by ω = (ωi | i ∈ V ) the characteristic vector of Ω (i.e., ωi = 1 if and only
if i ∈ Ω). We remark that ωi = 1 if and only if i enters Ω at some iteration d, which implies that ωi
is the projection of the tensor ωd along the dimension denoted d. In particular, by the monotonicity
constraints (8), ω = ωι. This suggests that the tensor ωd actually carries “too much information”, in
the sense that only its slice ωι matters. In the following, we exploit this feature to derive a non-iterative
formulation, where the observability variables ω only depend on i ∈ V .

For d ∈ I and a node in j ∈ V , ωj,d+1 can be expressed as a function of ωjd as follows:

ωj,d+1 = max

ωjd, max
i∈V
j∈Γ(i)

1− |Γ(i)|+ ωid +
∑

k∈Γ(i)r{j}

ωkd

 . (12)

In other words, j is observed at iteration d + 1 either if it was already observed at iteration d or there
exists a neighbourhood N(i) of a node i ∈ V such that all the other neighbours k 6= j of i are observed
at iteration d. Note that Eq. (12) is a recursive relation on ω that defines the observability propagation
dynamics embedded in rule R2. For later reference, we remark that the minimality rule referred to in
Section 2.1 also holds here and is implicitly enforced by the equality relation in Eq. (12).

We represent the right-hand side of Eq. (12) by means of a function θ : {0, 1}n → {0, 1}n:

∀j ∈ V θj(x) = max

xj , max
i∈V
j∈Γ(i)

1− |Γ(i)|+ xi +
∑

k∈Γ(i)r{j}

xk

 ,

where x = (xj | j ∈ V ). We extend this definition to θ(x) = (θj(x) | j ∈ V ), so that we can summarize
the observability propagation dynamics to ∀d ∈ I ′ ωd+1 = θ(ωd).
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Recall rule R1: given Π ⊆ E, Ω contains all nodes adjacent to edges in Π. This can be formalized as
follows: given the support vector s ∈ {0, 1}m of Π,

∀{i, j} ∈ Π ωj0 ≥ sij .

Now we can write the application of both R1 and R2 to Π as follows:

∀j ∈ V, d ∈ I ′ ωj,d+1 = max

 ∨
i∈Γ(j)

sij , θj(ω
d)

 , (13)

which we can naturally extend to a fixed-point equation for the whole vector ωd+1:

∀d ∈ I ′ ωd+1 = ϑs(ω
d), (14)

where ϑs is an n-vector function, each component of which is given by the right-hand side of Eq. (13).

2.3.1 A mathematical program for ω

With s, ω and ϑs defined as above, we have the following result.

Theorem 2.1 There exists η ∈ N such that ωη is the unique least fixed-point of ϑs. Moreover, ωη is the
support vector of Ω.

Proof. By definition, for each d ∈ N, ωd is the support vector of the nodes that are observed after d
iterations of the observability propagation algorithm. The zero-th iteration of this algorithm consists in
applying rule R1 to s to yield an initial set Ω0 of observed nodes, encoded by a support vector ω0. At
iteration d+1, the algorithm applies rule R2 to ωd. By monotonicity, |Ωd| can never decrease. Moreover,
since Ωd ⊆ V and V is finite, this algorithm terminates. Let η be its last iteration. This means that
ωη+h = ωη for each h ∈ N, so ωη = ωη+1 = ϑs(ω

η), which implies that ωη is a fixed-point of ϑs.

Now suppose there is another fixed-point y of ϑs such that the cardinality of the support of y is smaller
than that of ωη. Then there must be an iteration β such that y = ωβ+1 = ϑs(ω

β) = y. By monotonicity,
we must have β < η, contradicting the fact that η is the last iteration. Uniqueness of the least fixed point
follows because the algorithm is deterministic. Now recall that the support vector of Ω is denoted by ω.
Since ω = ωι as observed in Section 2.3 and ωη+h = ωη for each h ∈ N, it follows that ω = ωη. 2

Next, define an MILP for determining ω given s, independently of the iteration index, by describing
the least fixed-point of ϑs in Eq. (14):

min
ω∈{0,1}n

∑
j∈V

ωj (15)

∀i ∈ V, j ∈ Γ(i) ωj ≥ sij (16)(PLL)

∀i ∈ V, j ∈ Γ(i) ωj ≥ 1− |Γ(i)|+ ωi +
∑

k∈Γ(i)r{j}

ωk. (17)

Since (PLL) links Ω to Π through their support vectors s and ω, we denote the observed node set Ω as
Ω(s).
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2.3.2 The bilevel formulation

The PES problem is modelled by the bilevel programming formulation described below:

(PPES)



min
s∈{0,1}m

∑
i∈V

∑
j∈Γ(i)
j>i

sij

∀i ∈ V, j ∈ Γ(i) sij = sji

n ≤


min

ω∈{0,1}n

∑
j∈V

ωj

∀i ∈ V, j ∈ Γ(i) ωj ≥ sij
∀i ∈ V, j ∈ Γ(i) ωj ≥ 1− |Γ(i)|+ ωi +

∑
k∈Γ(i)r{j}

ωk

In the upper-level problem the objective is to minimize the number of PMUs to install such that the
number of observed nodes given by function Ω(s) is at least n. The lower-level problem encodes the
fixed-point of Eq. (14), which is the support vector of Ω(s) as shown in Thm. 2.1. More precisely, the
constraints on the lower level states that the optimum of the lower-level problem should be at least as
large as n, which is equivalent to requiring that the propagation dynamics ensures observability of all
nodes.

2.4 MILP reformulation

We show in this section that the bilevel program (PPES) can be reformulated exactly as an MILP.
We first prove that the integrality of the binary decision variables ω can be relaxed in the lower-level
subproblem.

