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Abstract We consider a certain subclass of Henneberg-type edge-weighted graphs

which is related to protein structure, and discuss an algorithmic relationship between

the DISTANCE GEOMETRY PROBLEM and the EUCLIDEAN DISTANCE MATRIX

COMPLETION PROBLEM.

1 Introduction

The structure of proteins is strongly related to its function. Efforts for finding the

three-dimensional structure of proteins include minimization of a potential energy

function and exploitation of known chemical properties such as inter-atomic dis-

tances [29]. Such distances may be known because they refer to covalent bonds and

angles, or because they can be found using Nuclear Magnetic Resonance (NMR) [4].

In this paper we focus on finding the protein structure using distance information

only.

2 The Distance Geometry Problem

We employ an abstract generalized model of this problem, whereby we look for the

realization in R
K of a weighted simple undirected graph G = (V,E,d), where we

assume, to avoid the trivial case, that n= |V |> K. In the case of proteins, K = 3, V
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represents the set of atoms, E represents the set of atom pairs for which a distance

is available, and d : E → R+ is the edge weight function encoding the distances.

Given a positive integer K and a weighted simple undirected graph G = (V,E,d),
the DISTANCE GEOMETRY PROBLEM (DGP) asks whether there exists a realization

x :V → R
K such that:

∀{u,v} ∈ E ‖xu− xv‖
2 = d2uv, (1)

where the norm is assumed to be the Euclidean norm. In order to fix an orthogonal

frame of reference and to avoid translations and rotations, we assume that a sub-

set V0 = {v1, . . . ,vK} ⊆ V and a partial realization x′ : V0 → R
K are also given as

part of the input. The DGP is also called the graph realization problem. Realiza-

tions satisfying Eq. (1) are called valid. Once a valid realization is found, distances

between all pairs of vertices (not just those in E) can be determined. Formally,

this extends d : E → R+ to a function d̄ : V ×V → R+. The values of the func-

tion d̄ can be arranged into a square Euclidean distance matrix on the point set

X = {xv | v ∈V} ⊆ R
K . The pair (X , d̄) is known as a distance space [1].

3 The Euclidean Distance Matrix Completion Problem

In the EUCLIDEAN DISTANCE MATRIX COMPLETION PROBLEM (EDMCP) [8],

the input is a partial square symmetric matrix A (i.e. a symmetric matrix where

certain entries are missing) and the output is a pair (Ā,K) where Ā is a symmetric

completion of A, and K ∈ N such that: (a) Ā is a Euclidean distance matrix in R
K

and (b) K is minimum possible. We consider here a variant of the EDMCP, which

we call EDMCPK , where K is actually given as part of the input and the output

certificate for YES instances only consists of the completion matrix Ā of the partial

matrix A as a Euclidean distance matrix (Ā is also called a valid completion of A).

It is easy to see that the EDMCPK is strongly related to the DGP: if x is a valid

realization of G, then the partial distance matrix can be completed in polynomial

time, and if Ā is a valid completion of A, then the corresponding DGP graph is a

clique, whose realization in RK can be found in polynomial time [3].

This mapping in the output parallels a mapping in the input data. A partial

square symmetric matrix A = (auv) with missing components indexed by the set

Ē of unordered index pairs {u,v} encodes the weighted simple undirected graph

G = (V,E,a) where V is the set of row/column indices, E is the complement of Ē

with respect to the set of all unordered pairs ofV , and the edge weight amaps {u,v}
to auv. Conversely, a weighted simple undirected graphG= (V,E,a) can be encoded
in a partial square symmetric matrix A where the {u,v}-th component is auv for all

{u,v} ∈ E and the other components are missing. We formalize this correspondence

by setting M (G) = A for a graph G and its corresponding partial matrix A, and

G (A) = G for a partial matrix A and its corresponding graph G. It is trivial to see

that M and G are inverse operators.
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4 Rigidity and Henneberg type graphs

The DGP refers to a field of study which is known as Distance Geometry (DG).

