A Theorem on Prime Numbers

Leo Liberti

Centre for Process Systems Engineering Imperial College of Science, Technology and Medicine

(1.liberti@ic.ac.uk)

2 August 2002

Abstract

The theorem presented in this paper allows the creation of large prime numbers (of order $o(n^2)$ given a table of all primes up to n.

Notation: in what follows, products taken over empty index sets are to be considered equal to 1.

Theorem

Let p(i) be the i-th prime number and let I_1, I_2 be a partition of $\{1, \ldots, n\}$ such that

$$q_{1} = \prod_{i \in I_{1}} p(i) - \prod_{i \in I_{2}} p(i) \leq (p(n))^{2},$$

$$q_{2} = \prod_{i \in I_{1}} p(i) + \prod_{i \in I_{2}} p(i) \leq (p(n))^{2}.$$

$$(2)$$

$$q_2 = \prod_{i \in I_1} p(i) + \prod_{i \in I_2} p(i) \le (p(n))^2.$$
 (2)

Then q_1, q_2 are prime numbers.

Proof. Suppose there is a non-unit prime $b \in \mathbb{Z}$ such that $b \leq \sqrt{q_1}$ and $b|q_1$. Then because $\sqrt{q_1} \leq p(n)$ we have $b \leq p(n)$; thus there is a $j \leq n$ such that b = p(j). Assume without loss of generality $j \in I_1$ (a symmetric argument holds if we assume $j \in I_2$). Then $b|q_1$ and $b|\prod_{i \in I_1} p(i)$ imply $b|\prod_{i \in I_2} p(i)$, i.e. $j \in I_1 \cap I_2$, which is empty, so such a b cannot exist. Hence q_1 is prime. Similarly for q_2 .

This theorem allows us, given a table of prime numbers up to an integer n, to create prime numbers of order $o(n^2)$.