
Vol.:(0123456789)

TOP (2020) 28:271–339
https://doi.org/10.1007/s11750-020-00563-0

1 3

INVITED PAPER

Distance geometry and data science

Leo Liberti1

Published online: 5 June 2020
© Sociedad de Estadística e Investigación Operativa 2020

Abstract
Data are often represented as graphs. Many common tasks in data science are based
on distances between entities. While some data science methodologies natively take
graphs as their input, there are many more that take their input in vectorial form.
In this survey, we discuss the fundamental problem of mapping graphs to vectors,
and its relation with mathematical programming. We discuss applications, solution
methods, dimensional reduction techniques, and some of their limits. We then pre-
sent an application of some of these ideas to neural networks, showing that distance
geometry techniques can give competitive performance with respect to more tradi-
tional graph-to-vector mappings.

Keywords Euclidean distance · Isometric embedding · Random projection ·
Mathematical programming · Machine learning · Artificial neural networks

Mathematics Subject Classification 51Kxx · 90Cxx · 68Pxx

1 Introduction

This survey is about the application of distance geometry (DG) techniques to prob-
lems in data science (DS). More specifically, data are often represented as graphs,
and many methodologies in data science require vectors as input. We look at the
fundamental problem in DG, namely that of reconstructing vertex positions from
given edge lengths, in view of using its solution methods to produce vector input for
further data processing.

Dedicated to the memory of Mariano Bellasio (1943–2019).

This invited paper is discussed in the comments available at https ://doi.org/10.1007/s1175 0-020-
00560 -3, https ://doi.org/10.1007/s1175 0-020-00561 -2, https ://doi.org/10.1007/s1175 0-020-00562 -1.

 * Leo Liberti
 liberti@lix.polytechnique.fr

1 LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-020-00563-0&domain=pdf
https://doi.org/10.1007/s11750-020-00560-3
https://doi.org/10.1007/s11750-020-00560-3
https://doi.org/10.1007/s11750-020-00561-2
https://doi.org/10.1007/s11750-020-00562-1

272 L. Liberti

1 3

The organization of this survey is based on a “storyline”. In summary, we want
to exhibit alternative competitive methods for mapping graphs to vectors to analyse
graphs using machine learning (ML) methodologies that take vectorial input. This
storyline will take us through fairly different subfields of mathematics, operations
research, and computer science. This survey does not provide exhaustive literature
reviews in all these fields. Its purpose (and usefulness) rests in communicating the
main idea sketched above, rather than serving as a reference for a field of knowl-
edge. It is nonetheless a survey because, limited to the scope of its purpose, it aims
at being informative and also partly educational, rather than just giving the minimal
notions required to support its goal.

Here is a more detailed account of our storyline. We first introduce DG, some of
its history, its fundamental problem, and its applications. Then, we motivate the use
of graph representations for several types of data. Next, we discuss some of the most
common tasks in data science (e.g., classification and clustering) and the related
methodologies (unsupervised and supervised learning). We introduce robust and
efficient algorithms used for embedding general graphs in vector spaces. We pre-
sent some dimensional reduction operations, which are techniques for replacing sets
X of high-dimensional vectors by lower dimensional ones X′ , so that some of the
properties of X are preserved at least approximately in X′ . We discuss the instability
of distances on randomly generated vectors and its impact on distance-based algo-
rithms. Finally, we present an application of much of the foregoing theory: we train
an artificial neural network (ANN) on many training sets, so as to learn several given
clusterings on sentences in natural language. Some training sets are generated using
the traditional methods, namely incidence vectors of short sequences of consecu-
tive words in the corpus dictionary. Other training sets are generated by representing
sentences by graphs and then using a DG method to encode these graphs into vec-
tors. It turns out that some of the DG-generated training sets have competitive per-
formances with the traditional methods. While the empirical evidence is too limited
to support any general conclusion, it might invite more research on this topic.

The survey is interspersed with eight theorems with proofs. Aside from Theo-
rem 8 about distance instability, the proof of which is taken almost verbatim from
the original source (Beyer et al. 1998), the proofs from the other well-known theo-
rems are not taken from specific sources (this does not mean that the theorems or
their proofs are original). The presented proofs are reasonably short, and, we hope,
easy to follow. There are several reasons for the presence of these theorems in this
survey: (a) we have not found them stated and proved clearly anywhere else, and
we wish we had during our research work (Theorems 1–4); (b) their proofs show-
case some point we deem important about the underlying theory (Theorems 7–8);
(c) they give some indication of the proof techniques involved in the overarching
field (Theorem 6–7); (d) they justify a mathematical statement for which we found
no citation (Theorem 5). While there may be some original mathematical results in
this survey, e.g., Eq. (35) and the corresponding Theorem 5 (though something simi-
lar might be found in Henry Wolkowicz’ work) as well as the computational com-
parison in Sect. 7.3.2, we believe that the only truly original part is the application
of DG techniques to constructing training sets of ANNs in Sect. 9. Section 4, about
representing data by graphs, may also contain some new ideas to Mathematical

273

1 3

Distance geometry and data science

Programming (MP) readers, although everything that we wrote can be easily recon-
structed from existing literature.

In the following, we use formal notations from different fields, which may be
confusing to some readers. The underlying assumption is that sentences are written
as is customary in axiomatic set theory: existential (∃) or universal (∀) quantifica-
tion on the left of the sentence by default, brackets for operator priority disambigua-
tion, standard arithmetic/transcendental operators/functions, ∨ to denote disjunction
(“or”), ∧ to denote conjunction (“and”) of two sentences, and ¬ to denote negation of
a sentence. Some shortcuts are used to decrease the number of formal symbols and
improve readability: “ ∀a ∈ A∀b ∈ B ” is shortened to “ ∀a ∈ A, b ∈ B ”, and simi-
larly for ∃ ; if K is an integer and k is an index, k ≤ K means k ∈ {1,… ,K} ; specifi-
cally, this is used in the arguments of ∀,∃,∑,

∏ quantifiers. The character → is used
formally in the definition of functions (e.g., f ∶ A → B denotes a function mapping
elements of the set A to elements of the set B) or as the relation “implies” between
to logical sentences within a formal language (i.e., A → B means ¬(A ∧ ¬B)); the
same relation in the meta-language is denoted ⇒ (i.e., A ⇒ B means “from A one
can deduce that B”, where the formal deduction is not specified).

The rest of this paper is organized as follows. In Sect. 2, we give a brief introduc-
tion to the field of MP, considered as a formal language for optimization. In Sect. 3,
we introduce the field of DG. In Sect. 4, we give details on how to represent four
types of data as graphs. In Sect. 5, we introduce methods for clustering on vectors as
well as directly on graphs. In Sect. 6, we present many methods for realizing graphs
in Euclidean spaces, most of which are based on MP. In Sect. 7, we introduce some
dimensional reduction techniques. In Sect. 8, we discuss the distance instability phe-
nomenon, which may have a serious negative impact on distance-based algorithms.
In Sect. 9, we present an application of clustering in natural language by means of
an ANN, and discuss how the aforementioned DG techniques can help to construct
the input part of the training set.

2 Mathematical programming

Many of the methods discussed in this survey are optimization methods. Specifi-
cally, they belong to MP, which is a field of optimization science and operation
research. While most of the readers of this paper should be familiar with MP, the
interpretation which we give to this term is more formal than most other treatments,
and we therefore discuss it in this section.

2.1 Syntax

MP is a formal language for describing optimization problems. The valid sentences
of this language are the MP formulations. Each formulation consists of an array p of
parameter symbols (which encode the problem input), an array x of n decision vari-
able symbols (which will contain the solution), an objective function f(p, x) with an

274 L. Liberti

1 3

optimization direction (either min or max), a set of explicit constraints gi(p, x) ≤ 0
for all i ≤ m , and some implicit constraints, which impose that x should belong to
some implicitly described set X. For example, some of the variables might be con-
strained to take integer values only, or to belong to the non-negative orthant, or to a
positive semidefinite (psd) cone. The standard MP formulation is as follows:

We note that indices, or sets thereof, appearing in the arguments of quantifiers such
as ∀,∑,

∏ cannot depend on the values of decision variables.
It is customary to define MP formulations over explicitly closed feasible sets,

to prevent issues with feasible formulations which have infima or suprema but no
optima. This forbids the use of strict inequality symbols in the MP language.

2.2 Taxonomy

MP formulations are classified according to syntactical properties. We list the most
important classes:

– if f , gi are linear in x and X is the whole space, Eq. (1) is a linear program (LP);
– if f , gi are linear in x and X = {0, 1}n , Eq. (1) is a binary linear program (BLP);
– if f , gi are linear in x and X is the whole space intersected with an integer lattice

(possibly defined on a subset of the spatial dimensions), Eq. (1) is a mixed-inte-
ger linear program (MILP);

– if f is quadratic in x, gi are linear in x, and X is the whole space, Eq. (1) is a quad-
ratic program (QP); if f is convex, then it is a convex QP (cQP);

– if f is linear in x, gi are quadratic in x, and X is the whole space or a polyhedron,
Eq. (1) is a quadratically constrained program (QCP); if gi are convex, it is a con-
vex QCP (cQCP);

– if f and gi are quadratic in x, and X is the whole space or a polyhedron, Eq. (1) is
a quadratically constrained quadratic program (QCQP); if f , gi are convex, it is a
convex QCQP (cQCQP);

– if f , gi are (possibly) nonlinear functions in x, and X is the whole space or a poly-
hedron, Eq. (1) is a nonlinear program (NLP); if f , gi are convex, it is a convex
NLP (cNLP);

– if x is a symmetric matrix of decision variables, f , gi are linear, and X is the set of
all psd matrices, Eq. (1) is a semidefinite program (SDP);

– if we impose some integrality constraints on any decision variable on formu-
lations from the classes QP, QCQP, NLP, and SDP, we obtain their respective
mixed-integer variants MIQP, MIQCQP, MINLP, and MISDP.

This taxonomy is by no means complete (see Liberti 2009, §3.2 and Williams 1999).

(1)
opt
x∈ℝn

f (p, x)

∀i ≤ m gi(p, x) ≤ 0
x ∈ X.

⎫
⎪
⎬
⎪⎭

275

1 3

Distance geometry and data science

2.3 Semantics

As in all formal languages, sentences are given a meaning by replacing variable
symbols with other mathematical entities. In the case of MP, semantics are assigned
by an algorithm, called solver, which looks for a numerical solution x∗ ∈ ℝn hav-
ing some optimality properties and satisfying the constraints. For example, BLPs
such as Eq. (19) can be solved by the CPLEX solver (IBM 2017). This allows users
to solve optimization problems just by “modelling” them (i.e., describing them as
an MP formulation) instead of having to invent a specific solution algorithm. As a
formal descriptive language, MP was shown to be Turing-complete (Liberti 2019;
Liberti and Marinelli 2014).

2.4 Reformulations

It is always the case that infinitely many formulations have the same semantics: this
can be seen in a number of trivial ways, such as, e.g., multiplying some constraint
gi ≤ 0 by any positive scalar in Eq. (1). This will produce an uncountable number of
different formulations with the same feasible and optimal set.

Less trivially, this property is precious insofar as solvers perform more or less
efficiently on different (but semantically equivalent) formulations. More generally,
a symbolic transformation on an MP formulation for which one can provide some
guarantees on the extent of the engendered modifications of the feasible and/or opti-
mal set is called a reformulation (Liberti 2009; Liberti et al. 2009, 2010).

Three types of reformulation guarantees will appear in this survey:

– the exact reformulation: the optima of the reformulated problem can be mapped
efficiently back to those of the original problem;

– the relaxation: the optimal objective function value of the reformulated problem
provides a bound (in the optimization direction) on the optimal objective func-
tion value of the original problem;

– the approximating reformulation: a sequence of formulations based on a param-
eter which also appears in a “guarantee statement” (e.g., an inequality provid-
ing a bound on the optimal objective function value of the original problem);
an additional desirable property is that, when the parameter tends to infinity, the
guarantee proves that formulations in the sequence tend to an exact reformulation
or to a relaxation.

Reformulations are only useful when they can be solved more efficiently than the
original problem. Exact reformulations are important, because the optima of the
original formulation can be retrieved easily. Relaxations are important to evaluate
the quality of solutions of heuristic methods which provide solutions without any
optimality guarantee; moreover, they are crucial in branch-and-bound (BB) type
solvers (such as, e.g., CPLEX). Approximating reformulations are important to
devise approximate solution methods for MP problems.

276 L. Liberti

1 3

There are some trivial exact reformulations which guarantee that Eq. (1) is much
more general than it would appear at first sight: for example, inequality constraints
can be turned into equality constraints by the addition of slack or surplus variables;
equality constraints can be turned to inequality constraints by listing the constraint
twice, once with ≤ sense and once with ≥ sense; minimization can be turned to max-
imization by the equation min f = −max−f (Liberti et al. 2009, §3.2).

2.4.1 Linearization

We note two easy, but very important types of reformulations.

– The linearization consists in identifying a nonlinear term t(x) appearing in f or gi ,
replacing it with an added variable yt , and then adjoining the defining constraint
yt = t(x) to the formulation.

– The constraint relaxation consists in removing a constraint: since this means that
the feasible region becomes larger, the optima can only improve with respect to
those of the original problem. Thus, relaxing constraints yields a relaxation of
the problem.

These two reformulation techniques are often used in sequence: one identifies prob-
lematic nonlinear terms, linearizes them, and then relaxes the defining constraints.
Carrying this out recursively for every term in an NLP (McCormick 1976) and only
relaxing the nonlinear defining constraints yield an LP relaxation of an NLP (Smith
and Pantelides 1999; Tawarmalani and Sahinidis 2004; Belotti et al. 2009).

3 Distance geometry

DG refers to a foundation of geometry based on the concept of distances instead of
those of points and lines (Euclid) or point coordinates (Descartes). The axiomatic
foundations of DG were first laid out in full generality by Menger (1928), and later
organized and systematized by Blumenthal (1953). A metric space is a pair (!, d) ,
where ! is an abstract set and d is a binary relation d ∶ ! ×! → ℝ+ obeying the
metric axioms:

1. ∀x, y ∈ ! d(x, y) = 0 ↔ x = y (identity);
2. ∀x, y ∈ ! d(x, y) = d(y, x) (symmetry);
3. ∀x, y, z ∈ ! d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

Based on these notions, one can define sequences and limits (through converging
distances), as well as open and closed sets (through membership of limit points
in sets). For any triplet x, y, z of distinct elements in ! , y is between x and z if
d(x, y) + d(y, z) = d(x, z) . This notion of metric betweenness can be used to char-
acterize convexity: a subset ! ⊆ " is metrically convex if, for any two points
x, z ∈ ! , there is at least one point y ∈ ! between x and z. The fundamental notion

277

1 3

Distance geometry and data science

of invariance in metric spaces is that of congruence: two metric spaces !," are
congruent if there is a mapping ! ∶ ! → " such that for all x, y ∈ ! we have
d(x, y) = d(!(x),!(y)).

The word “isometric” is often used as a synonym of “congruent” in many con-
texts, e.g., with isometric embeddings (Sect. 6.2.2). In this survey, we mostly use
“isometric” in relation to mappings from graphs to sets of vectors, such that the
weights of the edges are the same as the length of the segments between the vectors
corresponding to the adjacent vertices. In other words, “isometric” is mostly used
for partially defined metric spaces—only the distances corresponding to the graph
edges must be preserved.

While a systematization of the axioms of DG was only formulated in the twen-
tieth century, DG is pervasive throughout the history of mathematics, starting with
Heron’s theorem (computing the area of a triangle given the side lengths) (Heron
50AD), going on to Euler’s conjecture on the rigidity of (combinatorial) polyhe-
dra (Euler 1862), Cauchy’s creative proof of Euler’s conjecture for strictly convex
polyhedra (Cauchy 1813), Cayley’s theorem for inferring point positions from deter-
minants of distance matrices (Cayley 1841), Maxwell’s analysis of the stiffness of
frames (Maxwell 1864), Henneberg’s investigations on rigidity of structures (Hen-
neberg 1911), Gödel’s fixed point theorem for showing that a tetrahedron with
nonzero volume can be embedded isometrically (with geodetic distances) on the
surface of a sphere (Gödel 1986), Menger’s axiomatization of DG (Menger 1931),
yielding, in particular, the concept of the Cayley–Menger determinant (an extension
of Heron’s theorem to any dimension, which was used in many proofs of DG theo-
rems), up to Connelly’s disproof of Euler’s conjecture (Connelly 1978) in its most
general form. A more detailed account of many of these achievements is given in
Liberti and Lavor (2016). An extension of Gödel’s theorem on the sphere embed-
ding in any finite dimension appears in Liberti et al. (2016).

3.1 The distance geometry problem

Before the widespread use of computers, the main applied problem of DG was to
congruently embed finite metric spaces (i.e., with all known distances) in some
vector space. The first mention of the need for isometric embeddings using only a
partial set of distances probably appeared in Yemini (1978). This need arose from
wireless sensor networks: by estimating a set of distances for pairs of sensors
which are close enough to establish peer-to-peer communication, is it possible to
recover the position for all sensors in the network? Note that (a) distances can be
recovered from peer-to-peer communicating pairs by monitoring the amount of
battery required to exchange data; and (b) the positions for the sensors are in ℝK ,
with K = 2 (usually) or K = 3 (sometimes).

Thus, we can formulate the main problem in DG.
Distance geometry problem (DGP): given an integer K > 0 and a simple
undirected graph G = (V ,E) with an edge weight function d ∶ E → ℝ+ ,
determine whether there exists a realization x ∶ V → ℝK such that:

278 L. Liberti

1 3

We let n = |V| and m = |E| in the following.
We can re-state the DGP as follows: given a weighted graph G and the

dimension K of a vector space, draw G in ℝK in such a way that each edge is
drawn as a straight segment of length equal to its weight. We remark that the
realization x, defined as a function, is usually represented as an n × K matrix
x = (xuk | u ∈ V ∧ k ≤ K) , which may also be seen as an element of ℝnK.

Note that we usually write xu, xv and duv for x(u), x(v) and d(u, v). If the norm used
in Eq. (2) is the Euclidean (!2) norm, then the above equation is usually squared, so
it becomes a multivariate polynomial of degree two:

While most of the distances in this paper will be Euclidean, we shall also mention
the so-called linearizable norms (D’Ambrosio and Liberti 2017), i.e. !1 and !∞ ,
because they can be described using piecewise affine functions. We also remark that
the input of the DGP can also be represented by a partial n × n distance matrix D
where only the entries duv corresponding to {u, v} ∈ E are specified.

