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Abstract – The Hartree-Fock equations describe atomic and molecular eletronic wave functions,
based on the minimization of a functional of the energy. This can be formulated as a constrained
global optimization problem involving nonconvex polynomials exhibiting many local minima. The
traditional method of solving the Hartree-Fock problem does not provide a guarantee of global
optimality and is very sensitive to the initial starting point. In this paper we show how to use
a deterministic global optimization method to solve Hartree-Fock systems. The validity of the
proposed approach was established by successfully computing the ground-state of the He and Be
atoms.

Copyright c© EPLA, 2007

Introduction. – The quantum behaviour of atoms and
molecules, in the absence of relativistic effects, is deter-
mined by the time-independent Schrödinger equation:

HΨn =EΨn, (1)

where H, the Hamiltonian operator of the system,
represents the total energy (kinetic+potential) of all the
particles of the system.
Analytical solutions for this equation are only possible

for very simple systems. Hence, for the majority of the
problems of interest, one has to rely on some approximate
model. In the Hartree-Fock model, the electrons in atoms
and molecules move independently of each other, the
motion of each one of the electrons being determined by
the attractive electrostatic potential of the nuclei and
by a repulsive average field due to all the other electrons
of the system. In this model, the approximate solutions
Φn of eq. (1) are anti-symmetrized products of one-
electron wave functions {ϕi} (also called orbitals), which
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are solutions of the Hartree-Fock (HF) equations for the
system under study [1]. This model gives rise to a set
of coupled integro-differential equations which can only
be solved numerically. Alternatively, each orbital ϕi can
be expanded in a complete basis set {χs}∞s=1. In order
to transform the HF equations into a less cumbersome
algebraic problem, we only consider a non-orthogonal
finite subset {χs|s� b} of the basis, and we use it to
approximate the orbitals. The larger we choose b, the
better the approximation is likely to become.
The optimization problem considered in this paper

arises because we need to find a set of coefficients csi,
for s= 1, . . . , b and i= 1, . . . , n, such that for all i� n the
function

ϕ̄i =

b∑
s=1

csiχs (2)

is a good approximation of the i-th spatial orbital ϕi.
A further requirement on the approximating set {ϕ̄i} is
that it must be an orthogonal set. While not a neces-
sary condition, orthogonality is always imposed in the
Hartree-Fock method because the resulting equations are
much easier to solve in an orthogonal basis of atomic or
molecular orbitals [2]. The method most usually applied
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to the Hartree-Fock equations iteratively solves a set of
linear equations to find the coefficients csi. This method,
however, has two main limitations: (a) there is no
guarantee that the set of coefficients csi found by the
method is a globally optimal set; (b) it depends on an
initial solution being available (starting guess); (c) the
occupation number of all orbitals must be provided
(electronic configuration).
We define the Hartree-Fock Problem (HFP) as the prob-

lem of finding a set of coefficients csi such that the ϕ̄i are
the best possible approximations of the spatial orbitals.
The objective function (quality of the approximation) is
given by the energy function E associated with the approx-
imating set {ϕ̄i}, which is guaranteed to be an upper
bound to the energy function associated with the spatial
orbitals [3]. The set {ϕ̄i} is required to be orthonormal
for the reasons already mentioned. Furthermore, once each
member of the set {ϕ̄i} is expanded in a complete ortho-
normal basis {χs}, a normalization condition must be
imposed on the expansion coefficients in order to preserve
the probabilistic interpretation of the wave function. Thus,
we need to minimize the energy function E subject to
orthonormality and normalization constraints. The deci-
sion variables of this mathematical programming problem
are the coefficients csi. For the orthonormal basis sets {ϕ̄i}
and {χs}, the problem can be expressed as follows:

minc E(c)
subject to (s.t.) 〈ϕ̄i|ϕ̄j〉= δij ∀i� j � n

b∑
r=1
c2ri = 1 ∀i� n

cL � c� cU

(3)

where δij is the Kronecker delta-function, which is
equal to 1, if i= j and 0, otherwise. Problem (3) is a
nonconvex, multi-extremal, polynomially constrained,
polynomial programming problem, and falls therefore in
the realm of Global Optimization (GO). We solve it by
applying the spatial Branch-and-Bound (sBB) technique,
a well-known deterministic GO method which yields an
ε-guaranteed global optimum (for a given ε > 0) and does
not need an initial solution, i.e. a set of starting guess
coefficients. For validation purposes, this method has
been applied to two instances of the HFP, namely to the
helium and berillium atoms, with considerable success as
regarding the CPU performance. In spite of the fact that
He and Be are closed-shell systems, the sBB technique
can be easily extended to open-shell systems (ROHF)
and also to more sophisticate multiconfigurational wave
functions, as will be discussed in future publications.
The rest of this paper is organized as follows. Next

section summarizes the sBB algorithm for GO. The
third section presents the mathematical programming
formulation of the HFP. The fourth section describes
the method used to compute the lower bound to the
objective function value. The fifth section discusses the
computational experience on the He and Be atoms.
Last section concludes the paper.