DG was formally started in the 1930s, when Menger found how to decide whether

a given square matrix encodes a distance matrix using Cayley determinants [19].

Blumenthal then extended Menger’s findings to a well-developed theory [1], and

re-christened Cayley determinants “Cayley-Menger determinants”. The study of re-

alizations of graphs in the plane and in space, however, dates much further back.

The ancient Greeks were concerned with finding all polyhedra in space, for exam-

ple. Statics, which is necessary to ensure that buildings will not collapse under the

action of external forces, has existed ever since man got tired of being rained on

and decided to build himself a roof. Realizations of graphs in space from the point

of view of statics are known as “bar-and-joint frameworks”. Several important re-

sults on the rigidity of such frameworks date from the end of the XIX century [2,28].

Henneberg [6] was the first to formalize an iterative procedure for verifying whether

such frameworks are rigid. In particular, one of his two “steps” (known as Hen-

neberg type I step [7, 30]) can be paraphrased (and generalized) as follows: if there

is an order on V such that the first K vertices have a known realization, and such

that every subsequent vertex is adjacent to at least K predecessors, then the graph

almost certainly has a rigid realization in R
K . This idea was already present in the

works of Saviotti [27], as testified by the two-dimensional case shown in Fig. 1. The

Fig. 1 Fig. 30 in [27].

set of Henneberg type I graphs gives rise to a subset of DGP instances known as the

DISCRETIZABLE DGP (DDGP) [21].

In the above paragraph we used the term “rigid framework” and “almost cer-

tainly” intuitively. These can be formally defined as follows. A framework is a pair

(G,x) where G is a graph and x is a valid realization; a flexing of a framework is a

continuous map p from [0,1] to the set of all realizations of V such that p(0) = x,

p(t) satisfies Eq. (1) for all t ∈ [0,1], and p(t) is not an isometry of x for all t ∈ (0,1].
A framework is rigid if it has no flexing. As for “almost certainly rigid”, this means

that the set of realizations which are not rigid has Lebesgue measure 0 in the set of

all possible realizations.

If the Henneberg type I order is not explicitly given, it may not be immediately

obvious how to find one. The problem of finding a Henneberg type I order is de-

fined in [9] as the DISCRETIZATION VERTEX ORDER PROBLEM (DVOP). There is

an exponential algorithm O(nK+3) for solving the DVOP, which is polynomial for
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fixed K. Implementations for K = 3 are very fast and can successfully be used as a

preprocessing step to solving the DDGP.

5 Branch-and-Prune

For almost all edge weightings, Henneberg type I graphs can have finitely many

different valid realizations whose corresponding distance spaces are incongruent.

With a slight abuse of notation, we call two different valid realizations with incon-

gruent distance spaces incongruent realizations. If vertex v has exactly K adjacent

predecessors, then xv is at the intersection P of K spheres in R
K . The cardinality of

P is in {0,1,2} as long as the position of the K adjacent predecessors of v affinely

spans a (K − 1)-dimensional subspace of RK . The case |P| = 0 occurs when the

edge weighting is such that G has no realization in R
K . The case |P| = 1 only oc-

curs when the subgraph induced by v and its K adjacent predecessors defines a flat

simplex in RK . Since the set of flat simplices have Lebesgue measure 0 in the set of

all simplices, this is a case which can be ignored almost all the time. The remain-

ing case is |P| = 2, shown for K = 3 in Fig. 2. Thus, one can find all incongruent

Fig. 2 General case for the intersection P of three spheres in R3.

realizations of a Henneberg type I graph G by the following method:

(a) place the first K vertices arbitrarily (this essentially fixes the reference system

up to reflection);

(b) place the v-th vertex in the Henneberg type I order in one of the points in P;

(c) for each position xv for v in P, recursively call Step (b) with v replaced by v+1.