Many more notions about the DGP can be found in Liberti et al. (2014), Liberti
and Lavor (2017). Recent results on the DGP related to graph theory are given in
Lavor et al. (2019), Lavor et al. (2019); for recent results on the application to pro-
tein conformation, see Malliavin et al. (2019).

3.2 Number of solutions

A DGP instance may have no solutions if the given distances do not define a met-
ric, a finite number of solutions if the graph is rigid, or uncountably many solu-
tions if the graph is flexible.

Restricted to the !2 norm, there are several different notions of rigidity. We
only define the simplest, which is easiest to explain intuitively: if we consider the
graph as a representation of a joint-and-bar framework, a graph is flexible if the
framework can move (excluding translations and rotations) and rigid otherwise.
The formal definition of rigidity of a graph G = (V ,E) involves: (a) a mapping !
from a realization x ∈ ℝnK to the partial distance matrix:

and (b) the completion !(G) of G, defined as the complete graph on V. We want
to say that G is rigid if, were we to move x ever so slightly (excluding translations
and rotations), !(x) would also vary accordingly. We formalize this idea indirectly: a
graph is rigid if the realizations in a neighbourhood ! of x corresponding to changes
in !(x) are equal to those in the neighbourhood "̄ of a realization x̄ of !(G) (Liberti
and Lavor 2017, Ch. 7). We note that realizations x̄ ∈ "̄ correspond to small vari-
ations in !("(G)) : this definition makes sense, because !(G) is a complete graph,

(2)∀{u, v} ∈ E ‖x(u) − x(v)‖ = d(u, v).

(3)∀{u, v} ∈ E ‖xu − xv‖22 = d2
uv
.

!(x) = (‖xu − xv‖ | {u, v} ∈ E);

279

1 3

Distance geometry and data science

which implies that its distance matrix is invariant, and hence, "̄ may only contain
congruences.

We thus obtain the following formal characterization of rigidity (Asimow and
Roth 1978):

Let us parse Eq. (4): for a partial distance matrix Y, !−1(Y) corresponds to all of
the realizations that give rise to Y (which are uncountably many because of congru-
ences). Now, let x be a realization of the partial distance matrix Y, and x̄ a realization
of the metric completion Ȳ of Y (if it exists). Moreover, ! is a neighbourhood of x
and "̄ is a neighbourhood of x̄ (in the vector space ℝnK). Since we know that Ȳ cor-
responds to a realizable complete graph, its framework is rigid. Therefore, the set
!−1(!(x̄)) ∩ "̄ only contains realizations obtained from x̄ by means of congruences.
Equation (4) states that the framework realized by x is rigid if the realizations of the
partial distance matrix of x can be obtained from x only from congruences: in other
words, if it “behaves like” the framework of a complete graph.

Uniqueness of solution (modulo congruences) is sometimes a necessary feature
in applications. Many different sufficient conditions to uniqueness have been found
(Liberti et al. 2014, §4.1.1). By way of example as concerns the number of DGP
solutions in graphs, a complete graph has at most one solution modulo congruences,
as remarked above. It was proved in Liberti et al. (2013) that protein backbone
graphs have a realization set having power of two cardinality with probability 1. As
shown in Fig. 1 (bottom row), a cycle graph on four vertices has uncountably many
solutions.

On the other hand, the remaining possibility of a countably infinite set of reali-
zations of a DGP instance cannot happen, as shown in Theorem 1. This result is a
simple corollary of a well-known theorem of Milnor (1964). It was noted informally
in Liberti et al. (2014, p. 27) without details; we provide a proof here.

(4)!−1 (!(x)) ∩ ! = !−1 (!(x̄)) ∩ !̄ .

Fig. 1 Instances with one, two, and uncountably many realizations

280 L. Liberti

1 3

Theorem 1 No DGP instance may have an infinite but countable number of
solutions.

Proof Equation (3) is a system of m quadratic equations associated with the instance
graph G. Let X ⊆ ℝnK be the variety associated to Eq. (3). Now, suppose X is count-
able: then, no connected component of X may contain uncountably many elements.
By the notion of connectedness, this implies that every connected component is an
isolated point in X. Since X is countable, it must contain a countable numbers of
connected components. By Milnor (1964), the number of connected components of
X is finite; in particular, it is bounded by O(3nK) . Hence, the number of connected
components of X is finite. Since each is an isolated point, i.e., a single realization of
G, |X| is finite. ◻

3.3 Applications

The DGP is an inverse problem with many applications to science and engineering.

3.3.1 Engineering

When K = 1 , a typical application is that of clock synchronization (Singer 2011).
Network protocols for wireless sensor networks are designed so as to save power in
communication. When synchronization and battery usage are key, the peer-to-peer
communications needed to exchange the timestamp can be limited to the exchange
of a single scalar, i.e., the time (or phase) difference. The problem is then to retrieve
the absolute times of all of the clocks, given some of the phase differences. This
is equivalent to a DGP on the time line, i.e., in a single dimension. We already
sketched above the problem of sensor network localization (SNL) in K ∈ {2, 3}
dimensions. In K = 3 , we also have the problem of controlling fleets of underwa-
ter autonomous vehicles (UAV), which requires the (fast) localization of each UAV
(Bahr et al. 2009; Tabaghi et al. 2019).

3.3.2 Science

An altogether different application in K = 3 is the determination of protein structure
from nuclear magnetic resonance (NMR) experiments (Wüthrich 1989): proteins are
composed of a linear backbone and some side-chains. The backbone determines a
total order on the backbone atoms, by which follow some properties of the protein
backbone graph. Namely, the distances from vertex i to vertices i − 1 and i − 2 in
the order are known almost exactly because of chemical information, and the dis-
tance between vertex i and vertex i − 3 is known approximately because of NMR
output. Moreover, some other distances (with larger index difference) may also be
known because of NMR—typically, when the protein folds and two atoms from dif-
ferent folds happen to be close to each other. If we suppose all of these distances are
known exactly, we obtain a subclass of DGP which is called discretizable molecu-
lar DGP (DMDGP). The structure of the graph of a DMDGP instance is such that

281

1 3

Distance geometry and data science

vertex i is adjacent to its three immediate predecessors in the order: this yields a
graph which consists of a sequence of embedded cliques on 4 vertices, the edges of
which are called discretization edges, with possibly some extra edges called pruning
edges.

If we had to realize this graph with K = 2 , we could use trilateration (Eren et al.
2004): given three points in the plane, compute the position of a fourth point at
known distance from the three given points. Trilateration gives rise to a system of
equations which has either no solution (if the distance values are not a metric) or a
unique solution, since three distances in two dimensions are enough to disambigu-
ate translations, rotations, and reflections. Due to the specific nature of the DMDGP
graph structure, it would suffice to know the positions of the first three vertices in
the order to be able to recursively compute the positions of all other vertices. With
K = 3 , however, there remains one degree of freedom which yields an uncertainty:
the reflection.

We can still devise a combinatorial algorithm which, instead of finding a unique
solution in n − K trilateration steps, is endowed with back-tracking over reflections.
Thus, the DMDGP can be solved completely (meaning that all incongruent solu-
tions can be found) in worst-case exponential time using the branch-and-prune (BP)
algorithm (Liberti et al. 2008). The DMDGP has other very interesting symmetry
properties (Liberti et al. 2014), which allow for an a priori computation of its num-
ber of solutions (Liberti et al. 2013), as well as for generating all of the incongruent
solutions from any one of them (Mucherino et al. 2012); moreover, it turns out that
BP is a fixed-parameter tractable (FPT) algorithm, which makes the DMDGP a FPT
problem (Liberti et al. 2013).

3.3.3 Machine learning

So far, we have only listed applications where K is fixed by the constraints of physi-
cal space. The focus of this survey, however, is a case where K may vary according
to the data: if we need to map graphs to vectors in view of preprocessing the input of
an ML methodology, we may choose a dimension K appropriate to the methodology
and application at hand. See Sect. 9 for an example.

3.4 Complexity

3.4.1 Membership in NP

The DGP is clearly a decision problem, so one may ask whether it is in NP. As stated
above, with real number input in the edge weight function, it is clear that it is not,
since the Turing computation model cannot be applied. We therefore consider its
rational equivalent, where d ∶ E → ℚ+ , and ask the same question. It turns out that,
for K > 1 , we do not know whether the DGP is in NP: the issue is that the solutions
of sets of quadratic polynomials over ℚ may well be (algebraic) irrational. We, there-
fore, have the problem of establishing that a realization matrix x with algebraic com-
ponents satisfies Eq. (3) in polynomial time. While some compact representations of

282 L. Liberti

1 3

algebraic numbers exist (Liberti 2019, §2.3), it is not known how to employ them in
the polynomial time verification of Eq. (3). Negative results for the most basic repre-
sentations of algebraic numbers were derived in Beeker et al. (2013).

On the other hand, it is known that the DGP is in NP for K = 1 : as this case
reduces to realizing graphs on a single real line, the fact that all of the given dis-
tances are in ℚ means that the distance between any two points on the line is rational:
therefore, if one point is rational, then all the others can be obtained as sums and
differences of this one point and a set of rational values, which implies that there is
always a rational realization. Naturally, verifying whether a rational realization satis-
fies Eq. (3) can be carried out in polynomial time.

3.4.2 NP-hardness

It was proved in Saxe (1979) that the DGP is NP-hard, even for K = 1 by reduction
from Partition to the DGP on simple cycle graphs, see a detailed proof in Liberti and
Lavor (2017, §2.4.2). Hence it is actually NP-complete for K = 1 . In the same paper
(Saxe 1979), using more complicated gadgets, it was also shown that the DGP is
NP-hard for each fixed K and with edge weights restricted to taking values in {1, 2}
(reduction from 3SAT).

A sketch of an adaptation of the reduction to cycle graphs is given in Yemini
(1979) for DMDGP graphs, showing that they are an NP-hard subclass of the DGP.
A full proof following a similar idea can be found in Lavor et al. (2012).

4 Representing data by graphs

It may be obvious to most readers that data can be naturally represented by
graphs. This is immediately evident whenever data represent similarities or dis-
similarities between entities in a vertex set V. In this section we make this intui-
tion more explicit for a number of other relevant cases.

An unweighted graph represents a binary relation on the entities represented by
vertices: u, v are related if and only if the edge {u, v} is in the graph. Scalar weights
assigned to edges can measure the strength or weakness of the relation; edge colors
encode a discrete attribute of the relation; other numeric or symbolic weight types
are used to encode other relation attributes. Parallel edges can be used to define dif-
ferent relations on the same set of entities. Edge weights are often used to represent
distance (as in the DGP), similarity (the larger the weight, the more similar), and
dissimilarity (the larger the weight, the less similar) between pairs of entities. Simi-
larity/dissimilarity weights are often normalized to range in [0, 1].

4.1 Processes

The description of a process, be it chemical, electric/electronic, mechanical, com-
putational, logical, or otherwise, is practically always based on a directed graph, or

283

1 3

Distance geometry and data science

digraph, G = (N,A) . The set of nodes N represents the various stages of the process,
while the arcs in A represent transitions between stages.

Formalizations of this concept may possibly be first ascribed to the organization
of knowledge proposed by Aristotle into genera and differences, commonly repre-
sented with a tree (a class of digraphs). While no graphical representation of this
tree ever came to us from Aristotelian times, the commentator Porphyry of Tyre
(third century AD) did refer to a representation which was actually drawn as a tree
(at least since the tenth century Verboon 2014). Many interesting images can be
found in http://last-tree.scott bot.net/illus trati ons/, see e.g. Fig. 2.

A general treatment of process diagrams in mechanical engineering is given in
Gilbreth and Gilbreth (1921). Bipartite graphs with two node classes representing
operations and materials have been used in process network synthesis in chemical
engineering (Friedler et al. 1992). Circuit diagrams are a necessary design tool for
any electrical and electronic circuit (Seshu and Reed 1961). Software flowcharts
(i.e., graphical description of computer programs) have been used in the design of
software so pervasively that one of the most important results in computer science,
namely the Böhm–Jacopini’s theorem on the expressiveness of universal computer

Fig. 2 A tree diagram from
F. Bacon’s Advancement of
Learning, Oxford 1640

http://last-tree.scottbot.net/illustrations/

284 L. Liberti

1 3

languages, is based on a formalization of the concept of flowchart (Böhm and
Jacopini 1966). The American National Standards Institute (ANSI) set standards for
flowcharts and their symbols in the 1960s. The International Organization for Stand-
ardization (ISO) adopted the ANSI symbols in 1970 (Wikipedia: Flowchart 2019).
The cyclomatic number |E| − |V| + 1 of a graph, namely the size of a cycle basis of
the cycle space, was adopted as a measure of process graph complexity very early
(see Paton 1969; Deo et al. 1982; Brambilla and Premoli 2001; Amaldi et al. 2009
and Knuth 1997, §2.3.4.1).

An evaluation of flowcharts to process design is the unified modelling language
(UML) (Object Management Group 2005), which was mainly conceived to aid the
design of software-based systems, but was soon extended to much more general pro-
cesses. With respect to flowcharts, UML also models interactions between software
systems and hardware systems, as well as with system users and stakeholders. When
it is applied to software, UML is a semi-formal language, in the sense that it can
automatically produce a set of header files with the description of classes and other
objects, ready for code development in a variety of programming languages (Liberti
2010).

4.2 Text

One of the foremost issues in linguistics is the formalization of the rules of gram-
mar in natural languages. On one hand, text is scanned linearly, word by word. On
the other hand, the sense of a sentence becomes apparent only when sentences are
organized as trees (Chomsky 1965). This is immediately evident in the computer
parsing of formal languages, with a “lexer” which carries out the linear scanning,
and a “parser” which organizes the lexical tokens in a parsing tree (Levine et al.
1995). The situation is much more complicated for natural languages, where no
rule of grammar is ever absolute, and any proposal for overarching principles has so
many exceptions that it is hard to argue in their favor (Moro 2008).

The study of natural languages is usually split into syntax (how the sentence is
organized), semantics (the sense conveyed by the sentence), and pragmatics (how
the context when the sentence is uttered influences the meaning, and the impact that
the uttered sentence has on the context itself) (Morris 1946). The current situation
is that we have been able to formalize rules for natural language syntax (namely
turning a linear text string into a parsing tree) fairly well, using probabilistic pars-
ers (Manning and Schütze 1999) as well as supervised ML (Collobert et al. 2011).
We are still far from being able to successfully formalize semantics. Semiotics sug-
gested many ways to assign semantics to sentences (Eco 1984), but none of these is
immediately and easily implementable as a computer program.

Two particularly promising suggestions are the organization of knowledge into
an evolving encyclopedia, and the representation of the sense of words in a “space”
with “semantic axes” (e.g., “good/bad”, “white/black”, and “left/right”...). The first
suggestion yielded organized corpora such as Miller (1995), which is a tree rep-
resentation of words, synonyms, and their semantical relations, not unrelated to
a Porphyrian tree (Sect. 4.1). There is still a long way to go before the second is

285

1 3

Distance geometry and data science

successfully implemented, but we see in the Google Word Vectors (Mikolov et al.
2013) the start of a promising path. On the other hand some easy semantical inter-
pretations, such as analogies, are apparently not so well preserved in these word vec-
tors despite the publicity (Khalife et al. 2019).

For pragmatics, the situation is even more dire; some suggestions for representing
knowledge and cognition w.r.t. the state of the world are given in Minsky (1986).
See Wikipedia: Computational pragmatics (2019) for more information.

Insofar as graphs are concerned, syntax is organized into tree graphs, and seman-
tics is often organized in corpora that are also trees, or directed acyclic graphs
(DAGs), e.g., WordNet and similar.

4.2.1 Graph-of-words

In Sect. 9 we will consider a graph representation of sentences known as the graph-
of-words (Rousseau and Vazirgiannis 2013). Given a sentence s represented as a
sequence of words s = (s1 ,… , sm) , an n-gram is a subsequence of n consecutive
words of s. Each sentence obviously has at most (m − n + 1) n-grams. In a graph-of-
words G = (V ,E) of order n, V is the set of words in s; two words have an edge only
if they appear in the same n-gram; the weight of the edge is equal to the number
of n-grams in which the two words appear. This graph may also be enriched with
semantic relations between the words, obtained, e.g., from WordNet.

4.3 Databases

The most common form of data collection is a database; among the existing data-
base representations, one of the most popular is the tabular form used in spread-
sheets and relational databases.

A table is a rectangular array A with n rows (the records) and m columns (the
features), which is (possibly only partially) filled with values. Specifically, each fea-
ture column must have values of the same type (when present). If Arf is filled with
a value, we denote this !"# (r, f) , for each record index r and feature index f. We can
represent this array via a bipartite graph B = (R,F,E) where R is the set of record
indices, F is the set of feature indices, and there is an edge {r, f } ∈ E if the (r, f)
th component Arf of A is filled. A label function ! assigns the value Arf to the edge
{r, f } . While this is an edge-labelled graph, the labels (i.e., the contents of A) may
not always be interpretable as edge weights—so this representation is not yet what
we are looking for.

We now assume that there is a symmetric function df ∶ A⋅,f × A⋅,f → ℝ+ defined
over elements of the column A⋅,f : since all elements in a column have the same type,
such functions can always be defined in practice. We note that df is undefined when-
ever one of the two arguments is not filled with a value. We can then define a com-
posite function d ∶ R × R → ℝ+ as follows:

286 L. Liberti

1 3

Next, we define a graph G = (R,E′) over the records R, where

weighted by the function d ∶ E′ → ℝ+ defined in Eq. (5). We call G the database
distance graph. Analysing this graph yields insights about record distributions, simi-
larity, and differences.

4.4 Abductive inference

According to Eco (1983), there are three main modes of rational thought, corre-
sponding to three different permutations of the concepts “hypothesis” (call this H),
“prediction” (call this P), and “observation” (call this O). Each of the three permuta-
tions singles out a pair of concepts and a remaining concept. Specifically:

1. deduction: H ∧ P → O;
2. (scientific) induction: O ∧ P → H;
3. abduction: H ∧ O → P.

Take, for example, the most famous syllogism about Socrates being mortal:

– H: “all humans are mortal”;
– P: “Socrates is human”;
– O: “Socrates is mortal”.

The syllogism is an example of deduction: we are given H and P, and deduce O.
Note also that deduction is related to modus ponens: if we let A(x) be the sentence “x
is human” and B(x) be the sentence “x is mortal”, and let s be the constant denoting
Socrates, the syllogism can be restated as:

 Deduction infers truths (propositional logic) or provable sentences (first-order and
higher order logic), and is mostly used by logicians and mathematicians.

