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Abstract Discretizable distance geometry problems consist in a subclass of
distance geometry problems where the search space can be discretized and
reduced to a tree. Such problems can be tackled by applying a branch-and-
prune algorithm, which is able to perform an exhaustive enumeration of the
solution set. In this work, we exploit the concept of symmetry in the search
tree for isolating subtrees that are explored only one time for improving the
algorithm performances. The proposed strategy is based on the idea of dividing
an original instance of the problem into sub-instances that can thereafter be
solved (almost) independently. We present some computational experiments
on a set of artificially generated instances, with exact distances, to validate
the theoretical results.
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2 Fidalgo, Gonçalves, Lavor, Liberti, Mucherino

1 Introduction

Given an integer K > 0 and a simple undirected graph G = (V,E) whose edges
are weighted by a function d : E −→ R++, the Distance Geometry Problem
(DGP) asks whether there exists a map x : V −→ RK such that

‖x(u)− x(v)‖ = d({u, v}), ∀{u, v} ∈ E,

where ‖.‖ denotes the Euclidean norm.

The edge set E indicates the available distances between pairs of objects,
represented by vertices of V , whose values are given by the function d. Here-
after we will use the short notation: xv = x(v) and duv = d({u, v}). A solution
x to the above problem is called a realization. For several interesting applica-
tions of DGP we point the reader to [16]. We remark that in this paper we
consider the input distances duv exact (noiseless).

The DGP can be formulated as a global optimization problem [9], where
the search space is continuous. However, under particular assumptions, this
search space can be discretized so that it assumes the structure of a tree [5].
The discretization assumptions are strongly based on the existence of a vertex
order for V which ensures that the first K vertices form a clique and, for every
vertex with rank1 greater than K (in the vertex order), there are at least K
adjacent predecessors. In this case, we can find a finite set of possible positions
for each vertex which are represented by nodes belonging to a common layer
of the search tree [4]. A branch-and-prune (BP) algorithm has been developed
for exploring this search tree with the aim of enumerating the entire solution
set [7].

In recent years, thanks to the presence of symmetries in this search tree,
some important theoretical results were discovered. For example, the number
of solutions is almost always a power of two [10]. Additionally, it is possible
to construct the entire solution set from a known solution by applying partial
reflections corresponding to the symmetries [14].

In this work, we exploit such symmetries for developing a new strategy
that, if integrated in the BP algorithm, allows us to speed up the search while
keeping the quality of the obtained solutions. The basic idea is to split DGP
instances in sub-instances that can be solved (almost) independently.

This paper is organized as follows. Section 2 focuses on different facets of
the discretizable DGP: the assumptions that allow the discretization to take
place, the definition of the search tree, the tree symmetries and the BP algo-
rithm. Section 3 contains the theory behind the proposed splitting strategy.
Some computational experiments are presented in Section 4. Section 5 con-
cludes the paper with some directions for future works.

1 The term vertex rank refers to the position (index) of a vertex in a given order.
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2 The discretization and the importance of symmetries

A 3-dimensional instance of the DGP (DGP3) can be discretized if there exists
an order (≤) relation between vertices of V satisfying certain assumptions. Let
us assume that such an order is total so that each vertex has a unique rank.
In order to simplify the notation, we use v > K to mean that the rank of v is
greater than K and v − u to mean the difference in the ranks of v and u.

Given a DGP3 instance, if there exists a vertex order such that

1. for every pair of vertices u, v ∈ V with 1 ≤ v − u ≤ 3,

{u, v} ∈ E (discretization),

2. strict triangular inequalities

dv−2,v < dv−2,v−1 + dv−1,v

hold for all v ≥ 3 (non-collinearity),

then the instance can be discretized [4].
We refer to a vertex order satisfying these assumptions as discretization

order and the class of DGP3 instances that admit a discretization order as the
Discretizable Molecular Distance Geometry Problem (DMDGP). This class
of problems was, in fact, initially inspired by calculations of 3D protein back-
bones. However, the DMDGP is actually a general problem that can have other
applications [16], not only in structural biology (for this particular application,
the reader can make reference to [2]). Although we restrict our discussion to
the case K = 3, all presented theoretical results can be trivially extended to
any dimension K > 0.