Lemma 2.2 If the constraints ω ∈ {0, 1}n are replaced by ω ≥ 0 in the lower-level subproblem, there is
at least one optimal solution to the relaxed lower-level subproblem which is binary.

Proof. We need to show that, for each s ∈ {0, 1}m, the optimal solution of the lower-level subproblem
is equal to that of its relaxation obtained by replacing ω ∈ {0, 1}n by ω ≥ 0. So let s ∈ {0, 1}m and let
ω̄ be an optimal solution of the relaxed lower-level subproblem (PLL). By Constraints (16), there is a set
S of nodes, namely those which are adjacent to edges {i, j} ∈ Π such that sij = 1, such that ω̄j = 1
for all j ∈ S. Now let U ⊆ V be the set of all those node indices such that ω̄` ∈ (0, 1), and suppose
Z 6= ∅: it is impossible for any ` ∈ U to be incident to an edge of Π, since otherwise by Constraints (16)
we would have ω̄` = 1. By the constraint sense, we can set ω̄` = 0 for each ` ∈ U and still satisfy the
Constraints (17) (this can be seen by induction on the node indices occurring in ρ), as claimed. A similar
argument applies in the case ω̄` > 0. 2

This means that the lower-level subproblem can be relaxed to an LP. The classical theory of bilevel
programming states that any bilevel program involving an LP subproblem can be reformulated exactly
to a single-level problem by replacing the lower-level subproblem by its Karush-Kuhn-Tucker (KKT)
conditions [4]. Hence we obtain the Mixed-Integer Nonlinear Program (MINLP):
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min
s,λ,µ

∑
i∈V

∑
j∈Γ(i)
j>i

sij (18)

∀i ∈ V, j ∈ Γ(i) sij = sji (19)∑
i∈V

∑
j∈Γ(i)

sijµij + (1− |Γ(j)|)λij ≥ n (20)
(PMINLP)


∀i ∈ V

∑
j∈Γ(i)

(µij + λij − λji −
∑
k∈Γ(j)
k 6=i

λkj) ≤ 1 (21)

s ∈ {0, 1}m, λ, µ ≥ 0. (22)

We now prove that, ∀i ∈ V, j ∈ Γ(i), the dual variables µij are bounded.

Proposition 2.3 There exists a constant M > 0 such that µij ≤M for each i ∈ V and j ∈ Γ(i).

Proof. Let (s∗, µ∗, λ∗) be an optimal solution of (PMINLP) and let (s∗, ω∗) be the corresponding optimal
solution of the bilevel formulation (PPES). In particular, we consider (s∗, µ∗, λ∗) such that (µ∗, λ∗) is a
basis solution of the dual LP which defines |Ω(s)|, that is:

max
λ,µ≥0

∑
i∈V

∑
j∈Γ(i)

sijµij + (1− |Γ(j)|)λij

∀i ∈ V
∑

j∈Γ(i)

(µij + λij − λji −
∑

k∈Γ(j),k 6=i
λkj) ≤ 1

Necessarily at most n dual variables are non-zero. Let I = {(i, j) | µij 6= 0} and J = {(i, j) | λij 6= 0}.
We have |I|+ |J | ≤ n. Let i ≤ n such that ω∗i = 1. By complementary slackness we have∑

j∈Γ(i)

(µ∗ij + λ∗ij − λ∗ji −
∑
k∈Γ(j)
k 6=i

λ∗kj) = 1. (23)

Let AB ∈ Rn×n be the basis matrix corresponding to the optimal solution (µ∗, λ∗). By Eq. (23), X =
(µ∗, λ∗, β∗) is a solution of the system AB X = 1, where β∗ denotes the slack variables used to write the
above dual program in standard form, 1 is a vector in Rn where each component is one, and all elements
of AB are in {−1, 0, 1}. Since A−1

B = 1
det(AB) adj(AB), where adj(AB) is the adjoint matrix of AB and

det(AB) is the determinant of AB , using the Hadamard inequality for the determinant, we obtain that
the dual variables µij are all bounded by M = n

n
2 , for each i ∈ V and j ∈ Γ(i). 2

By Proposition 2.3, we can linearize (PMINLP) exactly by replacing the variable products by pij = sij µij
for all i ∈ V and j ∈ Γ(i), and then relaxing these equations by using McCormick’s convex envelopes
[17]:

pij ≤ min(µij ,M sij)

pij ≥ max(0, µij −M(1− sij)),

for each i ∈ V and j ∈ Γ(i).
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Finally, we obtain the single-level MILP (PMILP) below, without iteration indices.

(PMILP)



min
s,p,λ,µ

∑
i∈V

∑
j∈Γ(i)
j>i

sij

∀i ∈ V, j ∈ Γ(i) sij = sji∑
i∈V

∑
j∈Γ(i)

pij + (1− |Γ(j)|)λij ≥ n

∀i ∈ V
∑

j∈Γ(i)

(µij + λij − λji −
∑

k∈Γ(j)
k 6=i

λkj) ≤ 1

∀i ∈ V, j ∈ Γ(i) pij ≤ M sij
∀i ∈ V, j ∈ Γ(i) pij ≤ µij
∀i ∈ V, j ∈ Γ(i) pij ≥ µij −M(1− sij)

s ∈ {0, 1}m, λ, µ, p ≥ 0.

Computationally, solving this formulation with off-the-shelf solvers yields solutions much faster than with
(PIT). On the other hand, neither formulation is sufficient to solve the large scale instances occurring in
the SO-grid project. This motivates us to investigate an algorithm for solving (PPES) directly.

2.5 Cutting-plane algorithm for the bilevel problem

As mentioned above, the two MP formulations we derived above can hardly be used for solving large-
scale PES instances. Another motivation for seeking an alternative method is that Lemma 2.2, which
is necessary for reformulating the bilevel formulation to a single-level one, fails to hold in general if one
were to add constraints to the lower-level subproblem — something which we shall need to do in order
to model features such as conventional measures, robustness, and so on.