Scientific induction1 exploits observations and verifies predictions to derive a
general hypothesis: if a large quantity of predictions is verified, a general hypoth-
esis can be formulated. In other words, given O and P we infer H. Scientific induc-
tion can never provide proofs in sufficiently expressive logical universes, no matter
the amount of observations and verified predictions. Any false prediction, however,

(5)∀r ≠ s ∈ R d(r, s) =

⎧
⎪
⎨
⎪⎩

∑
f ∈ F

!"# (r, f) ∧ !"# (s, f)

df (Arf ,Asf)

undefined if ∃f ∈ F (¬!"# (r, f) ∨ ¬!"# (s, f)).

E′ = {{r, s} | r ≠ s ∈ R ∧ d(r, s) is defined},

[∀x (A(x) → B(x)) ∧ A(s)] → B(s).

1 Not to be confused with mathematical induction.

287

1 3

Distance geometry and data science

disproves the hypothesis (Popper 1968). Scientific induction is about causality; it is
mostly used by physicists and other natural scientists.

Abduction (Douven 2017) infers educated guesses about a likely state of a known
universe from observed facts: given H and O, we infer P. Following (McCulloch
1961),

Deductions lead from rules and cases to facts—the conclusions. Inductions
lead toward truth, with less assurance, from cases and facts, toward rules as
generalizations, valid for bound cases, not for accidents. Abductions, the apa-
goge of Aristotle, lead from rules and facts to the hypothesis that the fact is a
case under the rule.

According to Eco (1983), abduction can be traced back to Peirce (1878), who cited
Aristotle as a source. The author of Proni (2016) argues that the precise Aristotelian
source cited by Peirce fails to make a valid reference to abduction; however, he also
concedes that there are some forms of abduction foreshadowed by Aristotle in the
texts where he defines definitions.

Let us see an example of abduction. Sherlock Holmes is called on a crime
scene where Socrates lies dead on his bed. After much evidence is collected and
a full-scale investigation is launched, Holmes ponders some possible hypotheses:
for example, all rocks are dead. The prediction that is logically consistent with
this hypothesis and the observation that Socrates is dead would be that Socrates
is a rock. After some unsuccessful tests using Socrates’ remains as a typical rock,
Holmes eliminates this possibility. Following a few more untenable suggestions by
Dr. Watson, Holmes considers the hypothesis that all humans are mortal. The logi-
cally consistent prediction is that Socrates is a man, which, in a dazzling display
of investigative abilities, Holmes finds it to be exactly the case. Thus, Holmes bril-
liantly solves the mystery, while Inspector Lestrade was just about ready to give up
in despair. Abduction is about plausibility; it is the most common type of human
inference.

Abduction and scientific induction are the basis of learning: after witnessing a set
of facts, and postulating hypotheses for relate them, we are able to make and then
verify predictions about the future. Obviously, abductions can, and in fact often turn
out to, be wrong, e.g.:

– H: all beans in the bag are white;
– O: there is a white bean next to the bag;
– P: the bean was in the bag.

The white bean next to the bag, however, might have been placed there before the
bag was even in sight. With this last example, we note that abductions are inferences
often used in statistics. For an observation O, a set H of hypotheses and a set of pos-
sible predictions P , we must evaluate the probability,

∀ H ∈ H, P ∈ P p HP = !(O | O,H abduce P),

288 L. Liberti

1 3

and then choose the pair (H,P) having largest probability p HP (see a simplified
example in Fig. 3).

When more than one observation is collected, one can also compare distributions
to make more plausible predictions, see Fig. 4. Abduction appears close to the kind
of analysis often required by data scientists.

4.4.1 The abduction graph

We now propose a protocol for modelling good predictions from data, by means of
an abduction graph. We consider:

– a set O of observations O;
– a set I ⊆ H × P of abductive premises, namely pairs (H, P).

First, we note that different elements of I might be logically incompatible (e.g., there
may be contradictory sets of hypotheses or predictions). We must therefore extract

white bean beside bag

bag of white beans→bean was in bag

0.
3 white bean field closeby→bean came from field

0.
25

farmer market yesterday→bean came from market0.1

kid was playing with beans→kid lost a bean

0.15

UFOs fueled with beans→bean clearly a UFO sign

0.2

Fig. 3 Evaluating probabilities in abduction. From left to right, observation O abduces the inference H →
P

white bean beside bag

bag of white beans→bean was in bag
0.3

white bean field closeby→bean came from field0.25

farmer market yesterday→bean came from market

0.1

kid was playing with beans→kid lost a bean

0.15

UFOs fueled with beans→bean clearly a UFO sign

0
.2

red bean beside bag

0.01

0.01

0.49

0.29

0.2

Fig. 4 Probability distributions over abduction inferences assigned to observations

289

1 3

Distance geometry and data science

a large set of logically compatible subsets of I . Consider the relation ∼ on I with
h ∼ k , meaning that h, k ∈ I are logically compatible. This defines a graph (I,∼) .
We then find the largest (or at least large enough) clique Ī in (I,∼).

Next, we define probability distributions p O on Ī for each O ∈ O . We let
E = {{ O , O ′} | !(p O , p O ′

) ≤ !0} , where ! evaluates dissimilarities between
probability distributions, e.g., ! could be the Kullback–Leibler (KL) divergence
(Kullback and Leibler 1951), and !0 a given threshold. Thus, E defines a relation
on O if p O , p O ′ are sufficiently similar. We can finally define the graph F = (O,E) ,
with edges weighted by !.

If we think of Sherlock Holmes again, the abduction graph encodes sets of clues
compatible with the most likely consistent explanations.

5 Common data science tasks

DS refers to practically every task or problem defined over large amounts of data.
Even problems in P, and sometimes even those for which there exist linear time
algorithms, may take too long when confronted with large-scale instances. We are
not going to concern ourselves here with evaluation problems (such as, e.g., comput-
ing means or variances—which can be a daunting task for extremely large datasets),
but rather with decision problems. In particular, it appears that a very common fam-
ily of decision problems solved on large masses of data are those that help people
make sense of the data themselves: in other words, classification and clustering.

There is no real functional distinction between the two, as both aim at partition-
ing the data into a relatively small number of subsets. However, “classification” usu-
ally refers to the problem of assigning class labels to data elements, while “clus-
tering” indicates a classification based on the concept of similarity or distance,
meaning that similar data elements should be in the same class. This difference is
usually more evident in the algorithmic description: classification methods tend to
exploit information inherent to elements, while clustering methods consider infor-
mation relative to pairs of elements. It also appears that the term “clustering” is used
in unsupervised learning, whereas “classification” is more often used in supervised
learning. In the rest of this paper, we shall adopt a functional view, and refer to
either interchangeably.

Given a set P of n entities and some pairwise similarity function ! ∶ P × P → ℝ+ ,
clustering aims at finding a set of k subsets C1 ,… ,Ck ⊆ P (with their union cover-
ing P) such that each cluster contains as many similar entities, and as few dissimilar
entities, as possible. Cluster analysis—as a field—grew out of statistics in the course
of the second half of the 20th century, encouraged by the advances in computing
power. However, some early forms of cluster analysis may also be attributed to ear-
lier scientists, e.g. Aristotle, Buffon, Cuvier, and Linné (Hansen and Jaumard 1997).

We note that “clustering on graphs” may refer to two separate tasks.

A. Cluster the vertices of a given graph.
B. Cluster the graphs in a given set.

290 L. Liberti

1 3

Both may arise depending on the application at hand. The proposed DG techniques
for realizing graphs into vector spaces apply to both of these tasks (see Sect. 9.4.2).

As mentioned above, this paper focuses on transforming graphs into vectors so
as to be able to use vector-based methods for classification and clustering. We shall
first survey some of these methods. We shall then mention some methods for classi-
fying/clustering graphs directly (i.e., without needing to transform them into vectors
first).

5.1 Clustering on vectors

Methods for classification and clustering on vectors are usually seen as part of ML.
They are partitioned into unsupervised and supervised learning methods. The for-
mer are usually based on some measure of similarity or dissimilarity defined over
pairs of elements. The latter require a training set, which they exploit to find a set of
optimal parameter values for a parametrized “model” of the data.

5.1.1 The k-means algorithm

The k-means algorithm is a well-known heuristic for solving the following problem
(Aloise et al. 2012).

Minimum sum-of-squares clustering (MSSC). Given an integer k > 0 and a set
P ⊂ ℝm of n vectors, find a cover C = {C1 ,… ,Ck} of P such that the function

is minimum, where

It is interesting to note that the MSSC problem can also be seen as a discrete ana-
logue of the problem of partitioning a body into smaller bodies having minimum
sum of moments of inertia (Steinhaus 1956).

The k-means algorithm improves a given initial clustering C by means of the two
following operations:

1. compute centroids cj = !"#$%&'((Cj) for each j ≤ k;
2. for any pair of clusters Ch,Cj ∈ C and any point x ∈ Ch , if x is closer to cj than to

ch , move x from Ch to Cj.

These two operations are repeated until the clustering C no longer changes. Since the
only decision operation (i.e., operation 2) is effective only if it decreases f (C) , it fol-
lows that k-means is a local descent algorithm. In particular, this very simple analy-
sis offers no guarantee on the approximation of the objective function. For more
information on the k-means algorithm, see (Blömer et al. 2016).

(6)f (C) =
∑
j≤k

∑
x∈Cj

‖x − !"#$%&'((Cj)‖22

(7)!"#$%&'((Cj) =
1

|Cj|
∑
x∈Cj

x.

291

1 3

Distance geometry and data science

The k-means algorithm is an unsupervised learning technique (Jain et al. 1999),
insofar as it does not rest on a data model with parameters to be estimated prior to
actually finding clusters. Moreover, the number “k” of clusters must be known a
priori.

5.1.2 Artificial neural networks

An ANN is a parametrized model for representing an unknown function. Like all
such models, it needs data to estimate suitable values for the parameters: this puts
ANNs in the category of supervised ML. An ANN consists of two MP formulations
defined over a graph and a training set.

An ANN is formally defined as a triplet N = (G,T ,!) , where:

– G = (V ,A) is a directed graph, with a node weight function b ∶ V → ℝ (thresh-
old at a node), and an edge weight function w ∶ A → ℝ (weight on an arc); more-
over, a subset I ⊂ V of input nodes with |I| = n and a subset O ⊂ V of output
nodes with |O| = k are given in G;

– T = (X, Y) is the training set, where X ⊂ ℝn (input set), Y ⊂ ℝk (output set), and
|X| = |Y|;

– ! = (!j | j ∈ V∖I) is a sequence of activation functions !j ∶ ℝ → ℝ (many com-
mon activation functions map injectively into [0, 1]).

The two MP formulations assigned to an ANN describe the training problem and the
evaluation problem. In the training problem, appropriate values for b, w are found
using T. In the evaluation problem, a given input vector in ℝn (usually not part of
the input training set X) is mapped to an output vector in ℝk . The training problem
decides values for the ANN parameters when seen as a model for an unknown func-
tion mapping the training input X to the training output Y. After the model is trained,
it can be evaluated on new (unseen) input.

For a node i ∈ V , we let N−(i) = {j ∈ V | (j, i) ∈ A} be the inward star of i. For a
tensor si1 ,…,ir

 , where ij ∈ Ij for each j ≤ r , we denote a slice of s, defined by subsets
Jj ⊆ Ij for some j ≤ r , by s[J1]⋯ [Jr].

We discuss the evaluation phase first. Given values for w, b and an input vector
x ∈ ℝn , we decide a node weight function u over V as follows:

We remark that Eq. (9) is not an optimization but a decision problem. Nonethe-
less, it is an MP formulation (formally with zero objective function). After solv-
ing Eq. (9), one retrieves in particular u[O], which correspond to an output vec-
tor in u[O] = y ∈ ℝk . When G is acyclic, this decision problem reduces to a simple
computation, which “propagates” the values of u from the input nodes and forward

(8)uI =x

(9)∀j ∈ V∖I uj = !j

(∑
i∈N− (j)

wijui + bj

)
.

292 L. Liberti

1 3

through the network until they reach the output nodes. If G is not acyclic, different
solution methods must be used (Anderson 1995; Floreano 1996; Goodfellow et al.
2016).

The training problem is given in Eq. (10). We let N be the index set for the train-
ing pairs (x, y) in T (we recall that |X| = |Y|), and introduce a two-dimensional ten-
sor v of decision variables indexed by N and V:

where !"#$(A,B) is a dissimilarity function taking dimensionally consistent tensor
arguments A, B, which becomes closer to zero as A and B get closer. The solution
of the training problem yields optimal values w∗, b∗ for the arc weights and node
biases.

The training problem is, in general, a nonconvex optimization problem (because
of the products between w and v, and of the ! functions occurring in equations),
which may have multiple global optima: finding them with state-of-the-art methods
might require exponential time. For specific types of graphs and choices of objective
function !"#$(⋅, ⋅) , the training problem may turn out to be convex. For example, if:
(a) G is a DAG, (b) V = I∪̇O is the disjoint union of I and O, (c) the induced sub-
graphs G[I] and G[O] are empty (i.e., they have no arcs), (d) the activation functions
are all sigmoids !(z) = (1 + exp(−z))−1 , and (e) !"#$(⋅, ⋅) is the negative logarithm of
the likelihood function:

(where X = (xt | t ∈ N) is the list of input training vectors) summed over all output
nodes i ∈ O , then it can be shown that the training problem is convex (Jordan 1995;
Schumacher et al. 1996).

In contemporary treatments of ANNs, the underlying graph G is almost always
assumed to be a DAG. In modern application programming interfaces (API), the
acyclicity of G is enforced by recursively replacing vtj with the corresponding
expression in !(⋅).

Most algorithms usually solve Eq. (10) only locally and approximately. Usually,
they employ a technique called stochastic gradient descent (SGD) (Bottou 2012),
which can be applied after the constraints of Eq. (10) have been relaxed and added
as penalty terms to the objective function. This is a form of gradient descent where,
at each iteration, the gradient of a multivariate function is estimated by partial gra-
dients with respect to a randomly chosen subset of variables (Moitra 2018, p. 100).

The functional definition of an optimum for the training problem Eq. (10) is
poorly understood, as finding precise local (or global) optima is considered “overfit-
ting”. In other words, global or almost global optima of Eq. (10) lead to evaluations

(10)

min
w,b,v

!"#$(v[N][O],Y)

v[N][I] = X

∀t ∈ N, j ∈ V∖I vtj = !j

(
∑

i∈N− (j)

wijvti + bj

)
,

⎫
⎪
⎪
⎬
⎪
⎪⎭

∏
t∈N

!
(
w⊤xt + bi

)yt(1 − !
(
w⊤xt + bi

))1 −yt ,

293

1 3

Distance geometry and data science

which are possibly perfect for pairs in the training set, but unsatisfactory for yet
unseen input. Currently, finding “good” optima of ANN training problems is mostly
based on experience, although a considerable effort is under way to reach a sound
definition of optimum (Dauphin et al. 2014; Yun et al. 2018; Haeffele and Vidal
2017; Choromanska et al. 2015).

The main reason why ANNs are so popular today is that they have proven hugely
successful at image recognition (Goodfellow et al. 2016), and also extremely good
at accomplishing other tasks, including natural language processing (Collobert et al.
2011). Many efficient applications of ANNs to complex tasks involve interconnected
networks of ANNs of many different types (Bengio et al. 2007).

ANNs originated from an attempt to simulate neuronal activity in the brain:
should the attempt prove successful, it would realize the old human dream of endow-
ing a machine with human intelligence (ben Judah of Worms XII-XIII Century).
While ANNs today display higher precision than humans in some image recogni-
tion tasks, they may also be easily fooled by a few appropriately positioned pixels
of different colors, which places the realization of “human machine intelligence”
still rather far in the future—or even unreachable, e.g., if Penrose’s hypothesis of
quantum activity in the brain influencing intelligence at a macroscopic level holds
(Penrose 1989). For more information about ANNs, see Schmidhuber (2015) and
Goodfellow et al. (2016).

5.2 Clustering on graphs

While we argue in this paper that DG techniques allow the use of vector cluster-
ing methods to graph clustering, there also exist methods for clustering on graphs
directly. We discuss two of them, both applicable to the task of clustering vertices of
a given graph (Task A on p. 20).

5.2.1 Spectral clustering

Consider a connected graph G = (V ,E) with an edge weight function w ∶ E → ℝ+ .
Let A be the adjacency matrix of G, with Aij = wij for all {i, j} ∈ E , and Aij = 0 oth-
erwise. Let ! be the diagonal weighted degree matrix of G, with !ii =

∑
j≠i Aij and

!ij = 0 for all i ≠ j . The Laplacian of G is defined as L = ! − A.
Spectral clustering aims at finding a minimum balanced cut U ⊂ V in G by look-

ing at the spectrum of the Laplacian of G. For now, we give the word “balanced”
only an informal meaning: it indicates the fact that we would like clusters to have
approximately the same cardinality (we shall be more precise below). Removing the
cutset !(U) (i.e., the set of edges between U and V∖U) from G yields a two-way
partitioning of V. If |!(U)| is minimum over all possible cuts U, then the two sets
U,V∖U should both intuitively induce subgraphs G[U] and G[V∖U] having more
edges than those in !(U) . In other words, the criterion which we are interested in
maximizes the intra-cluster edges of the subgraphs of G induced by the cluster while
minimizing the inter-cluster edges of the corresponding cutsets.

294 L. Liberti

1 3

We remark that each of the two partitions can be recursively partitioned again. A
recursive clustering by two-way partitioning is a general methodology which is part
of a family of hierarchical clustering methods (Schaeffer 2007). Therefore, the scope
of this section is not limited to generating two clusters only.

