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Abstract Given a weighted undirected graph G = (V,E,d) with d : E → Q+ and a

positive integer K, the Distance Geometry Problem (DGP) asks to find an embed-

ding x : V → RK of G such that for each edge {i, j} we have ‖xi − x j‖ = di j. Saxe

proved in 1979 that the DGP is NP-complete with K = 1 and doubted the applica-

bility of the Turing machine model to the case with K > 1, because the certificates

for YES instances might involve real numbers. This chapter is an account of an un-

fortunately failed attempt to prove that the DGP is in NP for K = 2. We hope that

our failure will motivate further work on the question.

1 Introduction

Consider the following decision problem.

DISTANCE GEOMETRY PROBLEM (DGP). Given a weighted undirected graph G=(V,E,d)
where d : E → F, and a positive integer K, establish whether there exists an embedding

x : V → RK such that:

∀{i, j} ∈ E ‖xi − x j‖= di j, (1)
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where F is a set of nonnegative numbers, which, for the purposes of this chapter,

we assume to be either integers N or rationals Q+. We denote explicit dependence

of the DGP on K by DGPK .

The DGP is NP-hard, but even when F = N it is not known, whenever K > 1,

whether it is in NP or not. Trying to prove that the DGP is in NP would involve

finding a polynomial size representation for the solutions of a polynomial system of

equations of degree two. Disproving the statement would probably be much more

difficult. This chapter relates a possible proof technique for showing that DGP∈NP

and the corresponding failure, in the hope of enticing new efforts on this topic.

1.1 Applications

In the Molecular Distance Geometry Problem (MDGP), G is a molecule graph

where the E is the set of known inter-atomic distances, and K = 3. Since the function

of molecules depends strongly on their spatial configuration, finding an embedding

of V in R3 is of practical interest [11,13]. A distinguishing property is that, because

of the experimental techniques involved, most distances are bounded above by 6Å,

so that the resulting graph is 3D generalization of a Unit Disk Graph (UDG) [1].

Wireless Sensor Network Localization (WSNL) aims to embed a wireless sensor

network in R2 (so K = 2). Pairs of sensors can estimate their distance by measur-

ing the power used for a two-way communication. Since sensor networks always

include a wired backbone (allowing the link between the sensor network and the ex-

ternal world), and the position of the wired backbone components is usually known,

the distinguising mathematical property of the WSNL is that a partial embedding

x′ : U →Q2 is known in advance, where U ⊆V is the set of wired backbone compo-

nents, called anchors in the WSNL literature [4, 21]. Again, because wireless com-

munication can only occur below a certain distance threshold, the resulting graph is

a UDG.

Lines of forces acting on static physical structure (such as a building) define

a graph. If the forces sum to zero, then the structure stands. Starting from such

basic definitions, a theory of bar-and-joint structures has been developed ever since

the XVIII century [3, 10, 15, 18, 24]. This involves embeddings of the graph where

joints are vertices and bars (with their lengths) are weighted edges; the zero sum

force requirement holds if a given embedding is an isolated point in embedding

space. More recently, the interest was shifted towards graphs whose topology itself

guarantees that all (or almost all) embeddings are isolated points. Such graphs are

termed rigid [6, 20].

Graph Drawing (GD) is a discipline studying algorithms for drawing graphs.

The embedding might be defined for any K ≥ 1, but of course only projections in

2D and 3D are actually represented visually. See www.graphdrawing.org for

more information.
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1.2 Complexity

Saxe [19] proved in 1979 that DGP1 with F = N is NP-complete by means of a

reduction from SUBSET-SUM [5]. It is in NP because a given embedding x can be

verified to satisfy (1) in polynomial time. Furthermore, an instance {a1, . . . ,an}∈Zn

of SUBSET-SUM can be suitably reduced to the instance G = (V,E,d) with V =
{v0, . . . ,vn−1}, E = {{vi,vi+1 mod n} | i < n}, di,i+1 mod n = ai for all i < n.

For what concerns K > 1, in [19], Sect. 5, Saxe writes,

- NP-Completeness is defined for language recognition problems on Turing Machines,

which inherently can deal only with integers and not with arbitrary reals.

- Given a “random” embedding of an unweighted graph into a Euclidean space, any two of

the edge weights induced by the embedding will be incommensurable with probability

1. Moreover, if the graph is overconstrained and the dimension of the space is at least

two, then rounding the induced edge-weights to multiples of some small distance will

almost always produce a weighted graph that is not embeddable in space.

The DGP contains the DGP1, which is NP-complete; but as remarked by Saxe, the

DGP itself might not be in NP. Thus, it is commonly stated in the literature that the

DGP (and in particular the MDGP and the WSNL) is NP-hard (see e.g. [4, 9]). By

definition [5], a problem is NP-hard when every problem in NP can be reduced to

it, independently of whether the problem itself is in NP or not.

