
Diagonally dominant programming in distance
geometry

Gustavo Dias? and Leo Liberti??

CNRS LIX, École Polytechnique, 91128 Palaiseau, France
{dias,liberti}@lix.polytechnique.fr

Abstract. Distance geometry is a branch of geometry which puts the
concept of distance at its core. The fundamental problem of distance
geometry asks to find a realization of a finite, but partially specified,
metric space in a Euclidean space of given dimension. An associated
problem asks the same question in a Euclidean space of any dimension.
Both problems have many applications to science and engineering, and
many methods have been proposed to solve them. Unless some structure
is known about the structure of the instance, it is notoriously difficult to
solve these problems computationally, and most methods will either not
scale up to useful sizes, or will be unlikely to identify good solutions. We
propose a new heuristic algorithm based on a semidefinite programming
formulation, a diagonally-dominant inner approximation of Ahmadi and
Hall’s, a randomized-type rank reduction method of Barvinok’s, and a
call to a local nonlinear programming solver.

1 Introduction

The main problem studied in this paper is the

Distance Geometry Problem (DGP). Given an integer K ≥ 1 and
a simple, edge-weighted, undirected graph G = (V,E, d), where d : E →
R+, verify the existence of a realization function x : V → RK , i.e. a
function such that:

∀{i, j} ∈ E ‖xi − xj‖ = dij . (1)

A recent survey on the DGP with the Euclidean norm is given in [15]. The DGP
is NP-hard, by reduction from Partition using 2-norms [20]. Three well-known
applications are to clock synchronization (K = 1), sensor network localization
(K = 2), and protein conformation (K = 3). If distances are Euclidean, the
problem is called Euclidean DGP (EDGP) — but, given the preponderance of
Euclidean distances in the DGP literature w.r.t. other distances, if the norm is
not specified, it is safe to assume the 2-norm is used.

? Financially supported by a CNPq PhD thesis award.
?? Partly supported by the ANR “Bip:Bip” project under contract ANR-10-BINF-0003.

2 Gustavo Dias and Leo Liberti

A related problem, the Distance Matrix Completion Problem (DMCP),
asks whether a partially defined matrix can be completed to a distance matrix.
The difference is that while K is part of the input in the DGP, it is part of the
output in the DMCP, in that a realization to a Euclidean space of any dimension
satisfying (1) provides a certificate. When the completion is required to be to
a Euclidean distance matrix (EDM), i.e. where distances are given by 2-norms,
this problem is called Euclidean DMCP (EDMCP). It is remarkable that, albeit
the difference between EDGP and EDMCP is seemingly minor, it is not known
whether the EDMCP is in P or NP-hard (whereas the EDGP is known to be
NP-hard). The EDMCP is currently thought to be “between the two classes”.

In this paper we propose a new heuristic algorithm designed to be accurate
yet solve instances of sufficiently large sizes. Our motivation in proposing new
heuristics based on Mathematical Programming (MP) formulations is that they
can be easily adapted to uncertainty on the distances dij expressed as intervals,
i.e. they can also solve the problem

∀{i, j} ∈ E dLij ≤ ‖xi − xj‖ ≤ dUij . (2)

This is in contrast to some very fast combinatorial-type algorithms such as the
Branch-and-Prune (BP) [14, 13], which are natively limited to solving Eq. (1).
In fact, this paper is in support of a study which is auxiliary to the development
of the BP algorithm, namely to endow the BP with an ability to treat at least
some fraction of the distances being given as intervals, which appears to be the
case in practice for protein conformation problems from distances.

Our heuristic has three main ingredients: Diagonally Dominant Program-
ming (DDP), very recently proposed by Ahmadi et al. [18, 1]; a randomized
rank-reduction method of Barvinok’s [4]; and a call to a general-purpose local
Nonlinear Programming (NLP) solver.

DDP is a technique for obtaining a sequence of inner approximating Linear
Programs (LP) or Second-Order Cone Programs (SOCP) to semidefinite pro-
gramming (SDP) formulations. In this paper we only consider the LP variant,
since LP solution technology is more advanced than SDP or SOCP. DDP has
been proposed in very general terms; its adaptation to (dual) SDP formulations
for the DGP yields a valid LP relaxation for the DGP. In this paper, since we
are proposing a heuristic method, and need feasible solutions, we apply DDP to
a primal SDP formulation of the DGP.