For simplicity, we only discuss the case with unit edge weights, although the gen-
eralization to general weights is not problematic. Thus, !ii is the degree of vertex
i ∈ V . We model a balanced partition {B,C} corresponding to a minimum cut by
means of decision variables xi = 1 if i ∈ B and xi = −1 if i ∈ C , for each i ≤ n , with
n = |V| . Then f (x) = 1

4

∑
{i,j}∈E(xi − xj)

2 counts the number of intercluster edges
between B and C. We have:

whence f (x) = 1

4
x⊤Lx . We can therefore obtain cuts with minimum |!(B)| by mini-

mizing f(x).
We can now give a more precise meaning to the requirement that partitions are

balanced: we require that x must satisfy the constraint:

Obviously, Eq. (11) only ensures equal cardinality partitions on graphs having an
even number of vertices. However, we relax the integrality constraints x ∈ {−1, 1}n
to x ∈ [−1, 1]n , so ∑i≤n xi = 0 is applicable to any graph. With this relaxation, the
values of x might be fractional. We shall deal with this issue by rounding them to
{−1, 1} after obtaining the solution. We also note that the constraint:

holds for x ∈ {−1, 1}n , and so it provides a strengthening of the continuous relaxa-
tion to x ∈ [−1, 1]n . We therefore obtain a relaxed formulation of the minimum bal-
anced two-way partitioning problem as follows:

where ! is the all-one vector. We remark that, by construction, L is a diagonally
dominant (dd) symmetric matrix with non-negative diagonal, namely it satisfies:

4 f (x) =
∑

{i,j}∈E

(x2
i
+ x2

j
) − 2

∑
{i,j}∈E

xixj =
∑

{i,j}∈E

2 −
∑
i,j≤n

xiAijxj

= 2 |E| − x⊤Ax =
∑
i≤n

xi"iixi − x⊤Ax = x⊤(" − A)x = x⊤Lx,

(11)
∑
i≤n

xi = 0.

(12)x⊤x = ‖x‖2
2
= n

(13)
min

x∈[−1,1]n

1

4
x⊤Lx

s.t. !⊤x = 0
‖x‖2

2
= n,

⎫
⎪
⎬
⎪⎭

(14)∀i ≤ n Lii ≥
∑
j≠i

|Lij|;

295

1 3

Distance geometry and data science

(in fact, L satisfies Eq. (14) at equality). Since all dd matrices are also psd (Wiki-
pedia: Diagonally dominant matrix 2019), f(x) is a convex function. This means
that Eq. (13) is a cQP, which can be solved at global optimality in polynomial time
(Vavasis 1991).

By Fiedler (1973), there is another polynomial time method for solving Eq. (14),
which is generally more efficient than solving a cQP in polynomial time using a
nonlinear programming (NLP) solver. This method concerns the second-smallest
eigenvalue of L (called algebraic connectivity) and its corresponding eigenvector.
Let !1 ≤ !2 ≤ ⋯ ≤ !n be the ordered eigenvalues of L and u1 ,… , un be the corre-
sponding eigenvectors, normalized so that ‖ui‖22 = n for all i ≤ n . It is known that
u1 = ! , !1 = 0 and, if G is connected, !2 > 0 (Merris 1994; Bollobás 1998). By the
definition of eigenvalue and eigenvector, we have:

Because of the orthogonality of the eigenvectors, if i ≥ 2 we have uiu1 = 0 , which
implies u2! = 0 (i.e., u2 satisfies Eq. (11)). We recall that eigenvectors are normal-
ized, so that ‖ui‖22 = n for all i ≤ n (in particular, u2 satisfies Eq. (12)). By Eq. (15),
since !1 = 0 , !2 yields the smallest nontrivial objective function value n

4
!2 with solu-

tion x̄ = u2 , which is therefore a solution of Eq. (13).

Theorem 2 The eigenvector u2 corresponding to the second smallest eigenvalue !2
of the graph Laplacian L is an optimal solution to Eq. (13).

Proof Since the eigenvectors u1 ,… , un are an orthogonal basis of ℝn , we can express
an optimal solution as x̄ = ∑

i ciui . Thus:

The last equality in Eq. (16) follows, because Lui = !iui for all i ≤ n , u⊤
i
uj = 0

for each i ≠ j , and !1 = 0 . Since u1 = ! and by eigenvector orthogonality, letting
!⊤x̄ = 0 yields c1 = 0 . Finally, requiring ‖x̄‖2 = n , again by eigenvector orthogonal-
ity, yields:

After replacing c2
i
 by yi in Eqs. (16) and (17), we can reformulate Eq. (13) as:

(15)∀i ≤ n Lui = !iui ⇒ ui
⊤Lui = !iui

⊤ ui = !i‖ui‖22 = !in.

(16)x̄⊤ Lx̄ =
∑
i,j

cicju
⊤
i
Luj =

∑
i,j

cicj#ju
⊤
i
uj = n

∑
i>1

c2
i
#i.

(17)

‖‖‖‖‖
∑
i>1

ciui

‖‖‖‖‖

2

2

=

⟨∑
i>1

ciui,
∑
j>1

cjuj

⟩
=

∑
i,j>1

cicj⟨ui, uj⟩

=
∑
i>1

c2
i
‖ui‖22 = n

∑
i>1

c2
i
= n.

n min

{∑
i>1

!iyi |
∑
i>1

yi = 1 ∧ y ≥ 0

}
,

296 L. Liberti

1 3

which is equivalent to finding the convex combination of !2 ,… , !n with smallest
value. Since !2 ≤ !i for all i > 2 , the smallest value is achieved at y2 = 1 and yi = 0
for all i > 2 . Hence, x̄ = u2 as claimed. ◻

Normally, the components of x̄ obtained this way are not in {−1, 1} . We round x̄i
to its closest value in {−1, 1} , breaking ties in such a way as to keep the bisection
balanced. We then obtain a practically efficient approximation of the minimum bal-
anced cut.

5.2.2 Modularity clustering

Modularity, first introduced in Newman and Girvan (2004), is a measure for evaluat-
ing the quality of a clustering of vertices in a graph G = (V ,E) with a weight func-
tion w ∶ E → ℝ+ on the edges. We let n = |V| and m = |E| . Given a vertex clustering
C = (C1 ,… ,Ck) , where each Ci ⊆ V , Ci ∩ Cj = ∅ for each i ≠ j , and ⋃i Ci = V , the
modularity of C is the proportion of edges in E that fall within a cluster minus the
expected proportion of the same quantity if edges were distributed at random while
keeping the vertex degrees constant. This definition is not so easy to understand, so
we shall assume for simplicity that wuv = 1 for all {u, v} ∈ E and wuv = 0 otherwise.
We give a more formal definition of modularity, and comment on its construction.

The “fraction of the edges that fall within a cluster” is:

 where wuv = wvu turns out to be the (u, v)th component of the n × n symmetric inci-
dence matrix of the edge set E in V × V—thus, we divide by 2m rather than m in
the right hand side (RHS) of the above equation. The “same quantity if edges were
distributed at random while keeping the vertex degrees constant” is the probabil-
ity that a pair of vertices u, v belongs to the edge set of a random graph on V. If
we were computing this probability over random graphs sampled uniformly over all
graphs on V with m edges, this probability would be 1/m; but since we only want to
consider graphs with the same degree sequence as G, the probability is |N(u)| |N(v)|

2m

(Lehmann and Hansen 2007). Here is an informal explanation: given vertices u, v,
there are ku = |N(u)| “half-edges” out of u, and kv = |N(v)| out of v, which could
come together to form an edge between u and v (over a total of 2m “half-edges”).
Thus, we obtain a modularity:

for the clustering C.
We now introduce binary variables xuv which have value 1 if u, v ∈ V are in the

same cluster, and 0 otherwise. This allows us to rewrite the modularity as:

1

m

∑
i≤k

∑

u, v ∈ Ci

{u, v} ∈ E

1 =
1

2 m

∑

i ≤ k

(u, v) ∈ (Ci)
2

wuv,

!(C) =
1

2 m

∑

(u, v) ∈ C2

C ∈ C

(
wuv − kukv∕(2 m)

)

297

1 3

Distance geometry and data science

Following Aloise et al. (2010), we can reformulate the modularity maximization
problem to a clique partitioning problem with the following formulation:

which is a BLP formulation. The weighted variant of this problem yields a formula-
tion like Eq. (19) where w are the edge weights and ku =

∑
{u,v}∈E wuv for all v ≠ u

in V. Another variant for graphs including loops and multiple edges is described in
Cafieri et al. (2010). We note that, by Eq. (19), maximizing modularity does not
require the number of clusters to be known a priori.

There is a large literature about modularity maximization and its solution meth-
ods: for a survey, see (Fortunato 2010, §VI). Solution methods based on MP are of
particular interest to the topics of this survey. A BLP formulation similar to Eq. (19)
was proposed in Brandes et al. (2008). Another BLP formulation with different sets
of decision variables (requiring the number of clusters to be known a priori) was
proposed in Xu et al. (2007). Some column generation approaches, which scale
better in size with respect to previous formulations, were proposed in Aloise et al.
(2010). Some MP-based heuristics are discussed in Cafieri et al. (2011), Cafieri
et al. (2014), and Aloise et al. (2013).

6 Robust solution methods for the DGP

In this section, we discuss some solution methods for the DGP which can be
extended to deal with cases where distances are uncertain, noisy or wrong. Most of
the methods which we present are based on MP. We also discuss a different (non-
MP based) class of methods in Sect. 6.2, in view of their computational efficiency.

6.1 Mathematical programming-based methods

DGP solution methods based on MP are robust to noisy or wrong data because MP
allows for: (a) modification of the objective and constraints; (b) adjoining of side
constraints. Moreover, although we do not review these here, there are MP-based
methodologies for ensuring robustness of solutions (Ben-Tal et al. 2009), probabilis-
tic constraints (Pfeffer 2016), and scenario-based stochasticity (Birge and Louveaux
2011), which can be applied to the formulations in this section.

(18)
!(x) =

1

2 m

∑
u≠v∈V

(
wuv − kukv∕(2 m)

)
xuv

=
1

m

∑
u<v∈V

(
wuv − kukv∕(2 m)

)
xuv.

(19)

max !(x)
∀1 ≤ i < j < k ≤ n xij + xjk − xik ≤ 1

∀1 ≤ i < j < k ≤ n xij − xjk + xik ≤ 1

∀1 ≤ i < j < k ≤ n − xij + xjk + xik ≤ 1

∀1 ≤ i < j ≤ n xij ∈ {0, 1},

⎫
⎪
⎪
⎬
⎪
⎪⎭

298 L. Liberti

1 3

6.1.1 Unconstrained quartic formulation

A system of equations such as Eq. (3) is itself an MP formulation with objective
function identically equal to zero, and X = ℝnK . It therefore belongs to the QCP
class. In practice, solvers for this class perform rather poorly when given Eq. (3) as
input (Lavor et al. 2006). Much better performances can be obtained by solving the
following unconstrained formulation:

We note that Eq. (20) consists in the minimization of a polynomial of degree four.
It belongs to the class of nonconvex NLP formulations. In general, this is an NP-
hard class (Liberti 2019), which is not surprising, as it formulates the DGP which is
itself an NP-hard problem. Very good empirical results can be obtained on the DGP
by solving Eq. (20) with a local NLP solver such as IPOPT (COIN-OR 2006) or
(SNOPT Gill 2006) from a good starting point (Lavor et al. 2006). This is the reason
why Eq. (20) is very important: it can be used to “refine” solutions obtained with
other methods, as it suffices to let such solutions be starting points given to a local
solver acting on Eq. (20).

Even if the distances duv are noisy or wrong, optimizing Eq. (20) can yield good
approximate realizations. If the uncertainty on the distance values is modelled using
an interval [dL

uv
, dU

uv
] for each edge {u, v} , the following function (Liberti et al. 2010)

can be optimized instead of Eq. (20):

The DGP variant where distances are intervals instead of values is known as the
INTERVAL DGP (iDGP) (Gonçalves et al. 2017; Lavor et al. 2013). We remark that,
with interval distances, the formulations proposed in this section are no longer exact
reformulations of Eq. (3).

Note that Eq. (21) involves binary max functions with two arguments. Relatively
a few MP user interfaces/solvers would accept this function. To overcome this issue,
we linearize (see Sect. 2.4.1) the two max terms by two sets of added decision vari-
ables y, z, and obtain:

which follows from Eq. (21) because of the objective function direction, and because
a ≥ max (b, c) is equivalent to a ≥ b ∧ a ≥ c . We note that Eq. (22) is no longer an
unconstrained quartic, however, but a QCP. It expresses a minimization of penalty
variables to the quadratic inequality system:

(20)min
∑

{u,v}∈E

(‖xu − xv‖22 − d2
uv

)2
.

(21)min
∑

{u,v}∈E

(
max

(
0, (dL

uv
)2 − ‖xu − xv‖22

)
+ max

(
0, ‖xu − xv‖22 − (dU

uv
)2
))
.

(22)

min
∑

{u,v}∈E

(yuv + zuv)

∀{u, v} ∈ E ‖xu − xv‖22 ≥ (dL
uv
)2 − yuv

∀{u, v} ∈ E ‖xu − xv‖22 ≤ (dU
uv
)2 + zuv

y, z ≥ 0,

⎫
⎪
⎪
⎬
⎪
⎪⎭

299

1 3

Distance geometry and data science

We also note that many local NLP solvers take very arbitrary functions in input
(such as functions expressed by computer code), so the reformulation Eq. (22) may
be unnecessary when only locally optimal solutions of Eq. (21) are needed.

6.1.2 Constrained quadratic formulations

We propose two formulations in this section. The first is derived directly from
Eq. (3):

We note that Eq. (24) is a QCQP formulation. Similarly to Eq. (22), it uses addi-
tional variables to penalize feasibility errors with respect to (3). Differently from
Eq. (22), however, it removes the need for two separate variables to model slack and
surplus errors. Instead, suv is unconstrained, and can therefore take any value. The
objective, however, minimizes the sum of the squares of the components of s. In
practice, Eq. (24) performs much better than Eq. (3); on average, the performance is
comparable to that of Eq. (20). We remark that Eq. (24) has a convex objective func-
tion but nonconvex constraints.

The second formulation which we propose is an exact reformulation of Eq. (20).
First, we replace the minimization of squared errors by absolute values, yielding:

which clearly has the same set of global optima as Eq. (20). We then rewrite this
similarly to Eq. (22) as follows:

which, again, does not change the global optima. Next, we note that we can fix
zuv = 0 without changing global optima, since they all have the property that
zuv = 0 . Now, we replace yuv in the objective function by d2

uv
− ‖xu − xv‖22 , which

we can do without changing the optima since the first set of constraints reads
yuv ≥ d2

uv
− ‖xu − xv‖22 . We can discard the constant d2

uv
 from the objective, since

adding constants to the objective does not change optima, and change min−f to
−max f , yielding:

(23)∀{u, v} ∈ E (dL
uv
)2 ≤ ‖xu − xv‖22 ≤ (dU

uv
)2 .

(24)
min

∑
{u,v}∈E

s2
uv

∀{u, v} ∈ E ‖xu − xv‖22 = d2
uv
+ suv.

}

min
∑

{u,v}∈E

||‖xu − xv‖22 − d2
uv
||,

min
∑

{u,v}∈E

(yuv + zuv)

∀{u, v} ∈ E ‖xu − xv‖22 ≥ d2
uv
− yuv

∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2
uv
+ zuv

y, z ≥ 0,

⎫
⎪
⎪
⎬
⎪
⎪⎭

300 L. Liberti

1 3

which is a QCQP known as the “push-and-pull” formulation of the DGP, since the
constraints ensure that xu, xv are pushed closer together, while the objective attempts
to pull them apart (Mencarelli et al. 2017, §2.2.1).

Contrariwise to Eq. (24), Eq. (25) has a nonconvex (in fact, concave) objective
function and convex constraints. Empirically, this often turns out to be somewhat
easier than tackling the reverse situation. The theoretical justification is that finding
a feasible solution in a nonconvex set is a hard task in general, whereas finding local
optima of a nonconvex function in a convex set is tractable: the same cannot be said
for global optima, but in practice one is often satisfied with “good” local optima.

6.1.3 Semidefinite programming

SDP is linear optimization over the cone of psd matrices, which is convex: if
A, B are two psd matrices, C = !A + (1 − !)B is psd for ! ∈ [0, 1] . Suppose
that there is x ∈ ℝn , such that x⊤Cx < 0 . Then, !x⊤Ax + (1 − !)x⊤Bx < 0 , so
0 ≤ !x⊤Ax < −(1 − !)x⊤Bx ≤ 0 , i.e., 0 < 0 , which is a contradiction, and hence C is
also psd as claimed. Therefore, SDP is a subclass of cNLP.

The SDP formulation which we propose is a relaxation of Eq. (3). First, we write
‖xu − xv‖22 = ⟨xu, xu⟩ + ⟨xv, xv⟩ − 2 ⟨xu, xv⟩ . Then, we linearize all of the scalar prod-
ucts by means of additional variables Xuv:

We note that X = xx⊤ constitutes the whole set of defining constraints Xuv = ⟨xu, xv⟩
(for each u, v ≤ n) introduced by the linearization procedure (Sect. 2.4.1).

The relaxation which we envisage does not entirely drop the defining constraints,
as in Sect. 2.4.1. Instead, it relaxes them from X − xx⊤ = 0 to X − xx⊤ ⪰ 0 . In other
words, instead of requiring that all of the eigenvalues of the matrix X − xx⊤ are zero,
we simply require that they should be ≥ 0 . Moreover, since the original variables x
do not appear anywhere else, we can simply require X ⪰ 0 , obtaining:

The SDP relaxation in Eq. (26) has the property that it provides a solution X̄ , which
is an n × n symmetric matrix. Spectral decomposition of X̄ yields P!P⊤ , where P is
a matrix of eigenvectors and ! = !"#$(") , where ! is a vector of eigenvalues of X̄ .
Since X̄ is psd, ! ≥ 0 , which means that

√
! is a real matrix. Therefore, by setting

Y = P
√
! , we have that:

(25)
max

∑
{u,v}∈E

‖xu − xv‖22
∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2

uv
,

}

∀{u, v} ∈ E Xuu + Xvv − 2 Xuv =d
2
uv

X =xx⊤.

(26)∀{u, v} ∈ E Xuu + Xvv − 2 Xuv = d2
uv

X ⪰ 0.

}

YY⊤ = (P
√
")(P

√
")

⊤

= P
√
"
√
"P⊤ = P"P⊤ = X̄,

301

1 3

Distance geometry and data science

which implies that X̄ is the Gram matrix of Y. Thus, we can take Y to be a realization
satisfying Eq. (3). The only issue is that Y, as an n × n matrix, is a realization in n
dimensions rather than K. Naturally, !"(Y) = !"(X̄) need not be equal to n, but could
be lower; in fact, to find a realization of the given graph, we would like to find a
solution X̄ with rank at most K. Imposing this constraint is equivalent to asking that
X = xx⊤ (which have been relaxed in Eq. (26)).