In order to show that a decision problem is in NP, we have to perform the fol-

lowing steps:

1. encoding certificates of YES instances;

2. showing that such certificates can be verified in time which is polynomial in the

size of the instance.

In the case of the DGP, the certificates are solutions of the system (1). Squaring

every equation of the system yields:

∀{i, j} ∈ E ‖xi − x j‖2 = d2
i j. (2)

System (2) has the same set of solutions as (1), since d always takes non-negative

values. Notice, however, that (2) is a polynomial system: as such, its solutions x =
((x11, . . . ,x1K ,), . . . ,(xn1, . . . ,xnK)) always have algebraic components.

2 Representations of algebraic numbers

It is well known that some algebraic numbers over Q can be written as mathematical

expressions involving integers and elementary operators such as sum, subtraction,

product, fraction and k-root. Let us call O the set of operator symbols +,×,÷, k
√

.

The statement DGP ∈ NP is equivalent to stating that all components of an embed-

ding solving the instance can always be written as meaningful strings of symbols in

Z and O , the size of which is bound by a polynomial in the instance size. Not all
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algebraic numbers, however, can be written this way: specifically, this is the case if

and only if the Galois group of the minimal polynomial of the algebraic number in

question is soluble [22]. What about those algebraic numbers that do not satisfy this

requirement?

If α is a root of a polynomial p(x) over Q whose Galois group is not soluble,

then it can’t be expressed using symbols in Z∪O alone. What one can do, however,

is to adjoin other algebraic numbers in B = {β1, . . . ,βh} to Q, obtaining other fields

F = Q[β1, . . . ,βh], until the minimal polynomial of α over F has a soluble Galois

group. This process terminates: it suffices to adjoin all the roots of p(x). Symbolic

algebra packages such as Maple [14] attempt to find smallest h such that the Galois

group of p(x) over F is soluble. Then α can be expressed by meaningful strings of

symbols in Z∪B∪O .

Example 1. Asking Maple to solve:

x5 + y+1 = 0

y2 + y− x = 0

yields the solution x = α2 +α , y = α , where α is a root of the polynomial (x+
1)(x8 + 3x7 + 3x6 + x5 + 1). The Galois group of x8 + 3x7 + 3x6 + x5 + 1 is S8, the

full symmetric group over 8 elements, and S8 is not soluble.

2.1 Polynomial system representation

Each algebraic number α ∈ A can be associated with a polynomial pα ∈Q[x] such

that p(α) = 0 and a rational ᾱ ∈ Q which is closest to α than to the other roots of

pα .

Example 2. For α = 3

√

1
2
+ 4
√

3 we might choose its minimal polynomial over Q,

pα(x) = x12 −2x9 + 3
2
x6 − 1

2
x3 − 47

16
, and set ᾱ = 2, which is closest to α than to the

other real root of pα .

As mentioned above, embeddings can be seen as sequences of algebraic numbers.

Any sequence S of ℓ algebraic numbers can be associated with a multivariate poly-

nomial system pS ∈ Z[x1, . . . ,xℓ] such that pS(S) = 0, together with a rational vector

q ∈Qℓ such that ‖S−q‖2 is smallest.

2.2 Formal grammar representation

The “meaningful strings” mentioned above, used to represent algebraic numbers in

a field F = Q[B] where B = {β1, . . . ,βh}, are generated by the formal grammar:

A−→ (A+A)∨ (A×A)∨ (A÷A)∨ (
Z
√
A)∨ (Z)∨ (B)
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where, with a slight abuse of notation, we use A,Z to denote the type of algebraic

and integer numbers. Given a string consisting of symbols in Z∪B∪O , the string

is meaningful if it matches the pattern given by the grammar. The algorithm that

matches strings to grammars [12] is recursive in nature and is yields a grammar

derivation trees [16]. Each algebraic number in A can be represented with respect

to B by its corresponding derivation tree.

Example 3. The algebraic number α = 3

√

1
2
+ 4
√

3 yields the grammar derivation tree

shown in Fig. 1.

√

+

√

A

Z

3

Z

4

÷

Z

2

Z

1

Z

3

Fig. 1 The derivation tree for α according to the algebraic grammar.

3 The Gröbner bases strategy

We restrict our attention to K = 2, and propose to pursue a line of argument show-

ing that DGP2 ∈ NP. It is well known that any multivariate polynomial system of

equations such as (2) can be reduced to a “triangular form” by employing Gröbner

bases and the Buchberger algorithm [2] (a clear and short introduction to these con-

cepts can be found in [8]). We represent an embedding x : V → R2 solving a DGP2

instance as the sequence (x11,x12,x21,x22, . . . ,xn1,xn2)

Example 4. Consider the right-angled triangle with smallest possible integer side

lengths (3,4,5) in R2 delimited by x1 = (0,0), x2 = (3,0), x3 = (0,4). System (2)

is:



6 Nathanael Beeker, Stéphane Gaubert, Christian Glusa, and Leo Liberti

(x11 − x21)
2 +(x12 − x22)

2 = 9

(x11 − x31)
2 +(x12 − x32)

2 = 16

(x21 − x31)
2 +(x22 − x32)

2 = 25.