Note that SDP solutions are square symmetric matrices of any rank, whereas
a feasible solution of the DGP must have the given rank K. Although there are
many rank reduction techniques, most of them do not have guaranteed proper-
ties, even in probability, of preserving the feasibility of the solution. In fact, in
the case of the DGP, it is exactly this rank constraint which makes the problem
hard, so we can hardly hope in an efficient rank reduction technique that works
infallibly. We found the next best thing to be a probabilistic rank reduction tech-
nique proposed by Barvinok: although it does not exactly preserve feasibility, it
gives a probabilistic guarantee that it will place the reduced rank solution fairly
close to all of the manifolds Xij of realizations x satisfying ‖xi − xj‖ = dij (for

Diagonally dominant programming in distance geometry 3

each {i, j} ∈ E). At this point, we attempt to achieve feasibility via a single call
to a local NLP solver.

Our computational results are preliminary and are simply designed as valida-
tion, as this is work-in-progress. We compare the heuristic sketched above to the
same, with DDP replaced by SDP. With this limited set-up, we found that the
DDP approach exhibits its large-scale potential as the instance sizes increase.

The rest of this paper is organized as follows. We give some technical no-
tation and background in Sect. 1.1. We propose some existing and new SDP
formulations of the DGP and EDMCP in Sect. 2. We explain DDP and give
a new DDP formulation for the DGP and EDMCP in Sect. 3. We discuss our
new DGP heuristic in Sect. 4. We present our preliminary results in Sect. 5. We
sketch our roadmap ahead in Sect. 6.

1.1 Relevant background

The EDGP calls for a solution to the set of nonlinear equations

∀{i, j} ∈ E ‖xi − xj‖2 = dij , (3)

where xi ∈ RK for all i ≤ n = |V |. Usually, the squared version of Eq. (3) is em-
ployed, for two reasons: first, since the vast majority of algorithmic implementa-
tions employ floating point representations, there is a risk that

∑
k(xik−xjk)2 =

0 might be represented by a tiny negative floating point scalar, resulting in a
computational error when extracting the square root. Secondly, as pointed out
in [6], the squared EDM D2 = (d2ij) has rank at most K + 2, a fact which can
potentially be exploited. Obviously, solving the squared system yields exactly
the same set of solutions as the original system.

Most methods for solving Eq. (3) do not address the original system explicitly,
but rather a penalty function:∑

{i,j}∈E

(‖xi − xj‖22 − d2ij)2, (4)

which has global optimum x∗ with value zero if and only if x∗ satisfies Eq. (3).
This formulation is convenient since most local NLP solvers find it easier to im-
prove the cost of a feasible non-optimal solution, rather than achieving feasibility
from an infeasible point. This is relevant since such solvers are often employed
to solve EDGP instances. Eq. (4) can be easily adjusted to deal with imprecise
distances represented by intervals (see e.g. [17]).

There are several Semidefinite Programming (SDP) relaxations of the EDGP
[21, 2, 19], mostly based on linearizing the constraint

∀{i, j} ∈ E ‖xi‖22 + ‖xj‖22 − 2xi · xj = d2ij

into

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij (5)

4 Gustavo Dias and Leo Liberti

and then relaxing the rank constraint X = xx> to X � xx>, which, via the
Schur complement, can be written as the semidefinite constraint

Y =

(
IK x>

x X

)
� 0. (6)

Such formulations mostly come from the application to sensor networks, for
which K = 2. In his EE392O course 2003, Y. Ye proposes the objective function:

min tr(Y), (7)

motivated by a probabilistic interpretation of the solution of the SDP. Purely
based on (unpublished) empirical observations, we found what is possibly a bet-
ter objective function (at least for some protein conformation instances), dis-
cussed in Sect. 2 below.

Several methods aim to decompose large graphs into rigid components [9, 5,
11], since many rigid graphs can be realized efficiently [7, 16]. Each rigid subgraph
realization is then “stiched up” consistently by either global optimization [9] or
SDP [5, 11].