We note that Eq. (26) is a pure feasibility problem. Every SDP solver, however,
also accepts an objective function as input. In absence of a “natural” objective in a
pure feasibility problem, we can devise one to heuristically direct the search towards
parts of the psd cone which we believe might contain “good” solutions. A popular
choice is:

where tr is the trace, the first equality follows by spectral decomposition (with P
a matrix of eigenvectors and ! a diagonal matrix of eigenvalues of X), the second
by commutativity of matrix products under the trace, the third by orthogonality of
eigenvectors, and the last by definition of trace. This aims at minimizing the sum of
the eigenvalues of X, hoping this will decrease the rank of X̄.

For the DGP applied to protein conformation (Sect. 3.3.2), the objective function:

was empirically found to be a good choice (Dias and Liberti 2016, §2.1). We remark
that the equality constraints in Eq. (26) can be used to reformulate the function in
Eq. (6.1.3) to the constant ∑{u,v}∈E d

2
ij
 . The reason why Eq. (6.1.3) did not behave

like a constant function in empirical testing must be related to the fact the current
iterate is not precisely feasible at every step of the solution algorithm. More (unpub-
lished) experimentation showed that the scalarization of the two objectives:

with ! in the range O(10−2)–O(10−3) , is a good objective function for solving
Eq. (26) when it is applied to protein conformation.

In the majority of cases, solving SDP relaxations does not yield solution matrices
with rank K, even with objective functions such as Eq. (27). We discuss methods for
constructing an approximate rank K realization from X̄ in Sect. 7.

SDP is one of those problems which is not known to be in P (nor NP-complete) in
the Turing machine model. It is, however, known that SDPs can be solved in poly-
nomial time up to a desired error tolerance ! > 0 , with the complexity depending
on 1

!
 as well as the instance size. Currently, however, the main issue with SDP is

technological: state-of-the art solvers do not scale all that well with size. One of the
reasons is that K is usually fixed (and small) with respect to n, so the while the origi-
nal problem has O(n) variables, the SDP relaxation has O(n2) . Another reason is that

min !"(X) = min !"(P!P⊤) = min !"(PP⊤!)

= min !"(PP−1 !) = min #1 + ⋯ + #n,

min
∑

{u,v}∈E

(Xuu + Xvv − 2 Xuv)

(27)min
∑

{u,v}∈E

(Xuu + Xvv − 2 Xuv) + !!"(X),

302 L. Liberti

1 3

the Interior Point Method (IPM), which often features as a “state of the art” SDP
solver, has a relatively high computational complexity (Potra and Wright 2000): a
“big oh” notation estimate of O(max (m, n)mn2.5) is given in Bubeck’s blog at ORFE,
Princeton.2

6.1.4 Diagonally dominant programming

To address the size limitations of SDP, we employ some interesting linear approxi-
mations of the psd cone proposed in Majumdar et al. (2014) and Ahmadi and
Majumdar (2019). An n × n real symmetric matrix X is diagonally dominant (dd) if:

As remarked in Sect. 5.2.1, it is well known that every dd matrix is also psd, while
the converse may not hold. Specifically, the set of dd matrices form a sub-cone of
the cone of psd matrices (Barker and Carlson 1975).

The interest of dd matrices is that, by linearization of the absolute value terms,
Eq. (28) can be reformulated, so it becomes linear: we introduce an added matrix T
of decision variables, then write:

which are linear constraints equivalent to Eq. (28) (Ahmadi and Majumdar 2019,
Thm. 10). One can see this easily whenever X ≥ 0 or X ≤ 0 . Note that

follow directly from Eqs. (29) and (30). Now one of the RHSs is equal to ∑j≠i |Xij| ,
which implies Eq. (28). For the general case, the argument uses the extreme points
of Eqs. (29) and (30) and elimination of T by projection.

We can now approximate Eq. (26) by the pure feasibility LP:

(28)∀i ≤ n
∑
j≠i

|Xij| ≤ Xii.

(29)∀i ≤ n
∑
j≠i

Tij ≤Xii

(30)−T ≤ X ≤T ,

∀i ≤ n Xii ≥
∑
j≠i

Tij ≥
∑
j≠i

Xij

∀i ≤ n Xii ≥
∑
j≠i

Tij ≥
∑
j≠i

−Xij

(31)
∀{u, v} ∈ E Xuu + Xvv − 2 Xuv = d2

uv

∀i ≤ n
∑
j≠i

Tij ≤ Xii

− T ≤ X ≤ T ,

⎫
⎪
⎬
⎪⎭

2 http://blogs .princ eton.edu/imaba ndit/2013/02/19/orf52 3-ipms-for-lps-and-sdps/.

http://blogs.princeton.edu/imabandit/2013/02/19/orf523-ipms-for-lps-and-sdps/

303

1 3

Distance geometry and data science

which we call a diagonally dominant program (DDP). As in Eq. (26), we do not
explicitly give an objective function, since it depends on the application. Since the
DDP in Eq. (31) is an inner approximation of the corresponding SDP in Eq. (26), the
DDP feasible set is a subset of that of the SDP. This situation yields both an advan-
tage and a disadvantage: any solution X̃ of the DDP is psd, and can be obtained at a
smaller computational cost; however, the DDP might be infeasible even if the cor-
responding SDP is feasible (see Fig. 5, left). To decrease the risk of infeasibility of
Eq. (31), we relax the equation constraints to inequality, and impose an objective as
in the push-and-pull formulation Eq. (25):

This makes the DDP feasible set larger, which means that it is more likely to be fea-
sible (see Fig. 5, right). Equation (32) was successfully tested on protein graphs in
Dias and Liberti (2016).

If C is any cone in ℝn , the dual cone C∗ is defined as:

Note that the dual cone contains the set of vectors making a non-obtuse angle with
all of the vectors in the original (primal) cone. We can exploit the dual dd cone
to provide another DDP formulation for the DGP which turns out to be an outer
approximation. Outer approximations have symmetric advantages and disadvantages
with respect to the inner ones: if the original SDP is feasible, then the outer DDP
approximation is also feasible; however, the solution X̃ which we obtain from the
outer DDP need not be a psd matrix. Some computational experience related to Sal-
gado et al. (2018) showed that it often happens that more or less half of the eigenval-
ues of X̃ are negative.

We now turn to the actual DDP formulation related to the dual dd cone. A cone C
of n × n real symmetric matrices is finitely generated by a set X of matrices if:

(32)

max
∑

{u,v}∈E

(Xuu + Xvv − 2 Xuv)

∀{u, v} ∈ E Xuu + Xvv − 2 Xuv ≤ d2
uv

∀i ≤ n
∑
j≠i

Tij ≤ Xii

− T ≤ X ≤ T .

⎫
⎪
⎪
⎬
⎪
⎪⎭

C∗ = {y ∈ ℝn | ∀x ∈ C ⟨x, y⟩ ≥ 0 }.

Fig. 5 On the left, the DDP is infeasible even if the SDP is not; on the right, a relaxed set of constraints
makes the DDP feasible

304 L. Liberti

1 3

It turns out (Barker and Carlson 1975) that the dd cone is finitely generated by:

where e1 ,… , en is the standard orthogonal basis of ℝn . This is proved in Barker and
Carlson (1975) by showing that the following rank-one matrices are extreme rays of
the dd cone:

– Eii = !"#$(ei) , where ei = (0,… , 0, 1i, 0,… , 0)⊤;
– E+

ij
 has a minor

(
1ii 1ij
1ji 1jj

)
 and is zero elsewhere;

– E−
ij
 has a minor

(
1ii − 1ij

−1ji 1jj

)
 and is zero elsewhere,

and, moreover, that the extreme rays are generated by the standard basis vectors as
follows:

This observation allowed Ahmadi and his co-authors to write the DDP formulation
equation [Eq. (32)] in terms of the extreme rays Eii,E

±
ij
 (Ahmadi and Majumdar

2019), and also to define a column generation algorithms over them (Ahmadi et al.
2020).

If a matrix cone is finitely generated, the dual cone has the same property. Let !n
be the set of real symmetric n × n matrices; for A,B ∈ !n we define an inner product
⟨A,B⟩ = A ∙ B ≜ !"(AB⊤).

Theorem 3 Assume C is finitely generated by X . Then C∗ is also finitely generated.
Specifically, C∗ = {Y ∈ !n | ∀x ∈ X (Y ∙ xx⊤ ≥ 0)}.

Proof By assumption, C = {X ∈ !n | ∃! ∈ ℝ
|X|
+ X =

∑
x∈X !xxx

⊤ }.
(⇒) Let Y ∈ !n be such that, for each x ∈ X , we have Y ∙ xx⊤ ≥ 0 . We are going

to show that Y ∈ C∗ , which, by definition, consists of all matrices Y, such that for
all X ∈ C , Y ∙ X ≥ 0 . Note that, for all X ∈ C , we have X =

∑
x∈X !xxx

⊤ (by finite
generation). Hence, Y ∙ X =

∑
x !xY ∙ xx⊤ ≥ 0 (by definition of Y), whence Y ∈ C∗.

(⇐) Suppose Z ∈ C∗ ∖ {Y | ∀x ∈ X (Y ∙ xx⊤ ≥ 0)} . Then, there is X′ ⊂ X , such
that for any x ∈ X′ , we have Z ∙ xx⊤ < 0 . Consider any Y =

∑
x∈X′ !xxx

⊤ ∈ C with
! ≥ 0 . Then, Z ∙ Y =

∑
x∈ X′ !xZ ∙ xx⊤ < 0 , so Z ∉ C∗ , which is a contradiction.

Therefore, C∗ = {Y | ∀x ∈ X (Y ∙ xx⊤ ≥ 0)} as claimed. ◻

∀X ∈ C ∃! ∈ ℝ
|X|
+ X =

∑
x∈X

!xxx
⊤ .

X!! = {ei | i ≤ n} ∪ {ei ± ej | i < j ≤ n},

∀i ≤ n Eii =eie
⊤
i

∀i < j ≤ n E+
ij
=(ei + ej)(ei + ej)

⊤

∀i < j ≤ n E−
ij
=(ei − ej)(ei − ej)

⊤.

305

1 3

Distance geometry and data science

We are going to exploit Theorem 3 to derive an explicit formulation of the fol-
lowing DDP formulation based on the dual cone C∗

!!
 of the dd cone C!! finitely gen-

erated by X!!:

We remark that X ∙ vv⊤ = v⊤Xv for each v ∈ ℝn . By Theorem 3, X ∈ C∗
!!

 can be
restated as ∀v ∈ X!! v

⊤Xv ≥ 0 . We obtain the following LP formulation:

With respect to the primal DDP, the dual DDP formulation in Eq. (33) provides a
very tight bound to the objective function value of the push-and-pull SDP formu-
lation Eq. (25). On the other hand, the solution X̄ is usually far from being a psd
matrix.

6.2 Fast high-dimensional methods

In Sect. 6.1, we surveyed methods based on MP, which are very flexible, insofar as
they can accommodate side constraints and noisy data, but computationally demand-
ing. In this section we discuss two very fast, yet robust, methods for embeddings
graphs in Euclidean spaces.

6.2.1 Incidence vectors

The simplest, and most naive methods for mapping graphs into vectors are given
by exploiting various incidence information in the graph structure. By contrast, the
resulting embeddings are unrelated to Eq. (3).

Given a simple graph G = (V ,E) with |V| = n , |E| = m and edge weight function
w ∶ E → ℝ+ , we present two approaches: one which outputs an n × n matrix, and
one which outputs a single vector in ℝK with K = 1

2
n(n − 1) .

1. For each u ∈ V , let xu = (xuv | v ∈ V) ∈ ℝn be the incidence vector of N(u) on V,
that is:

2. Let K = 1

2
n(n − 1) , and xE = (xe | e ∈ E) ∈ ℝK be the incidence vector of the

edge set E into the set {{i, j} | i < j ≤ n} , that is:

∀{u, v} ∈ E Xuu + Xvv − 2 Xuv = d2
uv

X ∈ C∗
!!
.

}

(33)
max

∑
{u,v}∈E

(
Xuu + Xvv − 2 Xuv

)

∀{u, v} ∈ E Xuu + Xvv − 2 Xuv = d2
uv

∀v ∈ X!! v⊤Xv ≥ 0.

⎫
⎪
⎬
⎪⎭

∀u ∈ V xuv =

{
wuv if {u, v} ∈ E

0 otherwise.

306 L. Liberti

1 3

Both embeddings can be obtained in O(n2) time. Both embeddings are very high
dimensional. For practical usefulness, it is necessary to post-process them using
dimensional reduction techniques (see Sect. 7).

6.2.2 The universal isometric embedding

This method, also called Fréchet embedding, is remarkable in that it maps any
finite metric space congruently into a set of vectors in the !∞ norm (Kuratowski
1935, §6). No other norm allows exact congruent embeddings in vector spaces
(Matoušek 2013). The Fréchet embedding provided the foundational idea for several
other probabilistic approximate embeddings in various other norms and dimensions
(Bourgain 1985; Linial et al. 1995).

Theorem 4 Given any finite metric space (X, d), where |X| = n and d is a distance
function defined on X, there exists an embedding ! ∶ X → ℝn such that (!(X),!∞) is
congruent to (X, d).

This theorem is surprising because of its generality in conjunction with the exact-
ness of the result: it works on any (finite) metric space. The “magic hat” out of
which we shall pull the vectors in !(X) is simply the only piece of data which we
are given, namely the distance matrix of X. More precisely, the ith element of X is
mapped to the vector corresponding to the ith column of the distance matrix.

Proof Let !(X) be the distance matrix of (X, d), namely !ij(X) = (d(xi, xj)) , where
X = {x1 ,… , xn} . We denote d(xi, xj) = dij for brevity. For any j ≤ n , we let !(xj) = "j ,
where !j is the jth column of !(X) . We have to show that ‖!(xi) − !(xj)‖∞ = dij for
each i < j ≤ n . By definition of the !∞ norm, for each i < j ≤ n , we have:

By the triangular inequality on (X, d), for i < j ≤ n and k ≤ n , we have:

since these inequalities are valid for each k, by (∗), we have:

where the last equality follows because dij does not depend on k. Now, we note that
the maximum of |dik − djk| over k must exceed the value of the same expression

xe =

{
we if e ∈ E

0 otherwise.

‖!(xi) − !(xj)‖∞ = ‖"i − "j‖∞ = max
k≤n

|"ik − "jk| = max
k≤n

|dik − djk|. (∗)

dik ≤dij + djk ∧ djk ≤ dij + dik

⇒dik − djk ≤ dij ∧ djk − dik ≤ dij

⇒|dik − djk| ≤ dij;

‖!(xi) − !(xj)‖∞ ≤ max
k

dij = dij, (†),

307

1 3

Distance geometry and data science

when either of the terms dik or djk is zero, i.e. when k ∈ {i, j} since, when k = i , then
|dik − djk| = |dii − dji| = dij , and the same holds when k = j . Hence:

By (∗), (†) and (‡), we finally have:

as claimed. ◻

We remark that Theorem 4 is only applicable when !(X) is a distance matrix,
which corresponds to the case of a graph G edge-weighed by d being a com-
plete graph. We address the more general case of any (connected) simple graph
G = (V ,E) , corresponding to a partially defined distance matrix, by completing the
matrix using the shortest path metric (this distance matrix completion method was
used for the isomap heuristic, see Tenenbaum et al. 2000; Liberti and D’Ambrosio
2017 and Sect. 7.1.1):

In practice, we can compute the lengths of all shortest paths in G using the
Floyd–Warshall algorithm, which runs in O(n3) time (but there exist reasonably fast
implementations).

This method yields a realization of G in !n
∞

 , which is a high-dimensional embed-
ding. It is necessary to post-process it using dimensional reduction techniques (see
Sect. 7).

6.2.3 Multidimensional scaling

The literature on multidimensional scaling (MDS) is extensive (Cox and Cox 2001;
Borg and Groenen 2010), and many variants exist. The basic version, called clas-
sic MDS, aims at finding an approximate realization of a partial distance matrix. In
other words, it is a heuristic solution method for the

Euclidean distance matrix completion problem (EDMCP). Given a simple
undirected graph G = (V ,E) with an edge weight function w ∶ E → ℝ+ , deter-
mine whether there exists an integer K > 0 and a realization x ∶ V → ℝK , such
that Eq. (3) holds.

The difference between EDMCP and DGP may appear diminutive, but it is in
fact very important. In the DGP, the integer K is part of the input, whereas in the
EDMCP it is part of the output. This has a large effect on worst-case complexity:
while the DGP is NP-hard even when only an !-approximate realization is sought
(Saxe 1979, §5), !-approximate realizations of EDMCPs can be found in polyno-
mial time by solving an SDP (Alfakih et al. 1999). See Liberti and Lavor (2013)
and Sánchez and Lavor (2020) for more information about the relationship between
EDMCP and DGP.

max
k≤n

|dik − djk| ≥ dij. (‡).

∀i < j ≤ n ‖!(xi) − !(xj)‖∞ = dij

(34)∀{i, j} ∉ E dij = !"#$%&!%_ '(%"_)&*+%"G(i, j).

308 L. Liberti

1 3

Consider the following matrix:

where d = (dij | {i, j} ∉ E) is a vector of decision variables, and J = In −
1

n
!!⊤ .

Then the following formulation is valid for the EDMCP:

Theorem 5 The SDP in Eq. (35) correctly models the EDMCP.

By “correctly models” we mean that the solution of the EDMCP can be obtained
in polynomial time from the solution of the SDP in Eq. (35).

Proof First, we remark that, given a realization x ∶ V → ℝn , its Gram matrix is
X = xx⊤ , and its squared Euclidean distance matrix (EDM) is:

Next, we recall that:

by Dattorro (2015) after Schoenberg 1935—see (Liberti and Lavor 2016, §7)
for a direct proof3. Now, we note that minimizing !!⊤ ∙ T subject to
−T ≤ X + 1

2
J!(E, d)J ≤ T is an exact reformulation of:

since !!⊤ ∙ T =
∑

i,j Tij , and T is used to “sandwich” the argument of the !1 norm in
(∗). This implies that X = − 1

2
J!(E, d)J iff T = 0 iff !!⊤ ∙ T = 0 . Consequently, if

the optimal objective function value of Eq. (35) is zero with corresponding solution
d∗, T∗,X∗ , then !"(!!⊤ ∙ T∗) = 0 ⇒ T∗ = 0 ⇒ (∗) = 0 . We also recall another basic
fact of linear algebra: a matrix is Gram if and only if it is psd: hence, requiring X ⪰ 0
forces X to be a Gram matrix. Therefore, X∗ is a Gram matrix and !(E, d∗) = D2 is
its corresponding EDM by Eq. (36). Finally, the realization x∗ corresponding to the
Gram matrix X∗ can be obtained by spectral decomposition of X∗ = P!P⊤ , which
yields x∗ = P

√
! : this implies that the EDMCP instance is YES. Otherwise, if the

optimal objective function value of Eq. (35) is nonzero, then T∗ ≠ 0 , which means

!(E, d) =

{
w2
ij

if {i, j} ∈ E

dij otherwise,

(35)
min
d,T ,X

!!⊤ ∙ T

− T ≤ X + 1

2
J "(E, d) J ≤ T

X ⪰ 0.