Global Optimization. – A mathematical program-
ming problem is formulated as follows:{

minx f(x)
s.t. g(x)� 0, (4)

where x∈Rn are the decision variables and f :Rn→R
is the objective function to be minimized subject to a
set of constraints g :Rn→Rm which may also include
variable ranges or integrality constraints on the variables.
Global Optimization is concerned with the solution of
problems (4) where f, g are non-convex nonlinear forms.
A problem where f, g are nonlinear is known as a Non
Linear Programming problem (NLP); if some integrality
constraints are present on the variable bounds the problem
is known as a Mixed-Integer NLP (MINLP).
GO methods may be deterministic or stochastic

according as to whether they provide a guarantee of
optimality or they employ random search techniques. The
most commonly employed deterministic GO method is an
extension, called spatial Branch-and-Bound (sBB) [4–6],
of the well-known Branch-and-Bound algorithm for
implicit binary enumeration [8] to continuous spaces. In
sBB, branching occurs by partitioning the continuous
variable range in two or more sub-ranges. The recursive
application of branching gives rise to a search tree. A
node is fathomed (i.e. no further branching occurs on
the node) either because the global minimum relative to
the node has been found, or because the global minimum
relative to the node cannot be better than the overall
best solution found so far (the incumbent). In order
to test these two conditions at each node, we compute
a lower bound and an upper bound to the objective
function value of the node’s problem restriction. The first
condition is verified if these bounds differ by less than a
pre-specified ε > 0 tolerance, and the second if the lower
bound for the node is higher than the incumbent.
Because Branch-and-Bound algorithms have exponen-

tial worst-case complexity, the best way to run them
efficiently is to provide a tight lower bound. In the specific
case of the HFP, the lower bound is provided by solving a
particular linear relaxation of the problem strengthened
by several valid inequalities based on the quadratic struc-
ture of the problem and on the orthogonality constraints.

Mathematical programming formulation of
the problem. – The expression for the Hartree-Fock
electronic energy E of a 2n-electron molecule with closed
shells is given by [3] as

E = 2

n∑
i=1

Hcoreii +

n∑
i=1

n∑
j=1

(2Jij −Kij)+VNN , (5)

where Hcoreii contains the one-electron integrals, Jij
is the Coulomb integral, Kij is the exchange integral,
VNN is the nuclear repulsion term. The spatial orbitals
{ϕi|i� n} are expanded as linear combinations of a finite
set of one-electron basis functions as per eq. (2). However,
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the standard self-consistent procedure to solve the HF
equations uses a non-orthogonal basis set {χs}. Thus, in
order to compare our results with the ones obtained by
the standard procedure, the sBB technique will be also
formulated in a non-orthogonal basis set {χs}. The HF
equations [3] are a set of b equations in the variables csi:

b∑
s=1

csi (Frs− εiSrs) = 0, (6)

where Frs = 〈χr|F̂ |χs〉, Srs = 〈χr|χs〉, εi is the orbital
energy, and F̂ is the Fock operator [3]. This is a nonlinear

system, since the F̂ operator depends on the orbitals {ϕi},
which in turn depend on the variables csi.
It is possible to obtain an expression for Frs in terms

of the coefficients {csi} and a set of suitable integrals over
the basis functions {χs} [3]:

Frs =H
core
rs +

b∑
t=1

b∑
u=1

n∑
i=1

c∗ticui[2(rs|tu)− (ru|ts)], (7)

where (rs|tu) and (ru|ts) stand for the Coulomb and
exchange integrals between pairs of electrons. While the
Coulomb integrals represent the quantum-mechanical
equivalent of the classical Coulomb interaction between
two charged particles, the exchange integrals are purely
quantum entities, resulting from the fact that the total
wave function for any multi-electronic system must be
anti-symmetric (Pauli principle). Also, the wave functions
representing the behaviour of atoms and molecules
can be real or complex. However, since any observable
(dynamic variable) must be real, the expectation value
of the corresponding operator, O, must be taken as
〈O〉= ∫ φ∗Oφdv, which is the reason why the complex
product c∗ticui appears in eq. (7).
We write H(r, s) =Hcorers and X(r, s, t, u) = (rs|tu),

where r= 1, . . . , b, s= 1, . . . , b, t= 1, . . . , b, and u=
1, . . . , b. It is possible to rewrite eq. (5) in the form