We propose a cutting plane algorithm, called BilevelSolve, to solve the bilevel program (PPES).
BilevelSolve iteratively solves a modified version of the upper-level problem as a master problem,
adding a new cut at each iteration. The cuts are generated by means of the combinatorial procedure
GenerateCut on the lower level slave problem.

Let us consider the feasible region of the upper level:

F = {s ∈ {0, 1}m | |Ω(s)| ≥ n}.

Since the variables of the upper-level subproblem are binary, we can rewrite the bilevel program as

min{
∑
{i,j}∈E

sij | s ∈ conv(F) ∩ {0, 1}m},

where m = |E|. We now look for a polyhedron P such that P ∩{0, 1}m = F and then solve the following
problem

min{
∑
{i,j}∈E

sij | s ∈ P ∩ {0, 1}m}.

Let F̄ = {0, 1}m r F . Notice that for all s ∈ {0, 1}m and s′ ∈ F̄ such that s < s′, we have s ∈ F̄ , i.e.,
if a placement is infeasible and PMUs are removed from this placement then the new placement is also
infeasible. For all s ∈ {0, 1}m, let ζ(s) = {{i, j} ∈ E | sij = 0}.

Lemma 2.4 For all s̄ ∈ F̄ , ∑
{i,j}∈ζ(s̄)

sij ≥ 1

is a valid inequality for F .
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Proof. Let s̄ ∈ F̄ , and assume that there exists s ∈ F such that
∑

{i,j}∈ζ(s̄)
sij < 1. Since s ∈ {0, 1}m, we

deduce that
∑

{i,j}∈ζ(s̄)
sij = 0, hence s ≤ s̄ by definition of ζ(s). Since s̄ ∈ F̄ , we have s ∈ F̄ too, and this

contradicts the initial assumption. 2

Let F̄max be the set of ≤-maximal elements in F̄ , i.e.,

F̄max = {s ∈ F | If there exists s′ ∈ F , s′ ≥ s then s′ = s}.

Let P = {s ∈ [0, 1]m | ∀s̄ ∈ F̄max

∑
e∈ζ(s̄)

se ≥ 1} and PI = P ∩ {0, 1}m.

Proposition 2.5 We have PI = F .

Proof. Suppose first that PI * F and let s′ ∈ PI such that s′ ∈ F̄ . By Lemma 2.4,∑
{i,j}∈ζ(s′)

sij ≥ 1 (∗)

is valid for F . The left-hand side of (∗) is 0 when s← s′, so (∗) separates s′ from F . For any s̄ ≥ s′ with
s̄ ∈ F̄ we have ζ(s̄) ⊆ ζ(s′), so

∑
{i,j}∈s̄

sij ≥ 1 dominates (∗) and also separates s′ from F . In particular,

this holds for s̄ ∈ F̄max, which contradicts the assumption s′ ∈ PI . Hence PI ⊆ F . Let s ∈ F and suppose
there exists s̄ ∈ F̄max such that

∑
{i,j}∈ζ(s̄)

sij = 0, i.e., s 6∈ P. Then s ≤ s̄ implies s 6∈ F , a contradiction:

so s ∈ PI . 2

Proposition 2.5 states that polyhedron P is entirely described by the points s̄ in F̄max. Therefore at
each iteration, either the current solution s belongs to F and is optimal or s /∈ F and we look for a point
s′ ∈ F̄max, s

′ ≥ s to deduce a new cut.

Consider the following MILP P k:

[P k]

{
min

s∈{0,1}|E|

∑
i∈V

∑
j∈Γ(i)

sij

∀h ≤ k αhs ≥ 1,
(24)

where αh ∈ {0, 1}|E| for each h ≤ k, and k is the main algorithm iteration counter: at iteration k, P k

has k linear covering constraints, starting with α1 = (1, . . . , 1).

Algorithm 1: BilevelSolve

1: k ← 1
2: termination← 0
3: while termination = 0 do
4: s←MILPSolve(P k)
5: k ← k + 1
6: αk = GenerateCut(s, termination)
7: P k ← [P k−1 s.t. αks ≥ 1]
8: end while

Although BilevelSolve needs exponentially many cuts in the worst case, as we will discuss in
Section 2.10, it performs very well empirically.
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Algorithm 2: GenerateCut(s, termination)

1: termination← 0
2: // observe nodes according to PMUs in s
3: place PMUs in G in all edges in the support of s
4: apply rules R1 and R2 to G, to obtain Ω ⊆ V (observed nodes)
5: if Ω = V then
6: // if PMUs in s suffice to observe all nodes, terminate
7: termination← 1
8: α← (0, . . . , 0)
9: else

10: // otherwise, apply more PMUs and aim to observe all nodes
11: Θ← Ω
12: while Ω ( V do
13: choose any v ∈ V r Ω and {u, v} ∈ E
14: place PMU in {u, v} and apply R1, R2 to update Ω
15: if Ω 6= V then
16: Θ← Ω
17: end if
18: end while
19: // generate cut on edges not induced by nodes observed
20: // at R2 application step before full observability
21: let F be the set of edges induced by Θ
22: let α be the support of E r F
23: end if
24: return (α, termination)

2.6 A lower bound for the PES problem

We present in this section a lower bound L on the value of each globally optimal solution of the PES
problem. We claim that the tighter the lower bound is, the faster the constraint generation algorithm will
be. The reason for this is that, if such a bound L > 0 is known, at the first iteration we can replace the
right-hand side of the cut α1s ≥ 1 by L, thereby making the constraint tighter. This makes the feasible
region smaller, which is good evidence that we would need to generate fewer cuts in BilevelSolve.

We achieve our estimation for L by using some results on zero forcing sets and the minimum rank of
a graph [2].

Definition 2.6 The minimum rank of a graph G = (V,E), mr(G), is the minimum rank over all n× n
symmetric matrices S such that Sij 6= 0 for each {i, j}, where n = |V |.