The discretization assumption ensures that the first 3 vertices in the order
induce a 3-clique. Moreover, for every v ∈ V , v > 3, there exist 3 immediate
adjacent predecessors of v. This means that all distances between the vertices
v, v − 1, v − 2, v − 3 are available. Therefore, a set of feasible positions (w.r.t.
the considered distances) for the vertex v can be obtained by intersecting 3
spheres centered in the reference vertices, and having as radii dv−3,v, dv−2,v
and dv−1,v. If this intersection is non-empty, then it consists of 2 points only,
with probability 1 [4]; the role of the non-collinearity assumption is to prevent
the intersections from containing infinitely many points. Notice that the set of
triplets (dv−2,v, dv−2,v−1, dv−1,v) for which the triangular inequality is satisfied
as equality has zero Lebesgue measure in the set of all such triplets. We also
remark that the strict triangular inequalities can be verified in advance (before
exploring the search tree) for a given discretization order.

2.1 The search tree

Given a vertex v and the positions for its 3 immediate preceding vertices
v − 3, v − 2 and v − 1, the two DMDGP assumptions ensure that the sphere
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intersection provides 2 possible positions for v: x′v and x′′v . By recursively
iterating this procedure for all vertices of G, in the vertex order associated to
G, then a finite search space can be defined. This search space has the structure
of a tree, where the entire set of possible positions for a certain vertex v is
organized in a common layer. Finding the solution set for a DMDGP instance
can be seen as the process of pruning the search tree from all the branches
that do not correspond to feasible solutions w.r.t. the distance constraints.

Let us divide the edge set E into two subsets: Ed, containing all the edges
which are related to the distances required by the discretization assumption,
and Ep = E r Ed, which contains edges whose related distances can be used
for verifying the feasibility of computed vertex positions (we say that distances
related to Ep correspond to pruning edges, see Section 2.3). If Ep is empty, the
feasibility of the vertex positions cannot be verified and none of them can be
pruned. So, in this case, the solution set (modulo rotations and translations)
coincides with the search tree and, in total, 2n−3 paths can be identified from
the root of the tree until the leaf nodes at level n, all of them leading to a
feasible solution to the problem.

When Ep is not empty, instead, there are pruning edges that can be used
for checking the feasibility of computed vertex positions. In the event a pruning
edge is not compatible with one or more computed positions for the current
vertex, then it prunes the corresponding branch(es). Naturally, the more edges
in Ep, the more the branches can potentially be pruned from the search tree.

2.2 Symmetries of the search tree

Since the very first papers on the DMDGP (see, for example, [5]), it was em-
pirically noticed that the number of solutions of DMDGP instances is always
an even number. The reason for this was soon attributed to the fact that, on
the layer 4 of the search tree, it is not possible to prune because the number
of reference vertices is 3, and they are all necessary for the discretization. This
symmetry is implied by the absence of pruning edge at layer 4, together with
the fact that a pruning edge crossing the layer 4 may only be incident to the
reference vertices, whose coordinates are common for the two branches rooted
at x′4 and x′′4 , respectively. As a consequence, for every solution on the branch
rooted at x′4 there exists a symmetric one on the branch rooted at x′′4 .

Since the first computational experiments on the DMDGP, it was noticed
as well that the total number of solutions is not only even, but also a power
of 2. This remained unexplained for a while, until it was formally shown that
DMDGP search trees do not only contain one symmetry (at layer 4, around
the plane defined by the first 3 vertex positions), but also several others [10].
Moreover, every symmetry implies the duplication of the number of solutions:
every feasible DMDGP instance has, at least, 2 solutions (because the first or
trivial symmetry is present at layer 4) and this number doubles for every other
non-trivial symmetry that we can identify.
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Fig. 1 Situation 1: the pruning edge
incident to v shows that x′

v is not
feasible.

Fig. 2 Situation 2: x′′
v is here infea-

sible, while x′
v is supposed to be fea-

sible.