E =

b∑
r=1

b∑
s=1

n∑
i=1

(c∗ricsi (Frs+H(r, s)))+VNN . (8)

Finally, using (7) and (8), we get

E =
1

2

b∑
r=1

b∑
s=1

b∑
t=1

b∑
u=1

(
P (r, s)P (t, u)

×
(
X(r, s, t, u)− 1

2
X(r, u, t, s)

))
+

b∑
r=1

b∑
s=1

(P (r, s)H(r, s))+VNN , (9)

where

P (j, k) = 2
n∑
i=1

c∗jicki (j = 1, . . . , b and k= 1, . . . , b) .

Note that expression (9) is actually a function of the
coefficients csi, since the integrals H(r, s) and X(r, s, t, u),
as well as the value of VNN , can be calculated once the
basis {χs} and the molecular geometry are defined.
As has been mentioned above, the decision variables of

the HFP are the coefficients csi used in the basis expansion
of the spatial orbitals. To further simplify the notation, we
shall write the numerical problem parameters as

αturs = X(r, s, t, u)−
1

2
X(r, u, t, s),

βrs = H(r, s),

γ = VNN .

After simple term rearrangement, the objective function
of the problem becomes

E(c) = 2

b∑
r,s=1

(
n∑
i=1

cricsi

)

×
(

b∑
t,u=1

αturs

(
n∑
i=1

cticui

)
+βrs

)
+ γ. (10)

The orthogonality constraints are 〈ϕ̄i|ϕ̄j〉= δij for all
i� j � n. Substituting ϕ̄i =

∑
r�b criχr for all i� n and

〈χr|χs〉= Srs for all r, s� b we obtain∑
r,s�b

Srscricsj = δij ∀i� j � n, (11)

where normally Srr = 1 for all r� b. The variable bounds

cL � c� cU (12)

depend on the instance. The HFP can be succintly
summarized as follows:

min{E(c) | s.t. (11)-(12)}, (13)

as the minimization of a quartic objective function subject
to quadratic constraints and variable bounds.

Computing the lower bound. – Recall that the
most important step in the efficient running of the sBB
algorithm is the computation of the lower bound at each
node of the sBB search tree. In this section we shall discuss
a method which produces reasonably tight bounds for
the HFP. At any given sBB node, some of the decision
variables are restricted to lie in subranges given by the
recursive branching rules. We consider the restriction of
the original problem (13) to the node’s variable ranges.
We mention in passing that a reasonably good upper
bound can be easily provided for by finding any local
minimum of (13) restricted to the node (in practice, this
is done by using a constrained nonlinear local solver
such as SNOPT [9] on the problem formulation). The
lower bound is calculated by finding a linear relaxation
of the problem restricted to the node and solving it
with Linear Programming (LP) tools (for example the

50006-p3



C. Lavor et al.

simplex method [10] implemented in CPLEX [11]). The
linear relaxation is built in three steps: (a) reformulation,
(b) relaxation, (c) tightening.
Step (a) reformulates the problem to a standard

form [5] consisting of a linear objective function subject
to linear constraints and a set of quadratic constraints.
By introducing new variable sets y, w with the following
constraints:

yijrs = cricsj , ∀r, s� b, i, j � n, (14)

wijrstu = y
ii
rsy
jj
tu, ∀r, s, t, u� b, i, j � n, (15)

we can replace all the quartic and quadratic terms in the
problem, obtaining

miny 2
∑
r,s�b
(
∑
t,u�b

αturs
∑
i,j�n

wijrstu+βrs
∑
i�n
yiirs)+ γ

s.t.
∑
r,s�b

Srsy
ij
rs = δij , ∀i� j � n∑

r�b
yiirr = 1, ∀i� n
(14)-(15)
cL � c� cU
yL � y� yU
wL �w�wU ,

(16)
where the bounds yL, yU on y and wL, wU on w are
obtained through simple interval arithmetics using the
bounds on c and the quadratic relations (14)-(15).
Step (b) constructs a relaxation of (16) by replac-