Let A be the adjacency matrix of G and let rank(A) denotes its rank. By Definition 2.6, we have that
rank(A) ≥ mr(G).

Definition 2.7 Let G = (V,E) be a graph. A zero forcing set of G is a set Z ⊂ V of minimum size such
that, if these nodes are initially observed, the graph G is fully observed using the propagation rule R2.

The zero forcing set problem corresponds to a variant of the PDS problem where the problem consists
of installing a minimum number of PMUs on the nodes such that G is fully observed. We call this problem
the Power Vertex Set (PVS) problem. In [2], the authors present a relation linking the size of a zero
forcing set and the minimum rank of the graph.

Proposition 2.8 ([2]) Let Z be a zero forcing set of G. We have |V | −mr(G) ≤ |Z|.
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Lemma 2.9 Let Z be a zero forcing set of G and let Π∗ be an optimal solution of the PES problem.
Then |Z| ≤ 2|Π∗|.

Proof. Let Z ′ = {i ∈ V | {i, j} ∈ Π∗}. Assume that all the nodes in Z ′ are initially observed. By
applying the rule R2, G can be fully observed. Hence, Z ′ is a feasible solution of the zero forcing set.
Therefore |Z| ≤ |Z ′| ≤ 2|Π∗|. 2

By Lemma 2.9 and Proposition 2.8, for any symmetric matrix S ∈ R|V |×|V | such that Sij 6= 0 if and

only if {i, j} ∈ E, we have that |V |−rank(S)
2 is a lower bound for the PES problem. In particular, for

S = A, we have |V |−rank(A)
2 . This proves the following:

Theorem 2.10 Let G = (V,E) be a graph and let A be its adjacency matrix. Then |V |−rank(A)
2 is a

lower bound for the PES problem.

2.7 Modelling conventional measures

Additionally to PMUs, some non-synchronized sensors may also be installed in the electrical network.
They can then provide either power flow measurements along given lines or voltage measures at some
nodes. Considering these measurements in our observability model may reduce the number of PMUs to
install. We present here how to take into account these conventional measurements.

• Power flow measurements along given lines are known. Having the flow measurement along a line
allows us to calculate one of the terminal bus voltages when the other one is known using Ohm’s
law. Therefore, if the flow along an edge {i, j} is known, node i is observed if node j is observed
and inversely. Let MPF be the set of all edges with known power flow measurements. Therefore,
the following constraints are added to the lower level of (PPES)

∀{i, j} ∈MPF ωi = ωj .

• Bus voltages at some nodes are known. If the bus voltage is known at a given node, then this node
is observed. Let MBV be the set of all the nodes with known bus voltages. Therefore, the following
constraints are added to the lower level of (PPES)

∀i ∈MBV ωi = 1.

2.8 Single line outage contingency

Some troubles may occur in the electrical network leading to some contingencies. Incorporating
contingencies in the models for the PES problem would result in more reliable results. We consider in
this section the single line outage contingency. Hence, the objective is to find the minimum number of
PMUs to install on edges under the assumption that any single edge may fail and the graph should still
be fully observed. We present the bilevel model corresponding to a single line outage contingency for the
PES problem.

For any edge in E, let G r {e} = (V,E r {e}), and for all i ∈ V let Γe(i) be the neighbourhood of
node i in G r {e}. The binary bilevel linear program for the PES problem with a single line outage is
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given by

(PLineOut)



min
s∈{0,1}m

∑
i∈V

∑
j∈Γ(i)
j>i

sij

∀i ∈ V, j ∈ Γ(i) sij = sji

∀e ∈ E n ≤


min

ω∈{0,1}n

∑
i∈V

ωi

∀i ∈ V, j ∈ Γe(i) ωi ≥ sij
∀i ∈ V, j ∈ Γe(i) ωi − ωj ≥

∑
k∈Γe(j)
k 6=i

ωk − |Γe(j)|+ 1

Note that the optimal objective function value of (PLineOut) is larger than that of (PPES).

Similar to the bilevel model proposed for the PES problem and described in Section 2.3.2, (PLineOut)
can be reformulated as an MILP by applying the same process to each program of the lower level. The
resulting MILP is as follows.

min
s∈{0,1}m
p,λ,µ≥0

∑
i∈V

∑
j∈Γ(i)
j>i

sij

∀i ∈ V, j ∈ Γ(i) sij = sji
∀e ∈ E

∑
i∈V

∑
j∈Γe(i)

peij + (1− |Γe(j)|)λeij ≥ n

∀i ∈ V, e ∈ E
∑

j∈Γe(i)

(µeij + λeij − λeji −
∑

k∈Γe(j)
k 6=i

λekj) ≤ 1

∀i ∈ V, j ∈ Γe(i), e ∈ E peij ≤ M sij
∀i ∈ V, j ∈ Γe(i), e ∈ E peij ≤ µeij
∀i ∈ V, j ∈ Γe(i), e ∈ E peij ≥ µeij −M(1− sij),

where the constant M can be taken to be the same as for (PMILP), as the proof of Prop. 2.3 goes through
essentially unchanged. Moreover, the cutting-plane algorithm proposed in Section 2.5 to solve (PPES)
can also be used to solve the program (PLineOut). The fact that this is a bilevel program with m = |E|
lower-level subproblems simply has the effect of being able to generate multiple cuts. More precisely, cuts
are generated for those slave programs for which Ω(s) < n in Gr {e}.

2.9 Measurement losses

Another type of contingency is the loss of measurements due to PMU failures. We consider in this
section a single PMU contingency. Hence, the objective is to find the minimum number of PMUs to
install on edges under the assumption that any single PMU may be lost and the graph should still
be fully observed. This case is similar to the one in Section 2.8, but robustness with respect to edge
removal only applies to rule R1; consequently, only the first constraint in the lower level is quantified
over j ∈ Γe(i), whereas the second is quantified in the standard way, i.e., over j ∈ Γ(i). We refer to the
resulting formulation as (PPMUOut).