As for the trivial symmetry, the other symmetries appear in the absence
of pruning edges. Let us consider the situation depicted in Fig. 1. We suppose
that a pruning edge is available for verifying the two possible positions for
the current vertex v. The dashed line indicates that the computed position
x′v is not feasible w.r.t. the available pruning edge, while the other position
is feasible. In Fig. 2, we have a similar situation, where x′v is feasible and x′′v
is not. It is important to remark that we may also have the situation where
both x′v and x′′v are infeasible. In this case, if our instance is feasible, the
infeasibility of both positions comes from the fact that an infeasible position
for a previous vertex (on the same branch) was chosen, because no pruning
edge was available for its feasibility check (on the previous layers).

In order to explain this concept in more detail, let us consider two other
situations shown in Fig. 3 and 4. In both cases, there are no pruning edges that
are incident to v and, consequently, it is not possible to verify the feasibility of
the vertex positions x′v and x′′v , which have been computed by simply exploiting
the reference vertices. But, they differ in one detail.

In Fig. 3, we suppose that there are no pruning edges that cross over the
current vertex v: more formally, we suppose that there is no edge {u,w} ∈ Ep

such that u + 3 < v and v ≤ w. Here, we are in the same situation as for
the trivial symmetry, and in fact the two computed positions x′v and x′′v are
both feasible at the current layer, and they give rise to two new subtrees in
the search tree, which are symmetric [14].

The situation described in Fig. 4 is different, because it is supposed that
there exists a pruning edge crossing over the current vertex v. Therefore, even
if both vertex positions x′v and x′′v are considered as “feasible” at the current
layer, and a new branch starting from each of them is initialized, they cannot
be both part of a solution to the problem. When the crossing pruning edge will
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Fig. 3 Situation 3: no pruning edge is
incident to v, and no pruning edge crosses
v.

Fig. 4 Situation 4: no pruning edge is
incident to v, but at least one pruning
edge crosses v.

be used for pruning during the search, then we will be able to verify which
vertex position is actually correct. We remark that they may even be both
infeasible.

This very last situation shown in Fig. 4 is the one that requires more com-
putational resources. The pruning phase of the BP algorithm is not effective
at the current layer, but only in subsequent layers. Meanwhile, there may be
no other pruning edges that can be exploited for reducing the tree width. In
this subtree, therefore, we can experience a combinatorial explosion that can
potentially worsen the performances of a tree search. In the strategy that we
will propose in Section 3, this subtree is explored separately only one time
(rather than as many times as the number of nodes at the layer where this
subtree is rooted).

The symmetries in the search tree can be identified by verifying for every
vertex of the DMDGP graph whether there are pruning edges that cross or
pass over the associated layer [13,14,17]. This way, a subset of the vertex set
V can be defined, as follows:

SG = {v ∈ V :6 ∃{u,w} ∈ E such that u + 3 < v ≤ w},

where all the symmetric layers of the tree are included [14]. We say that
SG is the symmetry set of G; it is trivial if it only contains the rank 4
(as mentioned in Section 2, we will refer to the rank of the related ver-
tex). Notice that different instances may have the same SG. Fig. 5 shows
the search tree related to a DMDGP instance whose symmetry set is SG =
{4, 11, 16} and Ep = {{1, 6}, {1, 10}, {2, 7}, {3, 10}, {8, 14}, {10, 14}, {11, 15},
{13, 19}, {14, 20}, {15, 20}}.
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All the situations described above can be found in this search tree. Let us
suppose to explore the search tree in a depth-first manner and from left to
right. Since the instance has two non-trivial symmetries, no pruning occurs at
layers 11 and 16: all generated positions for vertices 11 and 16 are feasible. At
layer 12, for example, there are no pruning edges for verifying the feasibility
of the computed vertex positions as well, but 12 6∈ SG. So, it is necessary to
accept the two generated positions at layer 12 for every triplet of positions
for the immediate preceding vertices, but they may be not part of a feasible
solution. In Fig. 5, we represent the positions that are firstly accepted and
subsequently pruned with light-red dashed circles. At layer 14, because of the
pruning edge incident to the current vertex, it can be immediately exploited
for verifying the feasibility of the computed positions.

2.3 The BP algorithm

The BP algorithm computes the two possible positions for the current vertex
v as the intersection of 3 spheres in R3 by exploiting the reference vertices
that are guaranteed by the discretization assumption. Each position is tested
in turn for feasibility, and the algorithm invokes itself, in order to work on
the next vertex of the pre-defined vertex order, only in correspondence with
the computed positions that result to be feasible. The feasibility check is per-
formed by using the so-called pruning devices. The easiest pruning device to
implement, but yet very efficient when there is no uncertainty or errors af-
fecting the data, is the Direct Distance Feasibility (DDF) check, where the
pruning edges are verified for the computed vertex positions. Various pruning
devices can be developed and added to BP [19].