One notable limitation of SDP for practical purposes is that current tech-
nology still does not allow us to scale up to large-scale instance sizes. More or
less, folk-lore says that interior point methods (IPM) for SDP are supposed to
work well up to sizes of “around” 1000 variables, i.e. a matrix variable of around
33× 33, which is hardly “large-scale”. As remarked, a technique which can ad-
dress this limitation is the very recent DDP [18, 1]. Since all diagonally dominant
(DD) matrices are positive semidefinite (PSD), any DDP obtained from an SDP
by replacing the PSD constraint with a DD one is an inner approximation of the
original SDP. The interesting feature of DDP is that it can be reformulated to
an LP, which current technology can solve with up to millions of variables.

Once a solution X̄ of an SDP relaxation has been found, the problem of find-
ing another solution of the correct rank, which satisifies X = xx> is called rank
reduction. Possibly the most famous rank reduction algorithm is the Goemans-
Williamson algorithm for Max Cut [8]. Other ideas, connected with the con-
centration of measure phenomenon, have been proposed in [4] in order to find a
solution x which is reasonably close, on average and with high probability, from
the manifolds Xij described in Eq. (3).

Although being “reasonably close to a manifold” is certainly no guarantee
that a local NLP solver will move the reasonably close point to the manifold
itself, there is a good hope of this being the case.

2 SDP formulations for DG

We represent a realization x in matrix form by an n×K matrix where n = |V |,
and where each of the n rows is a vector xi ∈ RK which gives the position of
vertex i ∈ V . We discussed a well known SDP for the EDGP in Sect. 1.1, which

Diagonally dominant programming in distance geometry 5

we recall here without the objective function, for later reference.

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij

Y =

(
IK x>

x X

)
� 0.

 (8)

2.1 A better objective for protein conformation

The empirical evidence collected by Ye about Eq. (8) with min tr(Y) as objective
concerns the application of EDGP to the localization of sensor networks. Our own
(unpublished and preliminary) computations on protein conformation instances
with the above objective were not particularly encouraging. We found relatively
better results with a different objective function:

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2ij
Y =

(
IK x>

x X

)
� 0.

 (9)

Note that Eq. (9) can be trivially derived as the natural SDP relaxation of the
the nonconvex NLP:

min
∑

{i,j}∈E
‖xi − xj‖22

∀{i, j} ∈ E ‖xi − xj‖22 ≥ d2ij ,

}
(10)

which is an exact reformulation of Eq. (4) since, if Eq. (3) has a solution x∗,
at x∗ all of the inequality constraints of Eq. (10) are tight, and therefore the
objective cannot be further decreased. Conversely, if there was an x′ with lower
objective function value, at least one of the constraints would be violated.

For the EDMCP, where the rank is of no importance, we only require that
X should be the Gram matrix of a realization x (of any rank). Since the Gram
matrices are exactly the PSD matrices, Eq. (9) can be simplified to:

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2ij
X � 0.

 (11)

Note that objective functions for the EDGP are often (though not always [3])
a matter of preference and empirical experience on sets of instances, which makes
sense since the EDGP is a pure feasibility problem (other possible objectives
include adding slack variables which are then minimized). From here onwards,
therefore, we shall simply discuss pure feasibility formulations expressed with
equality constraints, each of which can be turned into an optimization problem
at need, with equality constraints possibly changed into inequalities, and/or by
additional slacks and surplus variables to be minimized.

6 Gustavo Dias and Leo Liberti

3 Diagonally dominant programming

One serious drawback of SDP is that current solving technology is limited to
instances of fairly low sizes. Ahmadi and Hall recently remarked [1] that diago-
nal dominance provides a useful tool for inner approximating the PSD cone. A
matrix (Yij) is DD if

∀i ≤ n Yii ≥
∑
j 6=i

|Yij |. (12)

It follows from Gershgorin’s theorem that all DD matrices are PSD (the converse
does not hold, hence the inner approximation). This means that

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij

Y =

(
IK x>

x X

)
is DD

 (13)

is a DDP formulation with a feasible region which is an inner approximation of
that of Eq. (8).

The crucial observation is that Eq. (12) is easy to linearize exactly, as follows:

∀i ≤ n
∑
j 6=i

Tij ≤ Yii

∀i, j ≤ n − Tij ≤ Yij ≤ Tij .

We exploit this idea to derive a new DDP formulation related to the EDGP,
which is in fact an LP for the EDGP.