⎫
⎪
⎬
⎪⎭

D2 = (‖xu − xv‖22 | u ≤ n ∧ v ≤ n) ∈ ℝn×n.

(36)X = −
1

2
JD2J

min
G ,d

‖X − (−1 ∕2)J!(E, d)J)‖1 , (∗),

3 Also see http://math.stack excha nge.com/quest ions/18821 30/ for a compact derivation.

http://math.stackexchange.com/questions/1882130/

309

1 3

Distance geometry and data science

that the EDMCP instance is NO (assuming it was YES would contradict optimal-
ity). ◻

The practically useful corollary to Thm. (5) is that solving Eq. (35) provides an
approximate solution x∗ even if !(E, d) cannot be completed to an EDM.

Classic MDS is an efficient heuristic method for finding an approximate realiza-
tion of a partial distance matrix !(E, d) . It works as follows:

1. complete !(E, d) to an approximate EDM D̃2 using the shortest-path metric
(Eq. (34));

2. let X̃ = − 1

n
JD̃2J;

3. let P"̃P⊤ be the spectral decomposition of X̃;
4. if "̃ ≥ 0 then, by Eq. (36), D̃2 is a EDM, with corresponding (exact) realization

x̃ = P
√
";

5. otherwise, let !+ = !"#$((max(", 0) | " ∈ !)) : then x̃ = P
√
"+ is an approximate

realization of D̃2.

Note that both Eq.(35) and classic MDS determine K as part of the output, i.e. K is
the rank of the realizations x∗ and x̃.

7 Dimensional reduction techniques

Dimensional reduction techniques reduce the dimensionality of a set of vectors
according to different criteria, which may be heuristic, or give some (possibly proba-
bilistic) guarantee of keeping some quantity approximately invariant. They are nec-
essary to make many of the methods in Sect. 6 useful in practice.

7.1 Principal component analysis

Principal component analysis (PCA) is one of the foremost dimensional reduction
techniques. It is ascribed to Harold Hotelling4 (Hotelling 1933).

Consider an n × m matrix X consisting of n data row vectors in ℝm , and let K < m
be a given integer. We want to find a change of coordinates for X, such that the first
component has largest variance over the transformed vectors, the second component
has second-largest variance, and so on, until the Kth component. The other compo-
nents can be neglected, as the variance of the data in those directions is low.

The usual geometric interpretation of PCA is to take the smallest enclosing ellip-
soid E for X: then the required coordinate change maps component 1 to the line par-
allel to the largest radius of E , component 2 to the line parallel to the second-largest

4 A young and unknown George Dantzig had just finished his presentation of LP to an audience of “big
shots”, including Koopmans and Von Neumann. Harold Hotelling raised his hand, and stated: “but we all
know that the world is nonlinear!”, thereby obliterating the simplex method as a mathematical curiosity.
Luckily, Von Neumann answered on Dantzig’s behalf and in his defence (Dantzig 1983).

310 L. Liberti

1 3

radius of E , and so on until component K (see Fig. 6). The statistical interpretation
of PCA looks for the change of coordinates which makes the data vectors be uncor-
related in their components. Figure 6 should give an intuitive idea about why this
interpretation corresponds with the ellipsoid of the geometric interpretation. The
cartesian coordinates in Fig. 6 are certainly correlated, while the rotated coordinates
look far less (linearly) correlated. The zero correlation situation corresponds to a
perfect ellipsoid. An ellipsoid is described by the equation ∑j≤n

(xj

rj

)2
= 1 , which

has no mixed terms xixj contributing to correlation. Both interpretations are well
(and formally) argued in Vidal et al. (2016, §2.1).

The interpretation given here is motivated by DG, and related to MDS
(Sect. 6.2.3). PCA can be seen as a modification of MDS which only takes into
account the K (nonnegative) principal components. Instead of !+ (step 5 of the
MDS algorithm), PCA uses a different diagonal matrix !!"# : the ith diagonal com-
ponent is:

where P!P⊤ is the spectral decomposition of G̃ . In this interpretation, when given
a partial distance matrix and the integer K as input, PCA can be used as an approxi-
mate solution method for the DGP.

On the other hand, the PCA algorithm is most usually considered as a method for
dimensionality reduction, so it has a data matrix X and an integer K as input. It is as
follows:

1. let G̃ = XX⊤ be the n × n Gram matrix of the data matrix X;
2. let P"̃P⊤ be the spectral decomposition of G̃;
3. return x̃ = P

√
"!"#.

(37)!
!"#

ii
=

{
max (!ii, 0) if i ≤ K

0 otherwise,

Fig. 6 Geometric interpretation
of PCA (image from Wikipedia:
Principal component analysis
(2019))

311

1 3

Distance geometry and data science

Then x̃ is an n × K matrix, where K < n . The ith row vector in x̃ is a dimensionally
reduced representation of the ith row vector in X.

There is an extensive literature on PCA, ranging over many research papers, dedi-
cated monographs, and textbooks (Wikipedia: Principal component analysis 2019;
Jolliffe 2010; Vidal et al. 2016). Among the variants and extensions, see (Demar-
tines and Hérault 1997; Saerens et al. 2004; D’Aspremont et al. 2014; Allen 2012;
Dey et al. 2017).

7.1.1 Isomap

One of the most interesting applications of PCA is possibly the Isomap algorithm
(Tenenbaum et al. 2000), already mentioned above in Sect. 6.2.2, which is able to
use PCA to perform a nonlinear dimensional reduction from the original dimension
m to a given target dimension K, as follows.

1. Form a connected graph H = (V ,E) with the column indices 1,… , n of X as vertex
set V: determine a threshold value ! , such that, for each column vector xi in X (for
i ≤ n), and for each xj in X, such that ‖xi − xj‖2 ≤ ! , the edge {i, j} is in the edge
set E; the graph H should be as sparse as possible but also connected.

2. Complete H using the shortest path metric (Eq. (34)).
3. Use PCA in the MDS interpretation mentioned above: interpret the completion

of (V, E) as a metric space, construct its (approximate) EDM D̃ , compute the
corresponding (approximate) Gram matrix G̃ , compute the spectral decomposi-
tion of G̃ , replace its diagonal eigenvalue matrix ! as in Eq. (37), and return the
corresponding K-dimensional vectors.

Intuitively, Isomap works well because in many practical situations where a set X of
points in ℝm are close to a (lower) K-dimensional manifold, the shortest-path metric
is likely to be a better estimation of the Euclidean distance in ℝK than the Euclidean
distance in ℝm , see (Tenenbaum et al. 2000, Fig. 3).

7.2 Barvinok’s naive algorithm

By Eq. (26), we can solve an SDP relaxation of the DGP and obtain an n × n psd
matrix solution X̄ which, in general, will not have rank K (i.e., it will not yield an
n × K realization matrix, but rather an n × n one). In this section, we shall derive a
dimensionality reduction algorithm to obtain an approximation of X̄ which has the
correct rank K.

7.2.1 Quadratic programming feasibility

Barvinok’s naive algorithm (Barvinok 1997, §5.3) is a probabilistic algorithm which
finds an approximate vector solution x′ ∈ ℝn to a system of quadratic equations:

(38)∀i ≤ m x⊤Qix = ai,

312 L. Liberti

1 3

where the Qi are n × n symmetric matrices, a ∈ ℝm , x ∈ ℝn , and m is polynomial
in n. The analysis of this algorithm provides a probabilistic bound on the maxi-
mum distance that x′ can have from the set of solutions of Eq. (38). Thereafter, one
can run a local NLP solver with x′ as a starting point, and obtain a hopefully good
(approximate) solution to Eq. (38). We note that this algorithm is still not immedi-
ately applicable to our setting where K might be different from 1: we shall address
this issue in Sect. 7.2.4.

Barvinok’s naive algorithm solves an SDP relaxation of Eq. (38), and then
retrieves a certain randomized vector from the solution:

1. form the SDP relaxation:

 of Eq. (38) and solve it to obtain X̄ ∈ ℝn×n;
2. let T =

√
X̄ , which is a real matrix, since X̄ ⪰ 0 (T can be obtained by spectral

decomposition, i.e., X̄ = P"P⊤ and T = P
√
!);

3. let y be a vector sampled from the multivariate normal distribution !n(0, 1);
4. compute and return x′ = Ty.

The analysis provided in Barvinok (1997) shows that ∃c > 0 and an integer n0 ∈ ℕ ,
such that ∀n ≥ n0:

In Eq. (40), !"#$(b,B) = inf!∈B ‖b − !‖2 is the Euclidean distance between the point
b and the set B, and c is a constant that only depends on logn m . We recall that !(⋅)
denotes the probability of an event. We note that the term

√
‖X̄‖2 in Eq. (40) arises

from T being a factor of X̄ . We note also that 0.9 follows from assigning some arbi-
trary value to some parameter—i.e., the constant 0.9 can be increased as long as the
problem size is large enough.

For cases of Eq. (38) where one of the quadratic equations is ‖x‖2
2
= 1 (namely,

the solutions of Eq. (38) must belong to the unit sphere), it is noted in Barvinok
(1997, Eg. 5.5) that, if X̄ is “sufficiently generic”, then ‖X̄‖2 = O(1∕n) , which
implies that the bounding function c

√
X̄2 ln n → 0 as n → ∞ . This, in turn, means

that x′ converges towards a feasible solution of the original problem in the limit.

7.2.2 Concentration of measure

The term ln n in Eq. (40) arises from a phenomenon of high-dimensional geometry
called “concentration of measure”.

We first give an example of concentration of measure around the median value of
a Lipschitz function. We recall that a function f ∶ X → ℝ is Lipschitz if there is a
constant M > 0 , s.t. for any x, y ∈ X , we have |f (x) − f (y)| < M‖x − y‖2 . A measure

(39)∀i ≤ m (Qi ∙ X = ai) ∧ X ⪰ 0

(40)!

(
∀i ≤ m "#$%(x′,Xi) ≤ c

√
‖X̄‖2 ln n

)
≥ 0.9.

313

1 3

Distance geometry and data science

space (X,!) has the concentration of measure property if, for any Lipschitz function
f, there are constants C, c > 0 , such that:

where !!(f) is the median value of f with respect to ! . In other words, X has meas-
ure concentration if, for any Lipschitz function f, its discrepancy from its median
value is small with arbitrarily high probability. It turns out that the Euclidean space
ℝn with the Gaussian density measure !(x) = (2")n∕2e− ‖x‖

2
2
∕2 has measure concen-

tration around the mean (Barvinok 2002, §5.3).
Measure concentration is interesting in view of applications, since, given any

large enough closed subset A of X , its !-neighbourhood:

contains almost the whole measure of X . More precisely, if (X,!) has measure con-
centration and A ⊂ X is closed, then for any p ∈ (0, 1) there is a !0(p) > 0 such that
(Liberti and Vu 2018, Prop. 2):

Equation (43) is useful for applications, because it defines a way to analyse proba-
bilistic algorithms. For a random point sampled in (X,!) that happens to be in A on
average, Eq. (43) ensures that it is unlikely that it should be far from A. This can be
used to bound errors, as Barvinok did with his naive algorithm. Concentration of
measure is fundamental in data science, insofar as it may provide algorithmic analy-
ses to the effect that some approximation errors decrease in function of the increas-
ing instance size.

7.2.3 Analysis of Barvinok’s algorithm

We sketch the main lines of the analysis of Barvinok’s algorithm—see (Barvinok
1995, Thm. 5.4) or (Liberti and Vu 2018, §3.2) for a more detailed proof. We let
X = ℝn and !(x) = "(x) be the Gaussian density measure. It is easy to show that:

for each i ≤ m . From this fact and the factorization X̄ = TT ⊤ , one obtains:

This shows that, for any y ∼ !n(0, 1) , the average of y⊤T⊤Qi Ty is ai.
The analysis then goes on to show that, for some y ∼ !n(0, 1) , it is unlikely

that y⊤T⊤Qi Ty should be far from ai . It achieves this result by defining the sets
A+
i
= {x ∈ ℝn | x⊤Qix ≥ ai} , A−

i
= {x ∈ ℝn | x⊤Qix ≤ ai} , and their respec-

tive neighbourhoods A+
i
(!) , A−

i
(!) . Using a technical lemma (Liberti and Vu

2018, Lemma 4), it is possible to apply Eq. (43) to A+
i
(!) and A−

i
(!) to argue for

concentration of measure. Applying the union bound, it can be shown that their

(41)∀! > 0 !(|f (x) − ""(f)| > ! | x ∈ X) ≤ C e−c!
2

,

(42)A(!) = {x ∈ X | !"#$(x,A) ≤ !}

(43)∀! ≥ !0 (p) "(A(!)) > 1 − p.

!!(x
⊤Qix | x ∈ ℝn) = "#(Qi)

!!

(
x⊤T⊤Qi Tx | x ∈ X

)
= "#(T⊤Qi T) = "#(QiX̄) = Qi ∙ X̄ = ai.

314 L. Liberti

1 3

intersection Ai(!) is the neighbourhood of Ai = {x ∈ ℝn | x⊤Qix = ai} . Another
application of the union bound to all the sets Ai(!) yields the result (Liberti and Vu
2018, Thm. 5).

We note that concentration of measure proofs often have this structure: (a) prove
that a certain event holds on average; (b) prove that the discrepancy from average
gets smaller and/or more unlikely with increasing size. Usually proving (a) is easier
than proving (b).

7.2.4 Applicability to the DGP

The issue with trying to apply Barvinok’s naive algorithm to the DGP is that we
should always assume K = 1 by Eq. (38). To circumvent this issue, we might rep-
resent an n × K realization matrix as a vector in ℝnK by stacking its columns (or
concatenating its rows). This, on the other hand, would require solving SDPs with
nK × nK matrices, which is prohibitive because of size.

Luckily, Barvinok’s naive algorithm can be very easily extended to arbitrary val-
ues of K. We replace Step 3 by:

3b. let y be an n × K matrix sampled from !n×K(0, 1).

 The corresponding analysis needs some technical changes (Liberti and Vu 2018),
but the overall structure is the same as the case K = 1 . The obtained bound replaces √
ln n in Eq. (40) with

√
ln nK.

In the DGP case, the special structure of the matrices Qi (for i ranging over the
edge set E) makes it possible to remove the factor K, so we retrieve the exact bound
of Eq. (40). As noted in Sect. 7.2.1, if the DGP instance is on a sphere (Liberti et al.
2016), this means that x′ = Ty converges to an exact realization with probability 1 in
the limit of n → ∞ . Similar bounds to Eq. (40) were also derived for the iDGP case
(Liberti and Vu 2018).

Barvinok also described concentration of measure-based techniques for finding
low-ranking solutions of the SDP in Eq. (39) (see Barvinok 1995 and Barvinok
2002, §6.2), but these do not allow the user to specify an arbitrary rank K, so they
only apply to the EDMCP.

7.3 Random projections

Random projections (RPs) are another dimensionality reduction technique exploit-
ing high-dimensional geometry properties and, in particular, the concentration of
measure phenomenon (Sect. 7.2.2). They are more general than Barvinok’s naive
algorithm (Sect. 7.2) in that they apply to sets of vectors in some high-dimensional
Euclidean space ℝn (with n ≫ 1). These sets are usually finite and growing polyno-
mially with instance sizes (Vempala 2004), but they may also be infinite (Woodruff
2014), in which case the technical name used is subspace embeddings.

315

1 3

Distance geometry and data science

7.3.1 The Johnson–Lindenstrauss lemma

The foremost result in RPs is the celebrated Johnson–Lindenstrauss lemma (JLL)
(Johnson and Lindenstrauss 1984). For a set of vectors X ⊂ ℝn with |X| = ! , and an
! ∈ (0, 1) , there is a k = O(1

!2
ln!) and a mapping f ∶ X → ℝk , such that:

The proof of this result (Johnson and Lindenstrauss 1984, Lemma 1) is probabilistic:
it shows that an f satisfying Eq. (44) exists with some nonzero probability.

Later and more modern proofs (e.g., Dasgupta and Gupta 2002) clearly point out
that f can be a linear operator represented by a k × n matrix T, each component of
which can be sampled from a subgaussian distribution. This term refers to a random
variable ! for which there are constants C, c, s.t. for each t > 0 , we have:

In particular, the Gaussian distribution is also subgaussian. Then the probability that
a randomly sampled T satisfies Eq. (44) can be shown to exceed 1∕! . The union
bound then provides an estimate on the number of samplings of T necessary to guar-
antee Eq. (44) with a desired probability.

Some remarks are in order.

1. Computationally, Eq. (44) is applied to some given data as follows: given a set X
of ! vectors in ℝn and some error tolerance ! ∈ (0, 1) , find an appropriate
k = O(1

!2
ln!) , construct the k × n RP T by sampling each of its components from

!(0, 1√
k
) , and then define the set TX = {Tx | x ∈ X} . By the JLL, TX is approxi-

mately congruent to X in the sense of Eq. (44); however, TX ⊂ ℝk , whereas
X ⊂ ℝn , and, typically, k ≪ n.

2. The computation of an appropriate k would appear to require an estimation of the
constant in the expression O(1

!2
ln!) . Values computed theoretically are often so

large as to make the technique useless in practice. As far as we know, this con-
stant has only been computed empirically in some cases (Venkatasubramanian
and Wang 2011), ending up with an estimation of the constant at 1.8 (which is
the value we employed in most of our experiments).

3. The term 1√
k
 is the standard deviation of the normal distribution from which the

components of T must be sampled. It corresponds to a scaling of the vectors in
TX induced by the loss in dimensions (see Theorem. 6).

4. In the expression O(1

!2
ln!) , the logarithmic term is the one that counts for analy-

sis purposes, but in practice !−2 can be large. Our advice is to take ! ∈ (0.1, 0.2)
and then fine-tune ! according to results.

5. Surprisingly, the target dimension k is independent of the original dimension n.
6. Even if the data in X are sparse, TX ends up being dense. Different classes of

sparse RPs have been investigated (Achlioptas 2003; Kane and Nelson 2014) to
tackle this issue. A simple algorithm (D’Ambrosio et al. 2019, §5.1) consists in
initializing T as the k × n zero matrix, and then only fill components using sam-

(44)∀x, y ∈ X (1 − !)‖x − y‖2 ≤ ‖f (x) − f (y)‖2 ≤ (1 + !)‖x − y‖2 .