Alg. 1 is a sketch of the BP algorithm, where v ∈ V is the current vertex
for which we are looking for a position, n = |V | and d represents the weights
associated to the edges. It can run to termination to find all possible realiza-
tions of G, or stopped after the first leaf node when level n is reached, in order
to find only one realization of G (which is called BP-one).

To the best of our knowledge, the BP algorithm is currently the only
method for the DMDGP that is able to find all incongruent solutions. When
compared to continuous search algorithms (e.g. [12]), the performance of the
BP algorithm on instances without any uncertainty or errors on the distances
is in general impressive from the point of view of both efficiency and reliability
[4,18].

3 Subtree splitting strategy based on symmetries

Our interest in this work is to define an efficient strategy for splitting up
DMDGP instances with the aim of identifying subtrees that can be explored
one (and only one) time, and that have as few as possible pruning edges which
are shared with other subtrees. In previous works [3,20,18], the idea of divid-
ing the vertex set of a DMDGP instance was already investigated, and some
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Fig. 5 The search tree related to a DMDGP instance for which SG = {4, 11, 16}.

implementations in parallel computing environments provided some interest-
ing results. The BP algorithm, integrated with our strategy, is rather suitable
for sequential executions (see our computational experiments in Section 4).

Let G = (V,E, d) be the graph representing a DMDGP instance. Because
of DMDGP assumptions are satisfied, there exists a vertex order r on V for
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Algorithm 1 The BP algorithm
1: BP(v, n, d)
2: compute x′

v ;
3: if (x′

v is feasible) then
4: if (v = n) then
5: let nsols = nsols + 1;
6: else
7: BP(v + 1, n, d);
8: end if
9: end if

10: compute x′′
v ;

11: if (x′′
v is feasible) then

12: if (v = n) then
13: let nsols = nsols + 1;
14: else
15: BP(v + 1, n, d);
16: end if
17: end if

which the discretization and the non-collinearity assumptions both hold. Let
us denote with Vi a subset of vertices of V that are consecutive in the order
r. Let G[Vi] be the subgraph of G induced by Vi.

It is immediate to verify that, if we define a set {V1, . . . , Vk} of subsets
Vi of the vertex set V , then every G[Vi] also represents a DMDGP instance,
because the necessary assumptions still hold. However, the union

⋃

`≤k

G[V`]

may not correspond to the initial graph G. In fact, the pruning edges in Ep

for which the two adjacent vertices happen to belong to two different subsets
of V cannot be included in any induced subgraph. For this reason, once all the
local solutions to all the sub-instances related to the induced subgraphs G[Vi]
have been obtained, it is necessary to consider all these extra pruning edges
when concatenating the local solutions.

Our idea is to split the vertex set of G by exploiting the information about
its symmetries, in a way to have no extra pruning edge to consider when con-
catenating local solutions. When we split by taking into consideration the tree
symmetries, then no pruning edges can cross over the obtained vertex sub-
sets, because this would go against the definition of symmetry (see Section 2).
When this is not possible, we can leave out a few pruning edges that allow
for generating some fictive symmetries in the search tree. Those pruning edges
need to be considered thereafter when local solutions are concatenated.

We point out that there exist real applications where the removal of a few
pruning edges could give rise to the generation of new symmetries in the tree.
One important example is given by protein instances [11]. Proteins are chains
of smaller molecules called amino acids (implying the existence of several short-
range distances to be used for the discretization) which may be very compact
(so that experimental techniques are able to estimate distances between atoms
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that are far in the chain, to be used as pruning edges). Therefore, short-range
distances may be used for generating our subtrees, which would give us an idea
of the local geometry of the object, while pruning edges could be exploited for
finding the global fold.

In the next section, we will go over the theory of the proposed strategy for
splitting DMDGP instances.