ing (14)-(15) by their convex envelopes. For simple
constraints of the form z = xt where xL � x� xU and
tL � t� tU (such as (14)-(15)) the convex envelope is
given by [12,13]:

z �min{xU t+ tLx−xU tL, xLt+ tUx−xLtU} (17)

z �max{xLt+ tLx−xLtL, xU t+ tUx−xU tU}, (18)

which defines an enveloping tetrahedron around the
points (xL, tL), (xL, tU ), (xU , tL), (xU , tU ). Purely quad-
ratic constraints of the form z = x2 are relaxed by the
secant and the tangents of the parabola at (xL, (xL)2),
(xU , (xU )2). This relaxation yields a linear problem whose
optimal objective function value f̄ is a lower bound to
the globally optimal objective function value f∗ of (16),
which is the same as that of (13). Since (17)-(18) vary
as a function of the variable bounds, f̄ depends on cL,
cU , which means that the lower bound depends on the
current sBB search tree node, as desired. In practice, it
turns out that f̄ is not a very tight bound. This is mostly
due to the fact that the envelope (17)-(18) is generally
not very close to the original surface (14)-(15). We try to
improve this situation by adding some valid inequalities
in the next step.
Step (c) generates valid constraints in order to tighten

the linear relaxation obtained in steps (a) and (b).

Table I: Computational results for the He and Be atoms.

Atom sBB VNS SobolOpt

He 0.26 s 0.116 s 0.14 s
Be 10 s 0.3 s 14 s

Recalling that Srr = 1 for all r� b, we first remark that
when i= j, constraints (11) are

b∑
r=1

c2ri+2
∑
r<s

Srscricsi = 1, ∀i� n, (19)

which can be written in terms of the y variables as

b∑
r=1

yiirr +2
∑
r<s

Srsy
ii
rs = 1, ∀i� n. (20)

Secondly, we multiply (20) by problem variables yjjtu for all
t, u� b, j � n, obtaining
b∑
r=1

yiirry
jj
tu+2

∑
r<s

Srsy
ii
rsy
jj
tu = y

jj
tu, ∀t, u� b, i, j � n.

We can now replace the quadratic products in the y
variables using the w variables as per (15), obtaining a
linear relation between the y and the w variables:

b∑
r=1

wijrrtu+2
∑
r<s

Srsw
ij
rstu = y

jj
tu, ∀t, u� b, i, j � n.

(21)

In the linear relaxation of (16) the y and w vari-
ables are only related through inequality constraints of
type (17)-(18). Constraints (21) tighten the relaxation
because in general a feasible region defined by equations
has a smaller measure than one defined by inequal-
ities ([14], theorem 4.1). Constraints (21) are called
reduced RLT constraints [14–16] and form a subclass
of the Reformulation-Linearization Technique (RLT)
constraints described in [17].

Computational results. – We performed some
preliminary computational tests on the ground state of
the helium (He) and berillium (Be) atoms. For the He
atom we considered an uncontracted basis of two s-type
Gaussian functions and for the Be atom we used the
STO-3G basis set, as detailed in [18]. The globally opti-
mal solutions are E∗He =−2.7471h and E∗Be =−14.3519h,
and both were confirmed by the sBB algorithm. These
results are in perfect agreement with the ones obtained
through the standard self-consistent procedure to the HF
problem. We performed some computational comparisons
in terms of user CPU time (reported in table I) by
solving the problem instances with two other global
optimization solvers, namely Variable Neighbourhood
Search (VNS) [19,20] and SobolOpt [21] (which are
stochastic and do not provide an optimality guarantee).
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All computational results have been obtained within
the ooOPS optimization software framework [6,22]
running Linux on an Intel Pentium III 850MHz with
384MB RAM.

Conclusion. – The usual way to solve Hartree-Fock
equations has two limitations: (a) it provides a solution
which is not guaranteed to be the optimal one, (b) it
depends heavily on an initial solution being provided and
(c) the occupation number of all orbitals must be provided
(electronic configuration). We formulate this problem as a
nonconvex optimization problem, which we solve using a
spatial Branch-and-Bound algorithm for Global Optimiza-
tion. The crucial step, i.e. the determination of the lower
bound at each search tree node, relies on a convex relax-
ation which is further tightened by a suitable class of valid
constraints. This approach overcomes both limitations of
the usual method. The computational results presented
in this paper refer to rather small test cases, but are
nonetheless very promising. Computational work on larger
cases is ongoing.
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