The above system describe all (3,4,5)-sided triangles in R2. We can fix x11 = x12 =
0 and x21 = 3 to eliminate rotations and translations. This reduces the system to:

32 + x2
22 = 9

x2
31 + x2

32 = 16

(3− x31)
2 +(x22 − x32)

2 = 25.

A Gröbner basis of the above system (provided by Maple 9.5 [14] with the pure

lexicographic term ordering) is given by:

x2
31 = 0

x2
32 = 16

16x22 +3x31x32 = 0.

It is clear that the Gröbner system has two real solutions given by x22 = x31 = 0, and

x32 =±4, which correspond to two congruent conformations reflected along the 1st

coordinate, as shown in Fig. 2.

0 3

4

−4

Fig. 2 The two configurations given by the Gröbner system in Example 4.

Let the system (2) have solution set X , and let x ∈ X . According to Sect. 2.1

we can represent x by (2) and a rational vector q ∈ Q2n which is closest to x than

any other x′ ∈ X . Because of Gröbner basis theory, it follows that the very same

embedding can be represented by any Gröbner basis system derived from (2) and

q. The advantage in reducing the original system (2) to triangular form is that, by
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a form of back-substitution, we can easily derive the set B referred to in Sect. 2,

together with the string that describes the components of x.

Showing that the size of a Gröbner basis is bounded by a polynomial in the

instance size would be a (substantial) first step towards proving that DGP2 ∈ NP.

Unfortunately, this is false in general: the size of a Gröbner basis grows doubly-

exponentially. The polynomial system (2), however, has a very special structure,

which — one might hope — could provide an exception. The rest of this section

will introduce an infinite class of DGP instances which provide empirical evidence

to the contrary. This is, of course, not a conclusive statement.

3.1 The empirical evidence against

In this section we construct an infinite class of graphs embedded in R2 which have a

Gröbner basis whose size, obtained computationally for a few cases, indicates an ex-

ponential growth in the instance size. The graph class consists of a chain of triangles

sharing a side: V = {1, . . . ,n} (with n ≥ 3), and E = {{v−2,v},{v−1,v} | v > 2}.

The weight function d : E →Q+ is such that duv =
1
u

for all {u,v} such that u < v.

Examples with n = 10 and n = 20 are given, respectively, in Fig. 3 and 4.

1

2

3

4

5

6

7

8

9

10

Fig. 3 A triangle chain of size 10 embedded in R2.

These triangle chains embedded in R2 provide rigid frameworks [7], and are

examples of of Henneberg type I graphs [23] and of DISCRETIZABLE DGP (DDGP)

instances [17]. Using Maple [14], we were able to show that the dependency of the

Gröbner basis size in terms of the instance size looks exponential over a set of

triangle chains with n vertices with n ∈ {3, . . . ,11}. More precisely, the number of

equations in the Gröbner basis and the size of each equation both seem to grow

exponentially (or worse), whereas the degree seems to grow linearly, as shown in

Fig. 5.
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8

9

10

11

12

13

14
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16

17

18

19

20

Fig. 4 A triangle chain of size 20 embedded in R2.

Fig. 5 The growth pattern of the number of equations (left) in the Gröbner basis of triangle chains,

the size of each equation (center) and the degree of the system (right).
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problems using gröbner bases. Journal of Global Optimization 7(2), 115:125 (1995)

9. Hendrickson, B.: The molecule problem: exploiting structure in global optimization. SIAM

Journal on Optimization 5, 835–857 (1995)

10. Henneberg, L.: Die Graphische Statik der starren Systeme. Teubner, Leipzig (1911)

11. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable

molecular distance geometry problem. European Journal of Operational Research (accepted /

invited survey)

12. Levine, R., Mason, T., Brown, D.: Lex and Yacc, second edn. O’Reilly, Cambridge (1995)

13. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods:

from continuous to discrete. International Transactions in Operational Research 18, 33–51

(2010)

14. Maplesoft, Inc.: Maple 9 Getting Started Guide. Maplesoft, Waterloo (2003). URL http://

www.maplesoft.com/products/maple/manuals/GettingStartedGuide.

pdf

15. Maxwell, J.: On the calculation of the equilibrium and stiffness of frames. Philosophical

Magazine 27(182), 294–299 (1864)

16. Mosses, P.: Denotational semantics. In: J. van Leeuwen (ed.) Handbook of Theoretical Com-

puter Science B: Formal Models and Semantics, pp. 575–631. Elsevier, Amsterdam (1990)

17. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Opti-

mization Letters (accepted)
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