As in previous cases, (PPMUOut) can also be reformulated as an MILP; moreover, the cutting-plane
algorithm proposed in Section 2.5 to solve the model (PPES) can also be used to solve the (PPMUOut). The
same provision holds as in (PLineOut) about the m lower-level subproblems: cuts are generated for those
slave programs for which Ω(se) < n. Also, the value of an optimal solution of (PPMUOut) is larger than
one of an optimal solution of (PPES).

2.10 Computational results

All the experiments presented here were performed on a 2.70GHz Intel i7 dual-core CPU with 16.0
GB RAM. All formulations and algorithms were implemented in Julia using JuMP [14] and solved using
IBM ILOG CPLEX 12.6.
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Our benchmark contains two types of graphs.

• Networks with topologies of standard IEEE n-bus systems, with n ∈ {5, 7, 14, 30, 57, 118}, see [24]
— we call these instances Gr n.

• Random graphs with n nodes and m = 1.4× n for n ∈ {5i | 1 ≤ i ≤ 10} — we call these instances
Rnd. The constant 1.4 is the average ratio of edges over nodes in standard IEEE bus systems.
These instances are allowed to be forests (hence, disconnected), but no node is isolated. For each
value of n, 10 different instances were generated and tested.

The project that motivated this research provided us with instances of similar size to those reported
here. On the other hand, the project itself was devoted to the study of a prototype rather than of a
full deployment. Although it is unlikely that any exponential algorithm will scale to truly large scale
instances, the type of networks used in the French electricity distribution system are “almost trees”, since
they have relatively few cycles. In other words, they are on the easier side of the spectrum.

2.10.1 Methodological comparison

Our first test compares three different methodological approaches: solving (PIT) and (PMILP) with
CPLEX, and using the BilevelSolve algorithm. The results are obtained for the case without conven-
tional measures, and are reported in Table 1. Each given result for the randomly generated graphs is the
average over the 10 generated instances. We limited the running time to 2 hours. For any instance not
solved optimally within the time limit, the running time is set to this limit.

For each purely formulation-based method, we reported the following statistics.

(i) The average CPU time expressed in seconds.

(ii) The average optimality gap, expressed as a percentage. Gap averages are taken over ratios LB − UB
LB

computed on all instances returning at least one feasible solution, where LB is the final best lower
bound and UB is the best solution value found.

(iii) The number of instances #opt solved optimally, and the number of instances that run out of memory
(marked “mof” for “memory overflow”).

For BilevelSolve, we reported: (i) average CPU time in seconds, (ii) number #itn of iterations taken
before termination (for the Rnd set, this is an average over the 10 runs), and (iii) number of optimally
solved instances.

We note that the iteration-indexed formulation cannot be used to solve medium and larger size in-
stances. The fixed-point reformulation can solve larger instances than the iteration-indexed one but
cannot solve large size instances. BilevelSolve can solve almost all the considered instances in few
seconds. Only one instance of the random generated graphs could not be solved within the time limit.
For small instances, formulation PMILP performs somewhat better than BilevelSolve. This is due to
the nature of our programming language system: Julia is a Just-in-Time (JiT) environment, where each
function needs to be pre-compiled every time Julia is started: this overhead is O(1) seconds of user time,
and so it dominates the actual algorithmic execution time. Since the amount of code to be compiled is
larger for the cutting plane algorithm BilevelSolve than it is to deploy CPLEX on formulations PIT

and PMILP, the overhead of the cutting plane algorithm is larger. For larger instances, where the overhead
is a minor fraction of the total time, it is clear that BilevelSolve is on average better in terms of
running time and size of instances that can be solved.
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n m PIT PMILP BilevelSolve
Time Gap #opt Time Gap #opt Time #itn #opt

(s) (%) (mof) (s) (%) (mof) (s) (mof)
Gr n 5 6 1.30 0 1 1.29 0 1 2.01 1 1

7 8 6.22 0 1 1.33 0 1 2.14 1 1
14 20 19.30 0 1 1.38 0 1 2.17 5 1
30 41 7200.00 100 0 40.93 0 1 2.37 18 1
57 80 7200.00 100 0 7200.00 63.51 0 4.26 38 1
118 176 7200.00 100 0 7200.00 100.00 0 247.41 367 1

Rnd 5 7 1.30 0 10 6.42 0 10 2.09 2.6 10
10 14 2.20 0 10 1.37 0 10 2.16 5.7 10
15 21 297.60 0 10 1.48 0 10 2.18 9.8 10
20 28 7200.00 69.89 0 2.34 0 10 2.26 17.1 10
25 35 7200.00 96.33 0 29.16 0 10 2.64 29.9 10
30 42 7200.00 95.71 0 1820.58 5.31 8 4.86 57.0 10
35 49 7200.00 98.14 0(1) 3789.77 16.81 6 15.26 90.9 10
40 56 7200.00 93.11 0 6316.36 33.56 1(5) 24.34 121.4 10
45 62 7200.00 98.57 0 7200.00 47.14 0 148.58 211.8 10
50 70 7200.00 93.16 0 7200.00 50.36 0(4) 414.24 446.0 9

In italics: average over instances that did not run out of memory

Table 1: Computational results for the PES problem.

2.10.2 Variants: conventional measures and robustness

We compare now the results obtained considering conventional measures, single edge deletion and
single measurement loss. The tests were only performed for BilevelSolve and for the same instances
described above. For conventional measures, the additional power flow measurements and bus voltage
are generated randomly. Moreover, only instances with n ≥ 30 were considered.