In the worst case (i.e. whenever |P| is always 2 and there are no other edges but

those that define the Henneberg type I step), this gives rise to a full binary search
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tree after level K, which amounts to 2n−K different realizations, 2n−K−1 of which are

incongruent, the other 2n−K−1 being their reflection through the first K vertices [11,

Thm. 2]. We let X be the set of all realizations found by this method.

We remark that the recursive call at Step (c) may occur fewer than twice when-

ever vertex v has more than K adjacent predecessors, as the intersection of more

than K spheres inRK almost always has either 0 or 1 point. Thus, vertices with more

than K adjacent predecessors are used to “prune out” certain branches of the binary

search tree. This is why the corresponding algorithm is called Branch-and-Prune

(BP) [10, 17]. The BP algorithm was originally only defined for immediate prede-

cessors [11], but was henceforth extended to work in several different situations: for

Henneberg type I graphs [21], for certain types of interval-weighted graphs related

to proteins [12, 15, 20], and for the purpose of overcoming a technical limitation

of NMR machinery, which generally only provides reliable distance measures for

pairs of hydrogen atoms [13, 14, 16, 22]. A publically available BP implementation

is described in [25]. The current computational state-of-the-art for the BP algorithm

is attained with a parallel BP implementation [23, 24], which can realize a protein

backbone of 104 atoms in R3 in just over 10s of CPU time on a cluster of 8 nodes.

Step (b) of the BP algorithm is formalized in Alg. 1. It takes as input a vertex v

of rank ρ(v)> K, a partial realization x̄ on the predecessors of v and a set X which

will contain all the valid realizations at the end of the execution. We identify for

convenience V with the set [n] = {1, . . . ,n} of vertex ranks, we denote the set of

vertices adjacent to v by N(v), and we use Sx̄uv to denote the sphere centered at x̄u
with radius duv. The BP algorithm starts with the call BP(K+ 1, x′, /0), where x′ is

the (given) realization of the first K vertices. It was shown in [18, Lemma 3.4] that

Algorithm 1 BP(v, x̄, X)

Require: A vertex v ∈V r [K], a partial realization x̄= (x1, . . . ,xv−1), a set X .
1: P=

⋂

u∈N(v)
u<v

Sx̄uv

2: for p ∈ P do

3: x← (x̄, p)
4: if ρ(v) = n then

5: X ← X ∪{x}
6: else

7: BP(v+1, x, X)

8: end if

9: end for

the BP algorithm finds all incongruent solutions of the DDGP, and in [18, Prop. 3.5]

that for almost all instances, no two distinct search tree nodes at a given level v will

be such that one node has two subnodes and the other node only one.
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5.1 Partial reflections

What do incongruent realizations of G look like? Partition the edges of G in those

edges which ensure the existence of a Henneberg type I order (which we call dis-

cretization edges) and all the other edges (which we call pruning edges). Let X̄ be

the set of all realizations of the subgraph of G defined by the discretization edges.

Then, by definition, |X̄ |= 2n−K . A partial reflection of x ∈ X̄ with respect to a ver-

tex v > K is a map π : (V r [K])× X̄ → X̄ such that πv = Iv×Rn−v
v,x , where Rv,x is

the reflection operator through the hyperplane defined by xv−K , . . . ,xv−1; in other

words, πv(x) = (x1, . . . ,xv−1,Rv,x(xv), . . . ,Rv,x(xn)). As remarked in [5, Sect. 2.1],

partial reflections are also maps X → X (a proof of this is found in [18, Thm. 4.9]).

A strong converse is also true for DDGP instances where each vertex is adjacent

to at least K immediate predecessors (such instances are collectively known as the

DISCRETIZABLE MOLECULAR DGP in general dimensions, or KDMDGP, see [11]

for the case with K = 3), namely, that for any distinct x,y∈ X there is a composition

ρ of partial reflections such that y= ρ(x) [18, Thm. 5.4].