!(|!| > t) ≤ C e−ct
2

.

316 L. Liberti

1 3

ples from !(0, 1√
kp
) with some given probability p. The value of p corresponds to

the density of T. In general, and empirically, it appears that the larger n and ! are,
the sparser T can be.

7. Obviously, a Euclidean space of dimension k can embed at most k orthog-
onal vectors. An easy but surprising corollary of the JLL is that as many as
O(2k) approximately orthogonal vectors can fit in ℝk . This follows by Vu et al.
(2018, Prop. 1) applied to the standard basis S = {e1 ,… , en} of ℝn : we obtain
∀i < j ≤ n (−! ≤ ⟨Tei, Tej⟩ − eiej ≤ !) , which implies |⟨Tei, Tej⟩| ≤ ! with TS ⊂ ℝk
and k = O(ln n) . Therefore TS is a set of O(2k) almost orthogonal vectors in ℝk ,
as claimed.

8. Typical applications of RPs arise in clustering databases of large files
(e.g., e-mails, images, songs, and videos), performing basic tasks in ML
(e.g., k-means (Boutsidis et al. 2010), k-nearest neighbors (k-NN) (Indyk and
Naor 2007), robust learning (Arriaga and Vempala 2006) and more (Indyk 2001),
and approximating large MP formulations (e.g., LP, QP, see Sect. 7.3.3).

9. The JLL seems to suggest that most of the information encoded by the congru-
ence of a set of vectors can be maintained up to an ! tolerance in much smaller
dimensional spaces. This is not true for sets of vectors in low dimensions. For
example, with n ∈ {2, 3} a few attempts immediately show that RPs yield sets of
projected vectors which are necessarily incongruent with the original vectors.

In this paper, we do not give a complete proof of the JLL, since many different ones
have already been provided in research articles (Johnson and Lindenstrauss 1984;
Dasgupta and Gupta 2002; Indyk and Motwani 1998; Ailon et al. 2006; Kane and
Nelson 2014; Matoušek 2008; Allen-Zhu et al. 2014) and textbooks (Vempala 2004;
Matoušek 2013; Kantor et al. 2015; Vershynin 2018). We only prove the first part of
the proof, namely the easy result that RPs preserve norms on average. This provides
an explanation for the variance 1/k of the distribution from which the components of
T are sampled.

Theorem 6 Let T be a k × n RP sampled from !(0, 1√
k
) , and u ∈ ℝn ; then

!(‖Tu‖2
2
) = ‖u‖2

2
.

Proof We prove the claim for ‖u‖2 = 1 ; the result will follow by scaling. For each
i ≤ k , we define vi =

∑
j≤n Tijuj . Then !(vi) = !

(∑
j≤m Tijuj

)
=
∑

j≤m !(Tij)uj = 0 .
Moreover:

Now: 1
k
= !"#(vi) = $(v2

i
− ($(vi))

2) = $(v2
i
− 0) = $(v2

i
) . Hence:

!"#(vi) =
∑
j≤m

!"#(Tijuj) =
∑
j≤m

!"#(Tij)u
2
j
=
∑
j≤m

u2
j

k
=

1

k
‖u‖2 = 1

k
.

317

1 3

Distance geometry and data science

as claimed. ◻

7.3.2 Approximating the identity

If T is a k × n RP where k = O(!−2 ln n) , both TT⊤ and T⊤T have some relation with
the identity matrices Ik and In . This is a lesser known phenomenon, so it is worth
discussing it here in some detail.

We look at TT⊤ first. By Zhang et al. (2013, Cor. 7) for any ! ∈ (0, 1
2
) , we have:

with probability at least 1 − ! as long as n ≥ (k+ 1) ln(2k∕!)

C"2
 , where C ≥ 1

4
 is a constant.

In Table 1 we give values of ‖s TT⊤ − Id‖2 for s ∈ {1∕n, 1∕d, 1} ,
n ∈ {1000, 2000,… , 10,000} and d = ⌈ln(n)∕!2⌉ where ! = 0.15 . It is clear that the
error decreases as the size increases only in the case s = 1

n
 . This seems to indicate

that the scaling is a key parameter in approximating the identity.
Let us now consider the product T⊤T . It turns out that, for each fixed vector x not

depending on T, the matrix T⊤T behaves like the identity with respect to x.

Theorem 7 Given any fixed x ∈ ℝn , ! ∈ (0, 1) and an RP T ∈ ℝd×n , there is a uni-
versal constant C , such that:

with probability at least 1 − 4eC!
2d.

Proof By definition, for each i ≤ n we have xi = ⟨ei, x⟩ , where ei is the ith unit coor-
dinate vector. By elementary linear algebra, we have ⟨ei, T⊤Tx⟩ = ⟨Tei, Tx⟩ . By
D’Ambrosio et al. (2019, Lemma 3.1), for i ≤ n we have:

with arbitrarily high probability, which implies the result. ◻

!(‖Tu‖2) = !(‖v‖2) = !

(∑
i≤k

v2
i

)
=
∑
i≤k

!(v2
i
) =

∑
i≤k

1

k
= 1,

‖1
n
T T⊤ − Ik‖2 ≤ "

(45)−!! ≤ T⊤ Tx − x ≤ !!

⟨ei, x⟩ − !‖x‖2 ≤ ⟨Tei, Tx⟩ ≤ ⟨ei, x⟩ + !‖x‖

Table 1 Values of ‖sTT⊤ − Id ‖ in function of s, n
s n

1e3 2e3 3e3 4e3 5e3 e3 7e3 8e3 9e3 1e4

1/n 9.72 7.53 6.55 5.85 5.36 5.01 4.71 4.44 4.26 4.09
1/d 5e1 1e2 1.5e2 2e2 2.5e2 3e2 3.5e2 3.9e2 4.4e2 4.8e2
1 2e5 4e5 6e5 8e5 1e6 1.2e6 1.4e6 1.6e6 1.8e6 2e6

318 L. Liberti

1 3

One might be tempted to infer from Theorem 7 that T⊤T “behaves like the iden-
tity matrix” (independently of x). This is generally false: Theorem 7 only holds for a
given (fixed) x.

In fact, since T is a k × n matrix with k < n , T⊤T is a square symmetric psd n × n
matrix with rank k, hence n − k of its eigenvalues are zero—and the nonzero eigen-
values need not have value one. On the other hand, T⊤T looks very much like a
slightly perturbed identity, on average, as shown in Table 2.

7.3.3 Using RPs in MP

Random projections have mostly been applied to probabilistic approximation algo-
rithms. By randomly projecting their (vector) input, one can execute algorithms with
lower dimensional vector more efficiently. The approximation guarantee is usually
derived from the JLL or similar results.

A line of research about applying RPs to MP formulations was started in Vu et al.
(2019), Vu et al. (2018), Vu et al. (2019), and D’Ambrosio et al. (2019). Whichever
algorithm one may choose to solve the MP, the RP properties guarantee an approxi-
mation on optimality and/or feasibility. Thus, this approach leads to stronger/more
robust results with respect to applying RPs to algorithmic input.

Linear and integer feasibility problems (i.e. LP and MILP formulations without
objective function) are investigated in Vu et al. (2019) from a purely theoretical
point of view. The effect of RPs on LPs (with nonzero objective) is investigated in
Vu et al. (2018), both theoretically and computationally. Specifically, the randomly
projected LP formulation is shown to have bounded feasibility error and an approxi-
mation guarantee on optimality. The computational results suggest that the range of
practical application of this technique starts with relatively small LPs (thousands
of variables/constraints). In both Vu et al. (2018, 2019) we start from a (MI)LP in
standard form:

(where X = ℝn or ℤn , respectively), and obtain a randomly projected formulation
under the RP T ∼ !n×k(0, 1√

k
) with the form:

P ≡ min {c⊤x | Ax = b ∧ x ≥ 0 ∧ x ∈ X},

Table 2 Average values of
diagonal and off-diagonal
components of T⊤T in function
of n, where T is a k × n RP with
k = O(!−2 ln n) and ! = 0.15

n Diagonal Off-diag

500 1.00085 0.00014
1000 1.00069 0.00008
1500 0.99991 − 0.00006
2000 1.00194 0.00005
2500 0.99920 − 0.00004
3000 0.99986 − 0.00000
3500 1.00044 0.00000
4000 0.99693 0.00000

319

1 3

Distance geometry and data science

i.e., T reduces the number of constraints in P to O(ln n) , which can therefore be
solved more efficiently.

The RP technique in Vu et al. (2019), D’Ambrosio et al. (2019) is different, inso-
far as it targets the number of variables. In D’Ambrosio et al. (2019), we consider a
QP of the form:

where Q is n × n , c ∈ ℝn , A is m × n , and b ∈ ℝm , x ∈ ℝn . This is projected as
follows:

where Q̄ = TQT ⊤ is k × k , Ā = AT ⊤ is m × k , c̄ = Tc is in ℝk , and u ∈ ℝk . In Vu
et al. (2019) we consider a QCQP Q′ like Q but subject to a ball constraint ‖x‖2 ≤ 1 .
In the projected problem TQ′ , this is replaced by a ball constraint ‖u‖2 ≤ 1 . Both
(D’Ambrosio et al. 2019; Vu et al. 2019) are both theoretical and computational. In
both cases, the number of variables of the projected problem is O(ln n).

In applying RPs to MPs, one solves the smaller projected problems to obtain an
answer concerning the corresponding original problems. In most cases, one has to
devise a way to retrieve a solution for the original problem using the solution of the
projected problem. This may be easy or difficult depending on the structure of the
formulation and the nature of the RP.

8 Distance instability

Most of the models and methods in this survey are based on the concept of dis-
tance: usually Euclidean, occasionally with other norms. The k-means algorithm
(Sect. 5.1.1) is heavily based on Euclidean distances in Step 2 (p. 20), where the
reassignment of a point to a cluster is carried out based on proximity: in particular,
one way to implement Step 2 is to solve a 1-nearest neighbor problem. The train-
ing of an ANN (Sect. 5.1.2) repeatedly solves a minimum-distance subproblem in
Eq. (10). In spectral clustering (Sect. 5.2.1) we have a Euclidean norm constraint in
Eq. (12). All DGP solution methods (Sect. 6), with the exception of incidence vec-
tors (Sect. 6.2.1), are concerned with distances by definition. PCA (Sect. 7.1), in its
interpretation of a modified MDS, can be seen as another solution method for the
DGP. Barvinok’s naive algorithm (Sect. 7.2) is a dimensional reduction method for
SDPs the analysis of which is based on a distance bound; moreover, it was success-
fully applied to the DGP (Liberti and Vu 2018). The RP-based methods discussed
in Sect. 7.3 have all been derived from the JLL (Sect. 7.3.1), which is a statement
about the Euclidean distance. We also note that the focus of this survey is on typical
DS problems, which are usually high-dimensional.

TP ≡ min
{
c⊤x | TAx = Tb ∧ x ≥ 0 ∧ x ∈ X

}
,

Q ≡ max
{
x⊤Qx + c⊤x | Ax ≤ b

}
,

TQ ≡ max
{
u⊤Q̄x + c̄⊤u | Āu ≤ b

}
,

320 L. Liberti

1 3

It is therefore absolutely essential that all of these methods should be able to
take robust decisions based on comparing distance values computed on pairs of
high-dimensional vectors. It turns out, however, that smallest and largest distances
D!"#,D!$% of a random point Z ∈ ℝn to a set of random points X1 ,… ,X! ⊂ ℝn are
almost equal (and, hence, difficult to compare) as n → ∞ under some reasonable
conditions. This holds for any distribution used to sample Z,Xi . This result, first pre-
sented in Beyer et al. (1998) and subsequently discussed in a number of papers (Hin-
neburg et al. 2000; Aggarwal et al. 2001; François et al. 2007; Durrant and Kabán
2009; Radovanović et al. 2010; Mansouri and Khademi 2015; Flexer and Schnitzer
2015), appears to jeopardize all of the material presented in this survey, and much
more beyond. The phenomenon leading to the result is known as distance instability
and concentration of distances.

8.1 Statement of the result

Let us look at the exact statement of the distance instability result.
First, we note that the points Z,X1 ,… ,X! are not given points in ℝn but rather

multivariate random variables with n components, so distance instability is a purely
statistical statement rather than a geometric one. We consider:

where Z1 ,… , Zn are random variables with distribution D1 ; X11,… ,X!n are random
variables with distribution D2 ; and all of these random variables are independently
distributed.

Second, D!"#,D!$% are functions of random variables:

and are therefore random variables themselves. In the above, !"#$ denotes a function
mapping pairs of points in ℝn to a non-negative real number, which makes distance
instability a very general phenomenon. Specifically, !"#$ need not be a distance at all.

Third, we now label every symbol with an index m, which will be used to com-
pute limits for m → ∞ : Zm , Xm , Dm

1
 , Dm

2
 , Dm

!"#
 , Dm

!"#
 , !"#$m . We shall see that the

proof of the distance instability result is wholly syntactical: its steps are very simple
and follow from basic statistical results. In particular, we can see m as an abstract
parameter under which we shall take limits, and the proof will hold. Since the proof
holds independently of the value of n, it also holds if we assume that m = n , i.e., if
we give m the interpretation of dimensionality of the Euclidean space embedding
the points. While this assumption is not necessary for the proof to hold, it may sim-
plify its understanding: m = n makes the proof somewhat less general, but it gives
the above indexing a more concrete meaning. Specifically, Z,X,D,D, !"#$ are points,

Z = (Z1 ,… , Zn)

∀i ≤ ! Xi = (Xi1 ,… ,Xin),

(46)D!"# = min {$"%&(Z,Xi) | i ≤ !}

(47)D!"# = max {$%&'(Z,Xi) | i ≤ !},

321

1 3

Distance geometry and data science

distributions, extreme distance values and a distance function in dimension m, and
the limit m → ∞ is a limit taken on increasing dimension.

Fourth, the “reasonable conditions” referred to above for the distance instability
result to hold are that there is a constant p > 0 such that:

A few remarks on Eq. (48) are in order.

(a) The existential quantifier encodes the fact that the Xi are all identically distrib-
uted, so a statement involving variance and expectation of quantities depending
on the Xi random variables holds for all i ≤ ! if it holds for just one Xi.

(b) The constant p simply gives more generality to the result, but plays no role
whatsoever in the proof; it can be used to simplify computations when !"#$ is an
!p norm.

(c) The fraction term in Eq. (48) measures a spread relative to an expectation.
Requiring that the limit of this relative spread goes to zero for increasing dimen-
sions looks like an asymptotic concentration requirement (hence the alternative
name “distance concentration” for the distance instability phenomenon). Con-
sidering the effect of concentration of measure phenomena in high dimensions
(Sect. 7.2.2), distance instability might now appear somewhat less surprising.

With these premises, we can state the distance instability result.

Theorem 8 If Dm
!"#

 and Dm
!"#

 are as in Eq. (46) and (47) and satisfy Eq. (48), then,
for any ! > 0 , we have:

Theorem 8 basically states that closest and farthest neighbors of Z are indis-
tinguishable up to an ! . If the closest and farthest are indistinguishable, trying to
discriminate between the closest and the second closest neighbors of a given point
might well be hopeless due to floating point errors (note that this discrimination
occurs at each iteration of the well known k-means algorithm). This is why distance
instability is sometimes cited as a reason for convergence issues in k-means (Gay-
raud 2017).

8.2 Related results

In Beyer et al. (1998), several scenarios are analyzed to see where distance insta-
bility occurs—even if some of the requirements of distance instability are relaxed
(Beyer et al. 1998, §3.5)—and where it does not (Beyer et al. 1998, §4). Among
the cases where distance instability does not apply, we find the case where the data
points X are well separated and the case where the dimensionality is implicitly
low. Among the cases where it does apply, we find k-NN: in their experiments, the

(48)∃i ≤ ! lim
m →∞

"#$

(
(%&'((Zm ,Xm

i
))p

)((%&'((Zm ,Xm
i
))p)

)
= 0.

(49)lim
m→∞

"
(
Dm

#$%
≤ (1 + !)Dm

#&'

)
= 1.

322 L. Liberti

1 3

authors of Beyer et al. (1998) find that k-NN becomes unstable already in the range
n ∈ {10, 20} dimensions. Obviously, the instability of k-NN propagates to any algo-
rithm using k-NN, such as k-means.

Among later studies, Hinneburg et al. (2000) proposes an alternative definition of
!"#$ where high-dimensional points are projected into lower dimensional spaces. In
Hinneburg et al. (2000), the authors study the impact of distance instability on dif-
ferent !p norms, and concludes that smallest values of p lead to more stable norms;
in particular, quasinorms with 0 < p < 1 are considered. Some counterexamples are
given against a generalization of this claim for quasinorms in François et al. (2007).
In Durrant and Kabán (2009), the converse of Theorem 8 is proved, namely that
Eq. (48) follows from Eq. (49): from this fact, the authors find practically relevant
cases where Eq. (48) is not verified, and propose them as “good” examples of where
k-means can help. In Mansouri and Khademi (2015), the authors propose multipli-
cative functions !"#$ and show that they are robust with respect to distance instabil-
ity. In Radovanović et al. (2010), distance instability is related to “hubness”, i.e., the
number of times a point appears among the k nearest neighbors of other points. In
Flexer and Schnitzer (2015), an empirical study is provided which shows how to
show an appropriate !p norm that should avoid distance instability with respect to
hubness.

8.3 The proof

The proof of the instability theorem can be found in Beyer et al. (1998). We repeat
it here to demonstrate the fact that it is “syntactical”: every step follows from the
previous ones by simple logical inference. There is no appeal to any results other
than convergence in probability, Slutsky’s theorem, and a simple corollary as shown
below. The proof does not pass from object language to meta-language, nor does it
require exotic interpretations of symbols in complicated contexts. Although one may
find this result surprising, there appears to be no reason to doubt it, and no compli-
cation in the proof warranting sophisticated interpretations. The only point worth
re-stating is that this is a result about probability distributions, not about actual
instances of real data.

Lemma 1 Let {Bm | m ∈ ℕ} be a sequence of random variables with finite variance.
Assume that limm→∞ "(Bm) = b and that limm→∞ "#$(Bm) = 0 . Then:

A random variable sequence satisfying Eq. (50) is said to converge in probability
to b. This is denoted Bm →" b.