The results are given in Table 2 where we reported: (i) the number of power flow measurement
#addPF, resp. bus voltage #addV, chosen so as to make the variant actually differ from (PPES); (ii) the
optimal number Opt. val. of PMUs to install. The other values are as explained before. For conventional
measures, note that, since the generation of additional measures is random, #addPF and #addV are not
necessarily optimal.

For conventional measures, the running time is generally less than when BilevelSolve is applied to
the standard PES (PPES): the additional constraints allow BilevelSolve to converge more quickly to
the optimal solution. The number of conventional measures needed to be known is in general between 1
to 5.

For single edge deletion, even if the number of slave problems to solve is m (while (PPES) has just
one), the running time has the same order of magnitude as BilevelSolve for (PPES), and decreases for
random graph instances with n ≥ 35. This can be explained by the fact that at each iteration we add
several valid inequalities (one for each edge/PMU) that help convergence speed. Single measurement loss
results are similar.

2.11 Other extensions and variants

We assumed here that the installation cost is the same for every PMU location at a node along an
edge. If not, the problem consists then in finding the placement of PMUs that ensures a full observability
of the graph and minimize the total installation cost. Let, ∀i ∈ V, j ∈ Γ(i), cij be the cost of installing a
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n m (PPES) Conventional measurements Single edge del. Single PMU loss
Power flow Voltage

Time Opt. Time #addPF Time #addV Time Opt. Time Opt.
(s) val. (s) (s) (s) val. (s) val.

Gr n 5 6 1.90 1 - - 0 2.1 2.10 2 2.00 2
7 8 1.90 2 - - - - 2.10 4 2.00 3
14 20 1.95 2 - - - - 2.20 4 2.10 4
30 41 2.00 5 2.00 2 1.90 1 3.13 9 3.66 8
57 80 6.90 5 2.10 5 2.50 4 46.00 9 15.00 10
118 176 283.00 18 24.00 3 240.00 4 390.00 29 310.00 30

Rnd 5 7 1.90 1.30 - - - - 2.80 2.30 2.60 2.20
10 14 1.80 2.20 - - - - 2.60 3.90 2.20 3.50
15 21 1.80 2.70 2.45 1.50 2.55 1.10 2.70 5.50 2.60 4.50
20 28 2.00 3.30 2.63 1.77 2.59 2.21 3.00 6.50 3.40 5.60
25 35 2.10 4.40 2.55 1.64 3.06 2.90 3.30 8.00 4.00 6.50
30 42 3.10 5.80 2.39 1.70 2.59 1.40 4.30 9.40 6.80 7.80
35 49 7.30 5.80 5.78 2.70 2.69 2.80 5.70 10.00 22.00 8.40
40 56 10.80 7.00 6.90 2.80 6.45 2.60 8.70 12.10 28.00 9.20
45 62 60.30 7.20 37.03 2.85 17.80 2.60 7.50 12.50 66.00 10.00
50 70 244.00 8.70 86.65 2.93 62.35 2.63 18.00 14.10 459.40 11.00

Table 2: Computational results for conventional measurements and robust variants of the PES problem.

PMU on {i, j}. The new objective function is then given by:

min
∑
i∈V

∑
j∈Γ(i)
j>i

cij sij .

Our proposed models can easily be adapted to solve the PDS problem. It suffices to define the
placement variables by si = 1 if a PMU is installed on node i and 0 otherwise for each i ∈ V . The binary
bilevel linear program for solving the PDS problem is the following:

(PNodes)



min
s∈{0,1}m

∑
i∈V

si

n ≤


min

ω∈{0,1}n

∑
i∈V

ωi

∀i ∈ V, j ∈ Γ(i) ∪ {i} ωj ≥ si
∀i ∈ V, j ∈ Γ(i) ωi − ωj ≥

∑
k∈Γ(j)
k 6=i

ωk − |Γ(j)|+ 1

Similarly, all the above models and approaches described for the PES problem can be adapted to solve
the PDS problem.

3 The Generalized Power Edge Set (GPES) problem

We present a generalization of the PES problem called the Generalized PES (GPES) problem.
The GPES problem is based on a generalization of the observability rule presented in Section 2, which
might arise in electrical networks. We first state the new rule and infer it from simple electrical con-
siderations. Secondly, we derive a bilevel formulation of the GPES problem. Different from (PPES), the
lower-level subproblem of the GPES formulation has an exponential number of constraints; it is therefore
not tractable in its original form. We therefore propose a (polynomial-time) combinatorial algorithm to
solve the observability problem.
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3.1 Observability generalization rules

Let S ⊆ V and let S̄ = V \ S be its complementary set. For any i ∈ V , we denote by ΓS(i) the
neighbourhood of i belonging to S, i.e., ΓS(i) = Γ(i) ∩ S. The neighbourhood of S, denoted by Γ(S),

is defined by Γ(S) =

( ⋃
i∈S

ΓS̄(i)

)
. For S ⊆ V , the border of S, denoted δS, is defined as δS = {i ∈

S | ΓS̄(i) 6= ∅}. The interior of S is the set S◦ = S \ δS. Note that border and interior are only
meaningful for nontrivial subsets of V — in a way, they are a relative notion (to V ).

Let Π ⊆ E be a placement of PMUs in G and let Ω ⊆ V be the set of observed nodes. We consider
the two following observation rules.

R1: If a PMU is placed on an edge {i, j}, then nodes i and j are observed:

{i, j} ∈ Π⇒ i, j ∈ Ω.

(Note that R1 is defined exactly as in Section 2.1.)

R2′: If a subset S has all its border set observed as well as all its neighbour nodes observed, except one,
then this neighbour node is observed:

δS ⊆ Ω ∧ |Γ(S) r Ω| ≤ 1⇒ Γ(S) ⊆ Ω.

For subsets S having one element, the rule R2′ is exactly the same as the rule R2. For a subset S
with |S| ≥ 2, an example of the applicability of rule R2′ is given in Figure 2 where δS = {j, j1, j2, j3, j4}
and Γ(S) = {i, j′1, j′2, j′3}.