6 BP in distance space

As remarked in [26], the completion in R
3 of a distance (sub)matrix with the fol-

lowing structure:












0 d12 d13 d14 δ
d21 0 d23 d24 d25
d31 d32 0 d34 d35
d41 d42 d43 0 d45

δ d52 d53 d54 0













(2)

can be carried out in constant time by solving a quadratic system in the unknown

δ derived from setting the Cayley-Menger determinant [9, Eq. (9)] of the distance

space (X ,d) to zero, where X = {x1, . . . ,x5} and d is given by Eq. (2). This is

because, for general K, the Cayley-Menger determinant is proportional to the K-

volume of the simplex on K+ 1 points, which is the (unique, up to rotations and

translations) realization of the weighted 5-clique defined by a full distance matrix.

Since a simplex on 5 points embedded inR3 necessarily has 4-volume equal to zero,

it suffices to set the Cayley-Menger determinant of (2) to zero to obtain a quadratic

equation in δ . We denote the pair {u,v} indexing the unknown distance δ by U(D),
the Cayley-Menger determinant of a matrix D by CM(D), and the corresponding

quadratic equation in δ by CM(D,δ )= 0. This equation has real solutions only if (2)

is a Euclidean distance matrix. Furthermore, if it has real solutions at all, it almost

always has two distinct solutions δ 1,δ 2. These are two valid values for the missing

distance d15. This observation trivially extends to general K, where we consider a

K+2 point simplex realization of a weighted near-clique on K+2 vertices with one

missing edge.
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6.1 The main idea

We consider a Henneberg type I graph G and a partial embedding x̄ for the subgraph

G[[K]] ofG induced by the set [K] of the firstK vertices. We can find the two possible

positions for vK+1 with just one call to BP(K+ 1, x̄,∅), preventing recursion. By

the BP root node symmetry defined in [11, Thm. 2], these two positions will define

exactly one distance value d1,K+1, so that we can add the edge {1,K+1} to E with

weight d1,K+1, yielding a new graph G′. The Henneberg type I order guarantees

that the distances duv are known for all u,v ∈ [K+ 1], so that G′[[K+ 1]] is a full

(K+ 1)-clique. Consider now vertex vK+2: the Henneberg type I order guarantees

that vK+2 has at least K adjacent predecessors. If it has K+ 1, then G′[[K+ 2]] is
the full (K + 2)-clique. Otherwise G′[[K + 2]] is a near-clique on K + 2 vertices

with one missing edge (say {u,K + 2} for some u ∈ [K + 1]). We can therefore

use the Cayley-Menger determinant to compute two possible values for du,K+2, as

discussed above. Because the Henneberg type I order always guarantees at least K

adjacent predecessors, this procedure can be generalized to vertices of any rank v in

V r [K], and so it defines a recursive algorithm which branches whenever a distance

can be assigned two different values, simply continues to the next rank whenever

the subgraph induced by the current K+ 2 vertices is a full clique, and prunes all

branches whenever the partial distance matrix defined on the current K+2 vertices

has no Euclidean completion.

In general, this procedure holds for realizations in RK whenever there is a vertex

order such that each next vertex v is adjacent to K predecessors: thus we can define

a subgraph containing v and K+ 1 predecessors consisting of two (K+ 1) cliques
whose intersection is a K-clique (i.e. a near-clique with one missing edge). There

are in general two possible realizations inRK for such subgraphs, as shown in Fig. 3.

Fig. 3 On the left: a near clique on 5 vertices with one missing edge (dotted line). On the right: its

two possible realizations in R3 for a given feasible edge weighting (distance values for the missing

edge shown in red).
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6.2 Formalization and properties

Alg. 2 formalizes such a recursive algorithm. It takes as input a vertex v of rank

greater than K+1, a partial matrix A and a set A which will eventually contain all

the possible completion of the partial matrix given as the problem input. For a given

partial matrix A, a vertex v of G (A) and an integer ℓ≤K, let Aℓ
v be the ℓ×ℓ symmet-

ric submatrix of A including row and column v that has fewest missing components.