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij(
IK x>

x X

)
= Y

∀i ≤ n+K
∑

j≤n+K
j 6=i

Tij ≤ Yii

−T ≤ Y ≤ T.

(14)

Note that, previous to Eq. (14), the only existing LP formulation for the
EDGP was the relaxation of Eq. (4) in which every monomial m(x) of the quartic
polynomial in the objective is linearized to a variable µ subject to linear convex
and concave relaxations of the nonconvex constraint µ = m(x). It is known [12]
that, for large enough variable bounds, this relaxation is much weaker than the
obvious lower bound 0. We hope that the new formulation Eq. (14) will improve
the situation.

3.1 DDP from the dual

Since Eq. (14) is an inner approximation of Eq. (8), there might conceivably
be cases where the feasible region of Eq. (14) is empty while the feasible region
of Eq. (8) is non-empty (quite independently of whether the original EDGP

Diagonally dominant programming in distance geometry 7

instance has a solution or not). For such cases, Ahmadi and Hall recall that the
dual of any SDP is another SDP (moreover, strong duality holds). So it suffices
to derive a DDP from the dual of the SDP relaxation Eq. (8) in order to obtain
a new, valid LP relaxation of the EDGP.

3.2 Iterative improvement of the DDP formulation

Ahmadi and Hall also provide an iterative method to improve the DDP inner
approximation for general SDPs, which we adapt here to Eq. (14). For any
symmetric n × n matrix U , we have U>U � 0 since any Gram matrix is PSD.
By the same reason, U>XU � 0 for any X � 0. This implies that

D(U) = {U>AU | A is DD} (15)

is a subset of the PSD cone. We can therefore replace the constraint “Y is DD”
by Y ∈ D(U) in Eq. (13). Note that this means the LP formulation is now
parametrized on U , which offers the opportunity to choose U so as to improve
the approximation. More precisely, we define a sequence of DDP formulations:

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij

Y =

(
IK x>

x X

)
∈ D(Uh),

 (16)

for each h ∈ N, with

U0 = I

Uh = factor(Ȳ h−1),

where factor(·) indicates a factor of the argument matrix (Ahmadi and Hall
suggest using Choleski factors for efficiency), and Ȳ h is the solution of Eq. (16)
for a given h.

The iterative method ensures that, for each h, the feasible region of Eq. (16)
contains the feasible region for h− 1. This is easily seen to be the case since, if

Uh is a factor of Ȳ h−1, we trivially have (Uh)
>
IUh = (Uh)

>
Uh = Ȳ h−1, and

since I is trivially DD, Ȳ h−1 ∈ D(Uh). Moreover, Ȳ h−1 is feasible in Eq. (16),
which proves the claim.

The transformation of the constraint Y ∈ D(U) into a set of linear constraints
is also straightforward. Y ∈ D(U) is equivalent to “Y = U>ZU and Z is DD”,
i.e.

∀i ≤ n+K
∑

j≤n+K
j 6=i

Tij ≤ Zii

−T ≤ Z ≤ T
U>ZU = Y,

as observed above.

8 Gustavo Dias and Leo Liberti

4 A new heuristic for the DGP

In this section we use some of the techniques discussed above in order to derive a
new heuristic algorithm which will hopefully be able to solve large-scale EDGP
instances.

1. Solve a DDP approximation to an SDP relaxation of the DGP (see previous
sections) to yield X̄. If rank(X̄) ≤ K, factor X̄ = x̄x̄> and return x̄.

2. We now have X̄ with rank(X̄) > K. We run Barvinok’s randomized rank
reduction algorithm [4]:
(a) sample y ∈ RnK from a multivariate normal standard distributionNnK(0, 1)
(b) let T = factor(X̄)
(c) let x′ = Ty.
Barvinok proves that there is concentration of measure for this type of
randomized rank reduction, so that, if κ is the least number such that
m = |E| ≤ nκ, there is n0 large enough such that, if n ≥ n0, we have:

Prob

(
∀{i, j} ∈ E dist(x′,Xij) ≤ c(κ)

√
‖X̄‖2 lnn

)
≥ p, (17)

where dist(x,Xij) is the Euclidean distance from x to the manifold Xij , ‖X‖2
is the largest eigenvalue of X̄, c(κ) is a constant depending only on κ, and p
is given in [4] as p = 0.9.