Si j

j1

j2

j3

j4

j′1

j′2

j′3

: observed nodes

Figure 2: The node i can be observed through the subset S.

Formally speaking, then, the GPES problem is: given G = (V,E), find Π ⊆ E of minimum cardinality
such that Ω = V , where the relationship between Π and Ω is given by R1 and R2′.
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Corollary 3.1 For S ⊆ V , ∑
i∈δS

∑
j∈ΓS̄(v)

I(i, j) = 0.

Proof. By Kirchhoff’s law we have
∑
i∈S
∑
j∈Γ(i) I(i, j) = 0. Notice that∑

i∈S

∑
j∈Γ(i)

I(i, j) =
∑
i∈δS

∑
j∈Γ(i)

I(i, j) +
∑
i∈S◦

∑
j∈Γ(i)

I(i, j)

=
∑
i∈δS

∑
j∈ΓS̄(i)

I(i, j) +
∑
i∈δS

∑
j∈ΓS(v)

I(i, j) +
∑
i∈S◦

∑
j∈Γ(i)

I(i, j)

=
∑
i∈δS

∑
j∈ΓS̄(i)

I(i, j) +
∑
i∈S

∑
j∈ΓS(i)

I(i, j)

For all i, j ∈ V we have I(i, j) = −I(j, i), so we conclude that
∑
i∈S

∑
j∈ΓS(i)

I(i, j) = 0. Therefore, we have∑
i∈δS

∑
j∈ΓS̄(i)

I(i, j) = 0. 2

Proposition 3.2 The rules R1 and R2′ are consistent with Ohm’s and Kirchhoff’s laws.

Proof. As in Section 2.1, if {i, j} ∈ Π, then i and j ∈ Ω using Ohm’s law.

Now let us consider S ⊂ V and i ∈ Γ(S) such that δS ⊆ Ω and Γ(S) \ {i} ⊆ Ω. By Corollary 3.1 we
have ∑

j∈Γ(S)
j 6=i

∑
k∈ΓS(j)

I(k, j) +
∑

h∈ΓS(i)

I(h, i) = 0.

By Ohm’s law, we deduce that∑
h∈ΓS(i)

V(h)−V(i)

R(h, i)
=
∑
j∈Γ(S)
j 6=i

∑
k∈ΓS(j)

V(k)−V(j)

R(k, j)

After rearranging we obtain

V(i) =

∑
j∈Γ(S)
j 6=i

∑
k∈ΓS(j)

V(k)−V(j)
R(k,j) +

∑
h∈ΓS(i)

V(h)
R(h,i)∑

h∈ΓS(i)

1
R(h,i)

.

By hypothesis, all the quantities in the right-hand side of the equation above are known. Thus V(i) can
be computed. Therefore i ∈ Ω. 2

3.2 Bilevel model

Similar to Section 2.3.2, the GPES problem can be formulated by a binary bilevel model as follows:
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(PGPES)



min
s∈{0,1}m

∑
i∈V

∑
j∈Γ(i)
j>i

sij

∀i ∈ V, j ∈ Γ(i) sij = sji

n ≤


min

ω∈{0,1}n

∑
j∈V

ωj

∀i ∈ V, j ∈ Γ(i) ωj ≥ sij
∀S ⊂ V, i ∈ Γ(S) ωi ≥

∑
j∈Γ(S)∪δS

j 6=i

ωj − |Γ(S) ∪ δS|+ 2.

Note that, if the whole graph is observed, then for all i ∈ V either there exists a PMU installed on
{i, j} ∈ E or, using R2′, we can find a subset S such that i ∈ Γ(S) and

∑
j∈Γ(S)∪δS

j 6=i

ωj = |Γ(S) ∪ δS| − 1.

In the latter case, we have ωi ≥ 1 and therefore ωi = 1. Conversely, if there exists i ∈ V that cannot be
observed from any subset S where i ∈ Γ(S), then none of the constraints ωi−

∑
j∈Γ(S)∪δS

j 6=i

ωj ≥ 2−|Γ(S)∪δS|

will be active for any set S, and therefore ωi = 0.

Unfortunately (PGPES) is not tractable in this form, since the lower-level subproblem has exponentially
many constraints. We show in the following that the lower-level subproblem can nonetheless be solved
in polynomial time.

3.3 Determining the observability in polynomial time

In this section we present a polynomial-time algorithm to detect if, given a placement Π ⊆ E, the graph
is fully observed or not. Similar to the PES problem, we define an observability propagation dynamics.
For each d ∈ I = {0, . . . , ι} with ι = n − 1, Ωd ⊆ Ω is defined recursively by Ω0 = {i ∈ V | {i, j} ∈ Π}
and

Ωd+1 = {i ∈ V | i can be observed from nodes in Ωd using R2′ at most one time}.

The algorithm framework is the following: assume that for some d ∈ I ′ = I r {ι}, the set Ωd is known.
For each i /∈ Ωd, we determine if there exists a subset S ⊆ V such that i ∈ Γ(S) and δS∪Γ(S)\{i} ∈ Ωd.
In this case we say that i can be observed through the set S at iteration d+ 1.

Lemma 3.3 Let i ∈ V and let S ⊂ V be such that i can be observed through S at iteration d + 1 ∈ I ′.
Then:

• for all j ∈ S, j /∈ Ωd, Γ(j) ⊂ S

• for all j ∈ S ∩ Ωd, if there exists k 6= i ∈ Γ(j) such that k /∈ Ωd, then k ∈ S.