3.1 Splitting instances by symmetry

In the following, all statements such as “∀p ∈ P, F (p) holds with probability 1”,
for some uncountable set P and valid sentence F , actually mean that there is
a Lebesgue-measurable Q ⊆ P with Lebesgue measure 1 w.r.t. P such that
∀p ∈ Q,F (p) holds. In Section 2, we have already wrote one of such statements
when we stated that the intersection of 3 spheres in the Euclidean space R3,
if not empty, gives 2 points, with probability 1.

We begin our discussion with some basic definitions. Recall G = (V,E, d)
represents the DMDGP instance and G[Vi] denotes the subgraph induced by
Vi ⊂ V .

Definition 1 A covering of V is a set C = {V1, . . . , Vk} such that

(i) Vi ⊂ V is non-empty, for all i ≤ k and
(ii) V = V1 ∪ V2 ∪ . . . ∪ Vk .

The value k (the cardinality of C) can be either fixed, or variable. In the
former case, a strong constraint is associated to the covering, so that methods
looking for optimal coverings (for some given criteria) need to deal with a
strongly constrained search domain. In the latter case, instead, when k is free
to take any possible value, the optimization of the given criteria actually leads
to the definition of the optimal k [1].

In this study, we restrict our attention to coverings where each Vi consists
in consecutive vertices according to a given vertex order.

Once a covering C for the vertex set V is found, it can be used for defining
a covering also for the graph G.

Definition 2 A graph covering of G is the graph CG obtained as the union

G[V1] ∪G[V2] ∪ · · · ∪G[Vk],

where {V1, . . . , Vk} is a covering C of the vertex set V . We say that x : V −→ R3

is locally feasible for CG if the image x(Vi), for every i ≤ k, is a realization for
the induced subgraph G[Vi].

By definition, the subgraph of G induced by a set Vi ⊂ V inherits all the
edges {u, v} of G such that u, v ∈ Vi. For this reason, if a particular edge
{u, v} ∈ E is such that u is assigned to a certain Vi, while v is assigned to
another Vj , with i 6= j, then no subgraph in CG can contain the edge {u, v}.
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Lemma 1 If x : V −→ R3 is locally feasible for CG and

E =

k⋃

i=1

Ei,

where Ei is the edge set of G[Vi], then x is also a realization of G.

Proof If x is locally feasible, then it represents one realization for every sub-
graph G[Vi]. Since there are no pruning edges crossing over two different sub-
graphs, the concatenation of all these local realizations, one per each subgraph
G[Vi], defines a realization for the original G. ut

Our interest is in defining a strategy for dividing a DMDGP instance into
sub-instances that can be efficiently managed. The main issue to overcome
consists in minimizing the number of edges that are not included in the graph
covering CG.

A practical consequence of Lemma 1 is that, when all edges of the original
graph G are included in the induced subgraphs, the concatenation of local
solutions can be performed without verifying any additional pruning edge. In
fact, when this is not the case, some of the solutions obtained by concatenation
may actually not be a realization for G. So, we search for coverings of V that
induce a graph covering CG of the original graph G that minimizes the number
of crossing pruning edges.

Let D = (djk) be the distance matrix associated to the DMDGP instance
represented by G. We suppose that all available distances are nonzero and
that djk = 0 indicates that this distance is not available. Recall that SG is the
symmetry set of G.

Proposition 1 If SG is non-trivial, then i ∈ SG, with i 6= 4, if and only if
djk = 0, for each pair of vertices j = 1, . . . , i− 4 and k = i, . . . , n.

Proof By definition, i ∈ SG implies that there are no pruning edges djk such
that j + 3 < i ≤ k. We point out that the case 4 ∈ SG is a trivial case. ut

As immediate consequence of Proposition 1, the distance matrix can be
divided in blocks comprising smaller distance matrices (indicated by dashed
rectangles) and null matrices (indicated by a straight rectangles), such as the
ones in Fig. 6. Such a matrix visualization shows the distribution of the dis-
tances. It naturally suggests the existence of DMDGP sub-instances that can
be solved in an independent manner, because its vertices do not share any ad-
ditional pruning edge with any other sub-instance. Moreover, if a few pruning
edges appear in the upper diagonals, they can be ignored when defining the
covering and used thereafter when concatenating local solutions.

Here, we define a set which will be the generator of the graph covering CG.