3. Call any local NLP solver with x′ as a starting point, and hope to return a
rank K solution x∗ ∈ RnK which is feasible in Eq. (3).

Note that we can actually solve an SDP relaxation of the DGP, in Step 1, rather
than a DDP approximation thereof. This variant of the heuristic will be used to
obtain a computational comparison in Sect. 5.

We remark that we are actually mis-using Barvinok’s rank reduction algo-
rithm, which was originally developed only for K = 1. Concentration of measure
phenomena, however, are based on average behaviour being what one would
expect; the most important part of the work is always to prove that large dis-
tortions from the mean are controllably improbable. We therefore believe we
are justified in our mis-appropriation, at the risk of the probability being some-
what lower than advertised; but since we have no good estimations for c, this
vagueness is not overly detrimental. Essentially, most concentration of measure
results are often used qualitatively in algorithmic design, as a statement that, for
large enough sizes, the expected behaviour is going to happen with ever higher
probability.

On the other hand, mis-using a theoretical result is not to be taken lightly,
even if justified by common sense. This is why we also obtained some additional
computational experiments (not reported here) with SDPs and DDPs derived
from writing realizations as vectors in RnK rather than n×K matrices, i.e. pre-
cisely the setting of Barvinok’s theorem. We found that these results yielded
similar outcomes to our heuristic, but in much slower times, due to the much
larger size O(nK × nK) of the involved matrices.

Diagonally dominant programming in distance geometry 9

5 Preliminary computational assessment

We implemented the proposed heuristic in Python 2.7 and tested it on a Darwin
Kernel 15.3 (MacOSX “El Capitan”) running on an Intel i7 dual-core (virtual
quad-core) CPU at 3.1GHz with 16GB RAM.

These are very preliminary experiments, and should be taken as a token of
validation of our ideas, not as sound empirical evidence that our idea is compu-
tationally the best for the task. As concerns the task, we aim at finding solutions
for Eq. (1). Although our stated motivation is to be able to solve Eq. (2), we
would like our heuristic to be able to handle both equalities and inequalities,
and, for this work, all we had time for was the former.

We tested two variants of our heuristic for comparison: the original one, with
Step 1 solving a DDP using the iterative method, and the variant where Step 1
solves an SDP.

Our heuristic is configured as follows.

1. We solved DDP formulations with CPLEX 12.6 [10] (default configuration),
which automatically exploits all the cores.

2. We implemented Barvinok’s rank approximation heuristic in Python, which
only runs on a single core.

3. After testing IPOpt as a local NLP solver, we switched to the implementation
of L-BFGS given in the Python module scipy.optimize (default configu-
ration), which seems to be faster than IPOpt on Eq. (4), an unconstrained
problem.

4. The DDP sequences in the iterative method count at most four DDP ap-
proximating LPs each — the iterative procedure is interrupted as soon as a
feasible SDP point is found by DDP.

For each instance and solution method we record the (scaled) largest distance
error (LDE) of the solution x, defined as

lde(x) = max
{i,j}∈E

(| ‖xi − xj‖2 − dij |/dij),

the (scaled) mean distance error (MDE)

mde(x) =
1

|E|
∑
{i,j}∈E

(| ‖xi − xj‖2 − dij |/dij),

and the CPU time. All CPU times have been computed in Python using the
time module. They indicate the CPU time used by the Python process as well
as its spawned sub-processes (including CPLEX and the local NLP solver) to
reach termination.

We tested some randomly generated instances as well as some protein in-
stances taken from the Protein Data Bank (PDB). In the latter, only edges
smaller than 5Å were kept, which is realistic w.r.t. Nuclear Magnetic Resonance
(NMR) experiments.

Our first test (see Table 1) aims at solving DGPs for K = 2 on three groups
of instances.

10 Gustavo Dias and Leo Liberti

– Small toy instances, infeasible for K = 2.
– A set of instances named euclid-n p, generated randomly as follows:

1. place n points in a square, uniformly at random;
2. generate the cycle 1, . . . , n to ensure biconnectedness;
3. for each other vertex pair i, j, decide whether {i, j} ∈ E with probability
p;

4. record the Euclidean distance dij between pairs of points in E;
obviously, all such instances are feasible.