Whenever AK+2
v has no missing elements, the equation CM(AK+2

v ,δ ) = 0 is either

a tautology if AK+2
v is a Euclidean distance matrix, or unsatisfiable in R otherwise.

In the first case, we define it to have δ = duv as a solution, where u is the smallest

row/column index of AK+2
v . In the second case, we define it to have no solutions.

Algorithm 2 dBP(v, A, A )

Require: A vertex v ∈V r [K+1], a partial matrix A, a set A .

1: P= {δ | CM(AK+2
v ,δ ) = 0}

2: for δ ∈ P do

3: {u,v}← U(AK+2
v )

4: duv← δ
5: if A is complete then

6: A ←A ∪{A}
7: else

8: dBP(v+1, A, A )

9: end if

10: end for

Lemma 1. In Step 1 of Alg. 2, AK+2
v always has at most one missing distance in-

volving v.

Proof. At level v of Alg. 2, all distances for {u,w} for u,w < v are known by the

induction hypothesis. The induction starts because either d1,K+1 is part of the input

partial matrix, or, if not, by calling BP(K + 1, x̄,∅) just for level K + 1, without

recursion: then the distance d1,K+1 can be computed. By the Henneberg type I or-

der, v is adjacent to at least K predecessors, so that the densest (K+ 2)× (K+ 2)
symmetric submatrix of A involving row and column v must be such that all other

rows/columns are indexed by as many adjacent predecessors of v as possible. Since

there are at most K + 1 such adjacent predecessors, there is at most one missing

distance in AK+2
v , and it involves v. If A can be completed to a Euclidean distance

matrix, then the missing distance is assigned a feasible value in Step 4. This com-

pletes the induction step.

Corollary 1. In Step 3 of Alg. 2, U is well defined.

Theorem 1. At the end of Alg. 2, A contains all possible completions of the input

partial matrix.
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Proof. By contradiction, if not then there must be a recursive call when there is

a γ ∈ R+ such that duv = γ yields a partial matrix which can be completed to a

Euclidean distance matrix, but γ 6∈ P. But by Lemma 1 this would mean that the

quadratic equation CM(AK+2
v ,δ ) = 0 in δ has more than two solutions, which is

impossible.

6.3 A dual Branch-and-Prune

The resemblance of Alg. 1 and 2 is such that it is very easy to assign dual mean-

ings to the original (otherwise known as primal) BP algorithms. As was made clear

in Sect. 3, weighted graphs and partial symmetric matrices are dual to each other

through the inverse mappings M and G . Whereas in the primal BP we decide real-

izations of the graph, in the dual BP we decide the completions of partial matrices,

so realizations and distance matrix completions are dual to each other. The primal

BP decides on points xv ∈ R
K to assign to the next vertex v, whereas the dual BP

decides on distances δ to assign to the next missing distance incident to v and to a

predecessor of v; there are at most two choices of xv as there are at most two choices

for δ ; only one choice of xv is available whenever v is adjacent to strictly more than

K predecessor, and the same happens for δ ; finally, no choices for xv are available

in case the current partial realization cannot be extended to a full realization of the

graph, as well as no choices for δ are available in case the current partial matrix can-

not be completed to a Euclidean distance matrix. This means that weighted edges

and points in Euclidean space are dual to each other. The same vertex order can be

used by both the primal and the dual BP (so the order is self-dual).

There is one clear difference between primal and dual BP: namely, that the dual

BP needs an initial (K+ 1)-clique, whereas the primal BP only needs an initial K-

clique. This difference also has a dual interpretation: a complete Euclidean distance

matrix corresponds to two (rather than one) realizations, one the reflection of the

other through the hyperplane defined by the first K points.
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