Definition 3 Given the symmetry set SG of a DMDGP instance, with n
vertices, the symmetry covering genesis set is

G(SG) = {(i−3, j−1) ∈ N2 : i ∈ SG∪{n+1}, j = min(h ∈ SG∪{n+1} : h > i)}.
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0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 d1,2 d1,3 d1,4 0 d1,6 0 0 0 d1,10 0 0 0 0 0 0 0 0 0 0
0 d2,3 d2,4 d2,5 0 d2,7 0 0 0 0 0 0 0 0 0 0 0 0 0

0 d3,4 d3,5 d3,6 0 0 0 d3,10 0 0 0 0 0 0 0 0 0 0
0 d4,5 d4,6 d4,7 0 0 0 0 0 0 0 0 0 0 0 0 0

0 d5,6 d5,7 d5,8 0 0 0 0 0 0 0 0 0 0 0 0
0 d6,7 d6,8 d6,9 0 0 0 0 0 0 0 0 0 0 0

0 d7,8 d7,9 d7,10 0 0 0 0 0 0 0 0 0 0
0 d8,9 d8,10 d8,11 0 0 d8,14 0 0 0 0 0 0

0 d9,10 d9,11 d9,12 0 0 0 0 0 0 0 0
0 d10,11 d10,12 d10,13 d10,14 0 0 0 0 0 0

0 d11,12 d11,13 d11,14 d11,15 0 0 0 0 0
0 d12,13 d12,14 d12,15 0 0 0 0 0

0 d13,14 d13,15 d13,16 0 0 d13,19 0
0 d14,15 d14,16 d14,17 0 0 d14,20

0 d15,16 d15,17 d15,18 0 d15,20

0 d16,17 d16,18 d16,19 0
0 d17,18 d17,19 d17,20

0 d18,19 d18,20

0 d19,20

0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

Fig. 6 An example of a distance matrix for a DMDGP instance. Off-diagonal “zeroes”
indicate missing distances.

Algorithm 2 Symmetry covering genesis set generator
1: Generate Symmetry Genesis Set (SG, n)
2: let S be an ordered set containing the ranks of SG (in increasing order);
3: if (n ∈ SG) then
4: let S = S r {n};
5: end if
6: while (S contains consecutive ranks) do
7: let {a1, . . . , ah} be an ordered subset of consecutive ranks;
8: let S = S r {a1, . . . , ah};
9: let u be the rank preceding a1 in S;

10: let v be the rank following ah in S;
11: compute w = u + (v − u)/2;
12: let j be the index of the rank in {a1, . . . , ah} closer to w;
13: let S = S ∪ {aj};
14: end while
15: let G = ∅;
16: for (each i ∈ S, in increasing order) do
17: if (i is not the last rank in the order) then
18: let j be the next rank in the order;
19: let G = G ∪ {(i− 3, j − 1)};
20: else
21: let G = G ∪ {(i− 3, n)};
22: end if
23: end for
24: return G;

Notice that the set G(SG) depends on the symmetry set of G and not directly
on G itself: graphs with the same number of vertices and having the same
symmetry set share the same symmetry covering genesis set.

We employ the algorithm sketched in Alg. 2 for generating the set G(SG)
from a given symmetry set SG. The algorithm also requires the cardinality of
V as an input, and it uses its value at the very beginning, in order to avoid
the situation where a sub-instance containing only the last ranked vertex can
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be created in the case it is a symmetry vertex. In the algorithm, the set of
symmetry ranks is named S. At the beginning, the algorithm verifies whether
there are consecutive ranks in S (also in this case, this is done to avoid to
create sub-instances which contain only one vertex). To do so, the algorithm
searches for subsets of consecutive ranks in S and replaces all of them with
the rank in the subset that is, as much as possible, placed in a central position
between its predecessor and its successor. Notice that, when symmetric vertices
are removed from S, more than one symmetry can appear in the same sub-
instance, implying an increase on the total number of local solutions (it may
not be anymore a pair of symmetric solutions).