– Two protein instances 1b03 and 1crn, obviously infeasible for K = 2.

The test emphasizes the fact that small SDPs can be solved faster than a se-
quence of up to four DDP approximations, but that the DDP formulations cope
better with increasing sizes, which is what we expected.

Instance LDE MDE CPU
Name |V | |E| SDP DDP SDP DDP SDP DDP

test1 4 6 0.06 0.06 0.03 0.03 0.14 0.09
test2 4 6 0.43 0.43 0.08 0.08 0.15 0.10
test3 4 6 0.05 0.05 0.02 0.02 0.12 0.11
random-8 0.5 8 19 0.78 0.99 0.16 0.10 0.51 0.40
cl3 10 23 2.97 2.97 0.52 0.52 0.25 0.24
dmdgp-3 10 10 24 0.90 0.56 0.13 0.14 0.25 0.28
dmdgp-3 20 20 54 0.92 0.92 0.14 0.14 1.97 1.31
testrandom 100 1008 0.93 0.97 0.20 0.20 64.76 84.55

euclid-10 0.5 10 26 0∗ 0.78 0∗ 0.13 0.4 0.4
euclid-20 0.5 20 111 0∗ 0∗ 0∗ 0∗ 1.32 3.02
euclid-30 0.5 30 240 0∗ 0∗ 0∗ 0∗ 3.19 4.11
euclid-40 0.5 40 429 0∗ 0∗ 0∗ 0∗ 6.5 9.0
euclid-50 0.2 50 290 0∗ 0∗ 0∗ 0∗ 6.66 10.69
euclid-50 0.3 50 412 0∗ 0∗ 0∗ 0∗ 9.08 13.41
euclid-50 0.4 50 535 0∗ 0∗ 0∗ 0∗ 9.04 13.98
euclid-50 0.5 50 642 0∗ 0∗ 0∗ 0∗ 12.13 15.16
euclid-50 0.6 50 772 0∗ 0∗ 0∗ 0∗ 14.29 15.88
euclid-60 0.2 60 407 0∗ 0∗ 0∗ 0∗ 13.4 18.84
euclid-60 0.5 60 938 0∗ 0∗ 0∗ 0∗ 20.78 23.16
euclid-60 0.6 60 1119 0∗ 0∗ 0∗ 0∗ 23.6 27.9
euclid-70 0.5 70 1212 0∗ 0∗ 0∗ 0∗ 32.89 134.98
euclid-80 0.5 80 1639 0∗ 0∗ 0∗ 0∗ 51.74 46.21
euclid-90 0.5 90 1959 0∗ 0∗ 0∗ 0∗ 85.53 61.2

1b03 89 456 0.98 0.84 0.08 0.07 65.68 43.89
1crn 138 846 1.49 1.15 0.11 0.13 587.51 164.57

Table 1. Tests for K = 2. 0∗ indicates values of O(10−5) or less.

We are not systematically testing the usefulness of Barvinok’s randomized
rank reduction step. Preliminary tests indicate that, only for small instances, it

Diagonally dominant programming in distance geometry 11

can be replaced by the output x of Principal Component Analysis (PCA): factor

the SDP solution X̄ into x = P>
√
∆+
K , where P is the eigenvector matrix of X̄,

and ∆+
K is the diagonal matrix with the K largest positive eigenvalues and zeros

elsewhere. We also tried to replace sampling of y from a uniform distribution in
[−1, 1] instead of a multivariate normal standard one, and obtained fairly good
results. But as far as we know there are no concentration of measure results based
on the uniform distribution, so this may only be an effect of the concentration
of measure phenomenon “kicking in” at much larger values of n than those we
tested. We want to stress that these are preliminary impressions, supported only
by our experience and some limited computational evidence.

Our second test (Table 2) is more realistic, and finds realizations of (feasible)
protein instances in K = 3.