Proof. Let j ∈ S and j /∈ Ωd. If there exists k ∈ Γ(j) such that k /∈ S then j ∈ δS. However j /∈ Ωd,
a contradiction. Similarly if there exists j ∈ S ∩ Ωd, and k 6= i ∈ Γ(i) such that k /∈ Ωd, then k must
belong to S otherwise at least two neighbour nodes of S, i and k, are not observed and then i cannot be
observed through S at iteration d+ 1. 2

At iteration d + 1 ∈ I ′, for all u ∈ Γ(Ωd) we test, by examining all the neighbour nodes of i in Ωd,
whether there exists a subset S such that i can be observed through S. If such a subset S does not exist
then i cannot be observed using the placement Π. Algorithm 3 describes the polynomial-time algorithm
for determining the observability of a graph given a placement Π of PMUs. For each i /∈ Ωd, there are
at most n2 iterations to check if i ∈ Ωd+1. Therefore Algorithm 3 runs in time O(n3).
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Algorithm 3: Observability Algorithm

1: Let Π be a PMU placement
2: d← 0
3: Ωd ← {i ∈ V | {i, j} or {j, i} ∈ Π}
4: repeat
5: d← d+ 1
6: Ωd ← Ωd−1

7: for each i ∈ Γ(Ωd−1) do
8: J ← Γ(i) ∩ Ωd−1

9: for j ∈ J do
10: Determine if i can observed through a subset S containing j
11: if such an S exists then
12: Ωd ← Ωd ∪ {i}
13: end if
14: end for
15: end for
16: until Ωd = Ωd−1 or Ωd = V
17: return Ωd

3.4 Computational results

The experiments were performed on the same computer and the same instances as in Section 2.10.
As above, the algorithm was implemented in Julia and solved using IBM ILOG CPLEX 12.6. We
implemented BilevelSolve, proposed in Section 2.5, to solve (PGPES) by using Algorithm 3 to solve
the slave problem. The tests were performed on the same previous instances considered in Section 2.10.
The results obtained are reported in Table 3. Each given value for the randomly generated graphs is the
average over the 10 generated instances. We limited the running time to 2 hours. For any instance which
is not solved optimally within the time limit, the running time is set to this limit. We reported: (i) the
average CPU time expressed in seconds; (ii) the value of an optimal solution; and (iii) the number of
instances #opt solved optimally.

We note that for graph instances Gr n, for n ∈ {5, 14, 30, 57}, the optimal value of the GPES problem
is the same as the PES one but the running time is much longer due to the running time of Algorithm 3,
which needs to consider many subset combinations in order to apply R2′. Furthermore, the GPES
problem cannot be solved for n = 118, as shown by the absence of statistics in the table. However,
the bilevel algorithm for the GPES problem returned better optimal values for Gr 7 and all the random
generated graphs with, in general, a better running time. This can be explained by the fact that although
the algorithm to solve the observability problem is slower in the case of the GPES problem, we notice
that the value of the optimal solution is smaller than for the PES problem. Therefore the algorithm will
converge “faster” to an optimal solution.

As a result, the model for the GPES problem can be used for small and medium size instances.

4 Conclusion

In this paper, we study a variant of the Phasor Measurement Unit placement problem on an undi-
rected graph representing an electrical network. The PMU placement problem, also known as the Power
Dominating Set problem, consists of finding the minimum number of PMUs to place on the nodes such
that the graph is fully observed, i.e., the network state is known. In the variant we consider, called
the Power Edge Set problem, the PMUs are placed on edges instead of nodes. We propose extended
propagation rules based on Ohm’s and Kirchoff’s laws and two alternative mathematical programming
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n m GPES PES Bilevel
Time #Opt. #Opt. Time #Opt. #Opt.

(s) val. (mof) (s) val. (mof)
Gr n 5 6 1.90 1 1 1.87 1 1

7 8 1.74 1 1 1.90 2 1
14 20 1.70 2 1 1.95 2 1
30 41 2.35 5 1 2.00 5 1
57 80 93.38 5 1 6.90 5 1
118 176 7200.00 - - 283.00 18 1

Rnd 5 7 1.61 1.02 10 1.90 1.30 10
10 14 1.63 2.00 10 1.80 2.20 10
15 21 1.74 2.19 10 1.80 2.70 10
20 28 1.88 2.32 10 2.00 3.30 10
25 35 2.10 2.65 10 2.10 4.40 10
30 42 2.92 3.21 10 3.10 5.80 10
35 49 7.47 3.50 10 7.30 5.80 10
40 56 11.90 4.10 10 10.80 7.00 10
45 62 18.56 3.42 10 60.30 7.20 10
50 70 26.94 4.13 10 244.00 8.70 9

Table 3: Computational results for the GPES problem.

formulations based on these rules, namely the iteration-indexed formulation and the bilevel formulation.

The former is a binary linear programming problem which can be solved through any standard (Mixed)
Integer Linear Programming (MILP) solver. The latter can be derived from the former by means of a
fixed-point argument. In order to solve it, we propose two approaches. First, we show that it can be
reformulated as an MILP problem that can also be solved via a standard solver. The second approach is
a cutting plane algorithm which natively solves the bilevel formulation. These two formulations and the
solution algorithm were implemented and tested on six IEEE bus systems and 100 randomly generated
instances. The cutting plane algorithm turns out to be the only method capable of solving large instances.

We then discuss how to adapt our models to tackle robust variants of the PES problem to protect
against contingencies. In the second part of the paper, we presented the Generalized Power Edge Set
problem, i.e., a generalization of the PES problem in which the propagation rules apply to a subset
of nodes instead of just one node. The bilevel formulation is adapted to this case and a polynomial-
time algorithm for solving the GPES problem is proposed. This bilevel algorithm is tested on the same
instances as the ones for the PES problem. The results showed that this general model can only be used
for small and medium size instances.

A future direction for further work is to generalize our formulations and methods to the case of PMUs
with more than one limited channel. Also, due to maintenance or repairs the electrical network topology
is not fixed. Hence, another interesting perspective is to study the PES problem under these conditions
by proposing a robust model and a solution method to solve it. For very large scale instances, we believe
we shall have to resort to a heuristic or approximate solution approach.
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