This procedure may not be optimal when several consecutive ranks be-
long to SG, but this situation is unlikely to be verified by DMDGP instances
concerning real-life applications. Finally, the obtained set S is used for con-
structing the symmetry genesis set. For every rank in S, the pair (i−3, j−1) is
included in G(SG). Recalling to the example, originally SG = {4, 11, 16}. There
is no consecutive ranks and the last vertex is not included also. Thus, the sym-
metry covering genesis set is given by G(SG) = {(1, 10), (8, 15), (13, 20)}. As
we see, it guarantees that all the vertices are covered and that the cardinality
of the intersections between pairs of consecutive elements of G(SG) are exactly
equal to 3.

Definition 4 The graph covering CS of G such that

(i) |CS | = |G(SG)| and
(ii) every Gi ∈ CS is G[{ai, ai + 1, . . . , bi − 1, bi}], where (ai, bi) ∈ G(SG),

is named symmetry covering of G.

Fig. 7 shows a schematic representation of a symmetry covering CS . It
represents the graph covering for the same graph G of the example depicted in
Fig. 5. The vertex sets of the induced sub-graphs are marked by the triangles.
Notice that in Fig. 7, we represented only the branches and nodes that were
effectively explored when applying BP-one to each sub-instance. Only the
first solution to each sub-instance is necessary, because other solutions may be
obtained by exploiting symmetries and partial reflections as will be explained
ahead.

By considering all the remarks above, we can immediately prove the fol-
lowing:

Proposition 2 Any map x : V → R3 that is locally feasible for CS is a
realization of G.

Proof Let Ei the edge set of the subgraph Gi ∈ CS . Since the vertex set Vi

of Gi is, by definition, {ai, ai + 1, . . . , bi − 1, bi}, where (ai, bi) ∈ G(SG), then
there are no edges connecting vertices in Vi and no vertices in V r Vi. As a
consequence,

k⋃

i=1

Ei = E,

where E is the edge set of the original graph G. By Lemma 1, under this
hypothesis, if x is locally feasible for CS , then it is a realization of G. ut
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Fig. 7 A schematic representation of symmetry covering. The white nodes represent the
symmetry vertices. BP-one is applied to each sub-instance whose effectively explored trees
are enclosed by the black triangles.

4 Computational experiments

In this section, we will report some preliminary experiments aimed at validat-
ing our discussion in Section 3. All experiments were performed on a Macbook
Pro, Intel Core i7 2.4Ghz, 8Gb RAM, running a Mac OS X 10.10.5 operating
system.

We consider instances that have been generated by the procedure below.
First, n points in R3 are randomly generated and all pairwise distances are
computed. Then, only the distances required by the discretization assumptions
are kept, together with additional pruning edges, selected in a way to guarantee
a specific number of symmetry vertices ns. A few more pruning distances are
added to the DMDGP instance, which are likely to remove some (or even all)
the symmetries. Fig 8 gives a schematic representation of the distribution of
the distances in the distance matrix of an instance generated with n = 5000
vertices and ns = 10 initial symmetries (i.e. symmetries in the tree before the
inclusion of the last few pruning distances).
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Fig. 8 The schematic representation of the distance distribution in the distance matrix
related to one of the instances we consider in the experiments. Notice that after the removal
of the top-right(bottom-left) subset of distances, the instance presents 10 symmetry vertices.

Given an instance and its symmetry set SG, we construct the symmetry
covering genesis set G(SG) by applying Alg. 2. If its cardinality is 0, we look for
the pruning edges in G having the largest rank difference, leave them out for
the generation of the SG and reapply Alg. 2. Once splitting the instance in a
certain number of sub-instances, we run the BP-one algorithm (we stop Alg. 1
as soon as the first solution is found) for each of them. One potential solution to
the original DMDGP instance is subsequently obtained by concatenating the
local found solutions. Since all symmetry vertices are known, all other potential
solutions to the original problem may be generated by partial reflections of the
first one [14]. In case Alg. 2 replaced a set of consecutive symmetries with only
one symmetry, as well as in case some pruning edges were removed, multiple
solutions can be obtained. Thus, all potential solutions for the original instance
need to be verified.

Since the search space of a DMDGP instance has the structure of a binary
tree, each solution corresponds to a path from the root to a leaf node. Such
path can be encoded in a array of size n with 0 and 1 entries [18]. For each
sub-instance, the computed local solutions are stored in this binary array for-
mat. The concatenation is performed by simply “attaching” the binary vectors
representing local solutions in the order given by the symmetry covering. The
final set of coordinates for a realization can be constructed by invoking BP on
the path specified by the attached binary array. The mentioned partial reflec-
tions (used to construct other solutions from the first one) can be implemented
by a suitable flipping of parts of this binary array, according to the symmetry
vertices.