Instance LDE MDE CPU
Name |V | |E| SDP DDP SDP DDP SDP DDP

C0700.odd.G 36 308 0∗ 0∗ 0∗ 0∗ 34.96 22.83
C0700.odd.H 36 308 0∗ 6.02e-3 0∗ 2.56e-4 24.62 36.45
C0150alter.1 37 335 1.78e-4 1.12e-4 0∗ 0∗ 26.26 41.59
C0080create.1 60 681 0∗ 1.61e-4 0∗ 0∗ 161.64 123.05
C0080create.2 60 681 1.4e-4 0∗ 0∗ 0∗ 107.11 129.06
1b03 89 456 0.28 0.30 0.01 0.02 131.98 118.82
1crn 138 846 0.38 0.82 0.01 0.02 936.39 438.27

Table 2. Tests on proteins for K = 3. 0∗ indicates values of O(10−5) or less.

6 Conclusion

We propose a new heuristic algorithm for the DGP, based on diagonally-dominant
programming, a randomized rank reduction algorithm, and a local NLP solver.
Although our computational test set-up is prelimimnary, we believe our results
are promising, and give an indication that the computational bottleneck of SDP
can be overcome by diagonal dominance and LP.

References

1. Ahmadi, A., Hall, G.: Sum of squares basis pursuit with linear and second order
cone programming. Tech. Rep. 1510.01597v1, arXiv (2015)

2. Alfakih, A., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix com-
pletion problems via semidefinite programming. Computational Optimization and
Applications 12, 13–30 (1999)

3. Barvinok, A.: Problems of distance geometry and convex properties of quadratic
maps. Discrete and Computational Geometry 13, 189–202 (1995)

12 Gustavo Dias and Leo Liberti

4. Barvinok, A.: Measure concentration in optimization. Mathematical Programming
79, 33–53 (1997)

5. Cucuringu, M., Singer, A., Cowburn, D.: Eigenvector synchronization, graph ridig-
ity and the molecule problem. Information and Inference: a journal of the IMA 1,
21–67 (2012)

6. Dokmanić, I., Parhizkar, R., Ranieri, J., Vetterli, M.: Euclidean distance matrices:
Essential theory, algorithms and applications. IEEE Signal Processing Magazine
1053-5888, 12–30 (Nov 2015)

7. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B., Bel-
humeur, P.: Rigidity, computation, and randomization in network localization.
IEEE Infocom Proceedings pp. 2673–2684 (2004)

8. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the
ACM 42(6), 1115–1145 (1995)

9. Hendrickson, B.: The molecule problem: exploiting structure in global optimiza-
tion. SIAM Journal on Optimization 5, 835–857 (1995)

10. IBM: ILOG CPLEX 12.6 User’s Manual. IBM (2014)
11. Krislock, N., Wolkowicz, H.: Explicit sensor network localization using semidefinite

representations and facial reductions. SIAM Journal on Optimization 20, 2679–
2708 (2010)

12. Lavor, C., Liberti, L., Maculan, N.: Computational experience with the molecular
distance geometry problem. In: Pintér, J. (ed.) Global Optimization: Scientific and
Engineering Case Studies, pp. 213–225. Springer, Berlin (2006)

13. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular dis-
tance geometry problem. Computational Optimization and Applications 52, 115–
146 (2012)

14. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecu-
lar distance geometry problem. International Transactions in Operational Research
15, 1–17 (2008)

15. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry
and applications. SIAM Review 56(1), 3–69 (2014)

16. Liberti, L., Lavor, C., Mucherino, A.: The discretizable molecular distance ge-
ometry problem seems easier on proteins. In: Mucherino, A., Lavor, C., Liberti,
L., Maculan, N. (eds.) Distance Geometry: Theory, Methods, and Applications.
Springer, New York (2013)

17. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry
methods: from continuous to discrete. International Transactions in Operational
Research 18, 33–51 (2010)

18. Majumdar, A., Ahmadi, A., Tedrake, R.: Control and verification of high-
dimensional systems with dsos and sdsos programming. In: Conference on Decision
and Control. vol. 53, pp. 394–401. IEEE, Los Angeles (2014)

19. Man-Cho So, A., Ye, Y.: Theory of semidefinite programming for sensor network
localization. Mathematical Programming B 109, 367–384 (2007)

20. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. Pro-
ceedings of 17th Allerton Conference in Communications, Control and Computing
pp. 480–489 (1979)

21. Yajima, Y.: Positive semidefinite relaxations for distance geometry problems.
Japan Journal of Industrial and Applied Mathematics 19, 87–112 (2002)