In our tables of experiments, we will refer to this overall procedure as sBP.
Tables 1 and 2 contain some experiments for randomly generated instances
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n = 1000 n = 2000
BP sBP BP sBP

ns |E| ttot ts tc ttot |E| ttot ts tc ttot
2 5212 0.08 0.01 0.01 0.04 11168 0.03 0.01 0.01 0.04
3 5342 0.15 0.01 0.03 0.07 11185 0.15 0.01 0.03 0.07
5 4903 0.04 0.01 0.03 0.09 10689 0.13 0.01 0.05 0.11
8 4708 8.02 0.01 9.72 9.81 10343 1.7 0.01 0.41 0.50
10 4610 8.21 0.01 1.85 1.96 10217 48.39 0.01 6.96 7.07

Table 1 Computational experiments on instances having size 1000 and 2000.

n = 5000 n = 10000
BP sBP BP sBP

ns |E| ttot ts tc ttot |E| ttot ts tc ttot
2 31637 1.73 0.04 0.15 0.27 65617 2.05 0.10 0.31 0.61
3 30905 0.38 0.06 0.08 0.32 64952 0.97 0.14 0.16 0.72
5 29072 3.26 0.02 0.72 0.84 63094 32.82 0.18 3.26 4.34
8 28714 95.02 0.02 9.63 9.81 59984 465.09 0.04 90.54 90.90
10 28048 163.05 0.02 144.25 144.47 59259 457.53 0.03 385.21 385.54

Table 2 Computational experiments on instances having size 5000 and 10000.

having size n ranging between 1000 and 10000. For every size and every number
of symmetries, we report the computational time ttot (in seconds) for the
standard BP (to find one solution) and sBP. For the sBP, we report three
different computational times: the classical CPU time for performing an entire
execution (ttot), but also the time for exploring the largest sub-instance (ts),
as well as the time for concatenating the local solutions (tc).

The two tables of experiments show that the BP calls on all sub-instances
are very fast (see time ts). This is due to the fact that, whenever some pruning
edges were ignored or not, the resulting subtree is symmetric and contains,
in general, only two symmetric solutions. As remarked above, however, the
number of solutions per sub-instance may increase when some symmetries of
the original tree are removed from the genesis set G (see Alg. 2): the number
of solutions doubles for every removed symmetry.

The time necessary for concatenating the obtained local solutions is instead
more expensive, especially when the original instance is split in a larger number
of sub-instances (see time tc). Even if we suppose that the number of solutions
per sub-instance is always 2, then the concatenation process needs to consider
all possible combinations of the local solutions, in the order implied by the
genesis set G. The easiest situation that can be verified is the one where no
pruning edge was left out during the generation of the sub-instances. In this
case, all possible combinations of the local solutions give rise to a realization of
the original instance. However, the situation where (even only a few) pruning
edges are left out is more realistic, and therefore these pruning edges need
to be verified for every possible realization obtained with the concatenations.
This justifies a larger computational time tc wrt the time ts.

Finally, we can see, when comparing the total times for BP and sBP, that
the new algorithm is able to outperform the standard BP for all instances. We
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remark, however, that this performance improvement becomes less and less
pronounced with the increase of the number of symmetries.

5 Final remarks

We proposed a new strategy for efficiently splitting a graph G representing
a DMDGP instance in a set of subgraphs that we define by exploiting the
symmetry properties of G. By doing so, we are able to define a covering of
G in subgraphs, whose edge sets are able to cover (almost) entirely the edge
set E of G. This property allows us to divide a given DMDGP instance in a
certain number of sub-instances that can be solved (almost) independently.

Future work directions include extending this strategy to instances satis-
fying weaker discretization assumptions, such as the ones introduced in [15].
In such weaker assumptions, the reference vertices (for a certain vertex v) are
supposed to precede v in the vertex order, but they are not supposed to be
the immediate preceding ones. Moreover, we will explore the possibility to run
our approach on parallel and distributed computers [21], for solving instances
containing interval distances [6].
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