Lemma 2 (Slutsky’s theorem, Wikipedia: Slutsky’s theorem 2019) Let {Bm | m ∈ ℕ}
be a sequence of random variables, and g ∶ ℝ → ℝ be a continuous function. If
Bm →" b and g(b) exists, then g(Bm) →" g(b).

(50)∀! > 0 lim
m→∞

"(‖Bm −b‖ ≤ !) = 1.

323

1 3

Distance geometry and data science

Corollary 1 If {Am | m ∈ ℕ} and {Bm | m ∈ ℕ} are sequences of random variables,
such that Am →" a and Bm →" b ≠ 0 , then A

m

Bm
→"

a

b
.

Proof of Theorem 8 Let !m = !((dm (Zm ,Xm
i
))p) . We note that !m is independent of i,

since all Xm
i

 are identically distributed.

We claim Vm =
(dm (Zm ,Xm

i
))p

!m

→" 1 :

– we have !(Vm) = 1 , since it is a random variable over its mean: hence, trivially,
limm !(Vm) = 1;

– by the hypothesis of the theorem (Eq. (48)), limm !"#(Vm) = 0;
– by Lemma 1, Vm →" 1 , which establishes the claim.

Now, let !m = (Vm | i ≤ !) . By the claim above, we have !m →" " . Now, by Lemma
2, we obtain min(!m) →" min(") = 1 and, similarly, max(!m) →" 1 . By Corollary 1,
max(!m)

min(!m)
→" 1 . Therefore:

By definition of convergence in probability, we have:

Moreover, since !(Dm
"#$

≥ Dm
"%&

) = 1 , we have:

The result follows by taking the limit as m → ∞ . ◻

8.4 In practice

In Fig. 7, we show how ! (Eq. (49)) varies with increasing dimension n (recall
we assume m = n) between 1 and 10,000. It is clear that ! decreases very rapidly
towards zero, and then reaches its asymptotic value more slowly. On the other hand,
! is the distortion between minimum and maximum distance values; most algo-
rithms need to discriminate between smallest and second smallest distance values.

Most of the papers listed in Sect. 8.2 include empirical tests which illustrate the
impact and limits of the distance instability phenomenon.

9 An application to neural networks

In this last section, we finally show how several concepts explained in this survey
can be used conjunctively. We shall consider a natural language processing task
(Sect. 4) where we cluster some sentences (Sect. 5) using an ANN (Sect. 5.1.2) with

Dm
!"#

Dm
!$%

=
!m max (!m)

!m min (!m)
→ ' 1.

∀! > 0 lim
m→∞

"
(|Dm

#$%
∕Dm

#&'
− 1| ≤ !

)
= 1.

!(Dm
"#$

≤ (1 + !)Dm
"%&

) = !(Dm
"#$

∕Dm
"%&

− 1 ≤ !) = !(|Dm
"#$

∕Dm
"%&

− 1| ≤ !) = 1.

324 L. Liberti

1 3

different training sets T = (X, Y) . We compare ANN performances depending on the
training set used.

Fig. 7 Plots of ! versus n for the uniform distribution on [0, 1] (above), !(0, 1) (center), and the exponen-
tial distribution with parameter 1 (below)

325

1 3

Distance geometry and data science

The input set X is a vector representation of the input sentences. The output set
Y is a vectorial representation of cluster labels: we experiment with (a) clusterings
obtained by running k-means (Sect. 5.1.1) on the input sets, and (b) a clustering
found by a modularity maximization heuristic (Sect. 5.2.2). All of these clusterings
are considered “ground truth” sets Y; we would like our ANN to learn to associate
with various types of input vector sets X representing the sentences. The sentences
to be clustered are first transformed into graphs (Sect. 4.2), and then into vectors
(Sect. 6), which then undergo dimensionality reduction (Sect. 7).

Our goal is to compare the results obtained by the same ANN with different vec-
tor representations for the same text: most notably, the comparison will establish
how well or poorly different input vector sets can predict corresponding ground truth
outputs. We will focus specifically on a comparison of the well-known incidence
vectors (Sect. 6.2.1) embeddings with respect to the newly proposed DGP methods
which we surveyed in Sect. 6.

In our implementations, all our code was developed using Python 3 (van Rossum
2019).

9.1 Performance measure

We are going to measure the performance quality of the error of an ANN, which
is based on a comparison of its output with the ground truth that the ANN is sup-
posed to learn. Using the notation of Sect. 5.1.2, if the ANN output for a given input
x ∈ ℝn consists of a vector y ∈ ℝk , and if the ground truth corresponding to x is
z ∈ ℝk , then we define the error as the loss function:

An ANN N = (G,T ,!) is usually evaluated over many (input,output) pairs. Let
X̂ ⊂ ℝn and Ŷ ⊂ ℝk be, respectively, a set of input vectors and the corresponding
set of output vectors evaluated by the trained ANN. Let Ẑ be a set of ground truth
vectors corresponding to X̂ , and assume |X̂| = |Ŷ| = |Ẑ| = q . The cumulative loss
measure evaluated on the test set (X̂, Ẑ) is then:

where Ŷ = {yi | i ≤ q} and Ẑ = {zi | i ≤ q}.

9.2 A natural language processing task

Clustering of sentences in a text is a common task in Natural Language Processing.
We considered “On the duty of civil disobedience” by H.D. Thoreau (Thoreau 1849;
Wikipedia: Civil disobedience 2019). This text is stored in an ASCII file which can
be obtained from archive.org. The file that we used for testing is 661146 bytes
long, organized in 10108 lines and 116608 words. The text was parsed into sentences
using basic methods from NLTK (Bird et al. 2009) under Python 3. Common words,

(51)!"##(y, z) = ‖y − z‖2 .

(52)!"##(N) =
1

q

∑
i≤q

!"##(yi, zi),

326 L. Liberti

1 3

stopwords, punctuation, and unusual characters were removed, which reduced the
text to 4083 sentences over a set of 11,431 “significant” words (see Sect. 9.2.1).

As mentioned above, we want to train our ANN to learn different types of
clusterings:

– (k-means) obtained by running the k-means unsupervised clustering algorithm
(Sect. 5.1.1) over the different vector representations of the sentences in the text;

– (sentence graph) obtained by running a modularity clustering heuristic
(Sect. 5.2.2) on a graph representation of the sentences in the document (see
Sect. 9.2.2).

These clusterings are used as ground truths, and provide the output part of the
training sets to be used by the ANN, as well as of the test sets for measuring pur-
poses (Sect. 9.1). See Sect. 9.4.1 for more information on the construction of these
clusterings.

9.2.1 Selecting the sentences

We constructed two sets of sentences.

– The large sentence set. Each sentence in the text file was mapped to an inci-
dence vector of 3-grams in {0, 1}48,087 , i.e. a dictionary of 48,087 3-grams over
the text. In other words, 48,087 3-grams were found in the text, and then, each
sentence was mapped to a vector having 1 at component i iff the ith 3-grams was
present in the sentence. Since some sentences had fewer than 3 significant words,
only 3940 sentences remained in the sentence set S, which was, therefore, repre-
sented as a 3940 × 48,087 matrix S̄ with components in {0, 1}.

– The small sentence set. It turns out that most of the 3-grams in the set S only
appear a single time. We selected a subset S′ ⊂ S of sentences having 3-grams
appearing in at least two sentences. It turns out that |S′| = 245 , and the total
number of 3-grams appearing more than once is 160. S′ is, therefore, naturally
represented as a 245 × 160 matrix S̄′ with components in {0, 1}.

We constructed training sets (Sect. 9.4) for each of these two sets. Specifically, each
sentence in the text was encoded into a weighted graph-of-word (see Sect. 4.2.1)
over 3-grams, with edges {u, v} weighted by the number cuv of 3-grams where the
two words u, v appear. Then, each graph was mapped into a realization using DG
methods (see Sect. 9.4).

9.2.2 Construction of a sentence graph

In this section, we describe the method used to construct a sentence graph
G ! = (S,E) from the text, which is used to produce a ground truth for the (sentence
graph) type. G! is then clustered using the greedy modularity clustering heuristic in
the Python library networkX (Hagberg et al. 2008).

327

1 3

Distance geometry and data science

Each sentence in the text is encoded into a weighted graph-of-word (see
Sect. 4.2.1) over 3-grams, with edges {u, v} weighted by the number cuv of 3-grams
where the two words u, v appear. The union of the graph-of-words for the sentences
(contracting repeated words to a single vertex) yields a weighted graph-of-word G!
for the whole text.

The graph G! = (W,F) is then “projected” onto the set S of sentences as follows.
We define the logical proposition P(u, v, s, t) to mean (u ∈ s ∧ v ∈ t) ∨ (v ∈ s ∧ u ∈ t)
for words u, v and sentences s, t. The edge set E of G! is then defined by the follow-
ing implication:

In other words, s, t form an edge in E if two words u, v in s, t (respectively) or t, s
form an edge in F. For each edge {s, t} ∈ E , the weight wst is given by:

with edge weights meaning similarity.

9.3 The ANN

We consider a very simple ANN N = (G,T ,!) . In the terminology of Sect. 5.1.2,
the underlying digraph G = (V ,A) is tripartite with V = V1∪̇V2∪̇V3 . The “input
layer” V1 has n nodes, where n is the dimensionality of the input vector set X. The
“output layer” V3 has a single node. The “hidden layer” V2 has a constant number
of nodes (20 in our experiments). The training set T is discussed in Sect. 9.4. We
adopt the piecewise-linear mapping known as rectified linear unit (ReLu) (Wikipe-
dia: Rectifier 2019) for the activation functions ! in V2 , and a traditional sigmoid
function for the single node in V3 . Both types of activation functions map to [0, 1].

We implemented N using the Python library keras (Chollet et al. 2015), which
is a high-level API running over TensorFlow (Abadi et al. 2015). The default config-
uration was chosen for all layers. We used the ADAM solver (Kingma and Ba 2015)
to train the network. Each training set was split in three parts: 35% of the vectors
were used for training, 35% for validation (a training phase used for deciding values
of any model parameter aside from v, b, w, if any exist, and/or for deciding when to
stop the training phase), and 30% for testing. The performance of the ANN is meas-
ured using the loss function in Eq. (52).

9.4 Training sets

Our goal is to compare training sets T = (X, Y) where the vectors in X are con-
structed in different ways. In particular, we consider input sets X(!,", #) where:

∀{u, v} ∈ F, s, t ∈ S P(u, v, s, t) → {s, t} ∈ E.

wst =
∑

{u, v} ∈ F

P(u, v, s, t)

cuv,

328 L. Liberti

1 3

– ! ∈ " = {S′, S} is the sentence set: ! = S′ corresponds to the small set with 245
sentences; ! = S corresponds to the large set with 3940 sentences;

– ! ∈ M = {!"#, $!%, &'(,)*+} is the method used to map sentences to vectors: !"#
are the incidence vectors (Sect. 6.2.1), !"# is the universal isometric embed-
ding (Sect. 6.2.2), !"# is the unconstrained quartic (Sect. 6.1.1), !"# is the SDP
(Sect. 6.1.3);

– ! ∈ R = {!"#, $!} is the dimensional reduction method used: !"# is PCA
(Sect. 7.1), !" are RPs (Sect. 7.3).

The methods in M were all implemented using Python 3 with some well known
external libraries (e.g., numpy, scipy). Specifically, !"# was implemented using
the IPOPT [47] NLP solver, and !"# was implemented using the SCS (O’Donoghue
et al. 2016) SDP solver. As for the dimensional reduction methods in R, the PCA
implementation of choice was the probabilistic PCA algorithm implemented in the
Python library scikit-learn (Pedregosa et al. 2011). The chosen RPs were the
simplest: each component of the RP matrices was sampled from an appropriately
scaled zero-mean Gaussian distribution (Theorem 6).

9.4.1 The output set

The output set Y should naturally contain discrete values, namely the labels of the h
clusters {1, 2,… , h} in the ground truth clusterings. We map these values to scalars
in [0, 1] (or, according to Sect. 5.1.2, to k-dimensional vectors with k = 1) as fol-
lows. We divide the range [0, 1] into h − 1 equal sub-intervals of length 1∕(h − 1) ,
and hence h discrete values in [0, 1]. Then we assign labels to sub-intervals end-
points: label j is mapped to (j − 1)∕(h − 1) (for 1 ≤ j ≤ h).

As mentioned above, we consider two types of output sets:

– (k-means) for each input set X(!,", #) , we obtained an output set Y(!,", #)
using k-means (Sect. 5.1.1) implementation in scikit-learn (Pedregosa
et al. 2011) on the vectors in X, for each sentence set ! ∈ " , method ! ∈ M , and
dimensional reduction method ! ∈ R;

– (sentence graph) for each sentence set ! ∈ " , we constructed a sentence graph as
detailed in Sect. 9.2.2.

9.4.2 Realizations to vectors

The !"# method (Sect. 6.2.1) is the only one (in our benchmark) that can natively map
sentences of various lengths into vectors all having the same number of components.

For all other methods in M ∖ {!"#} , we loop over sentences (in small/large sets
S′, S). For each sentence, we construct its graph-of-words (Sect. 4.2.1). We then
realize it in some arbitrary dimensional Euclidean space ℝK (specifically, we chose
K = 10) using uie, qrt, sdp. At this point, we are confronted with the following
difficulty: a realization of a graph G with p vertices in ℝK is a p × K matrix, and
we have as many graphs G as we have sentences, with p varying over the number

329

1 3

Distance geometry and data science

of unique words in the sentences (i.e., the cardinalities of the vertex sets of the
graphs-of-words).

To reduce all of these differently sized realizations to vectors having the
same dimension, we employ the following procedure. Given realizations
{xi ∈ ℝpi×K | i ∈ !} , where ! is the set of sentences (for ! ∈ ") and xi realizes the
graph-of-word of sentence i ∈ ! :

1. we stack the columns of xi so as to obtain a single vector x̂i ∈ ℝpiK for each i ∈ !

;
2. we let n̂ = maxi piK be the maximum dimensionality of the stacked realizations;
3. we pad every realization vector x̂i shorter than n̂ with zeros to achieve dimension

n̂ for stacked realization vectors;
4. we form the s × n̂ matrix X̂ having x̂i as its ith row (for i ∈ ! and with s = |!|);
5. we reduce the dimensionality of X̂ to an s × n matrix X with pca or rp.

9.5 Computational comparison

We discuss the details of our training sets, a validation test, and the comparison
tests.

9.5.1 Training set statistics

In Table 3, we report the dimensionalities of the vectors in the input parts X(!,", #)
of the training sets, as well as the number of clusters in the output sets Y(!,", #) of
the (k-means) class. We recall that the number of clusters was found with k-means in
the scikit-learn implementation. The choice of ‘k’ corresponds to the smallest
number of clusters giving a nontrivial clustering (with “trivial” meaning having a
cluster of zero cardinality, or too close to zero relative to the set size, only possibly
allowing some outlier clusters with a single element). Some more remarks follow.

– For ! = !"# , we employed the smallest dimension, such that the residual vari-
ance in the neglected components was almost zero; this ranges from 3 to 244 in

Table 3 Training set statistics
for X(!,", #) and corresponding
output sets in the (k-means)
class

! |!| = 245 |!| = 3940

! inc uie qrt sdp inc uie qrt sdp

Dimensionality of input vectors
 pca 3 159 244 200 3 10 400 400
 rp 100 248 248 248 373 373 373 373

Original 160 1140 1140 1140 48,087 1460 1460 1460
Number of clusters to learn

 pca 4 3 11 6 3 8 9 14
 rp 4 3 7 5 3 9 16 14

330 L. Liberti

1 3

Table 3. For the two cases where the dimensionality reduction was set to 400 (!"#
and !"# in the large sentence set S), the residual variance was nonzero.

– It is interesting that for ! = !"# we have higher projected dimensionality (248) in
the small set S′ than in the large set S (10): this depends on the fact that the large
set has more easily distinguishable clusters (8 found by k-means) than the small
set (only 3 found by k-means). The dimension of X(!"#, $#%, S) is smaller (3) than
that of X(!"#, $%&, S) (10), even though the original number of dimensions of the
former (48,087) vastly exceeds that of the latter (1460) for the same reason.

– The training sets X(!, !"#, $#%) are the smallest-dimensional ones (for
! ∈ {S′, S}): they are also “degenerate”, in the sense that the vectors in a given
clusters are all equal; the co-occurrence patterns of the incidence vectors con-
veyed relatively little information to this vectorial sentence representation.

– The RP-based dimensionality reduction method yields the same dimensionality
(373) of X(!, !", S) for ! ∈ M . This occurs because the target dimensionality in
RP depends on the number of vectors, which is the same for all methods (3940),
rather than on the number of dimensions (see Sect. 7.3).

There is one output set in the (sentence graph) class for each ! ∈ " . For ! = S′ ,
we have |V| = 245 , |E| = 28,519 , and 230 clusters, with the first 5 clusters hav-
ing 6, 5, 4, 3, 2 elements, and the rest having a single element. For ! = S we have
|V| = 3940 , |E| = 7,173,633 , and 3402 clusters, with the first 10 clusters having 161
, 115, 62, 38, 34, 29, 19, 16, 14, 11 elements, and the rest having fewer than 10
elements.

9.5.2 Comparison tests

We first report the comparative results of the ANN on:

for ! ∈ " , !1 ,!2 ∈ M , !1 , !2 ∈ R . The sums in the rightmost columns of Table 4 are
only carried out on terms obtained with an input vector generation method !1 differ-
ent from the method !2 used to obtain the ground truth clustering via k-means (since
we want to compare methods). The results corresponding to cases where !1 = !2
are emphasized in italics in the table. The best performance sums are emphasized in
boldface, and the worst are shown in grey.

According to Table 4, for the small sentence set, the best method is !"# , but !"#
and !"# are not far behind; the only really imprecise method is !"# . For the large sen-
tence set, the best method is !"# , with !"# not far behind; both !"# , !"# are imprecise.

In Table 5, which has a similar format as Table 4, we report results on training
sets:

for ! ∈ " , ! ∈ M , ! ∈ R , where Ȳ(") are output sets of the (sentence graph) class.
For the small set, inc is the best method (independently of !), with (! = !"#, " = #$%)

T = (X(!,"1 , #1), Y(!,"2 , #2))

T̄ = (X(",#, $), Ȳ("))

331

1 3

Distance geometry and data science

following very closely, and, in general, sdp and qrt still being acceptable; uie is
the most imprecise method. For the large set, inc is against the best method, with
(! = !"#, " = $#) following closely. While the other methods do not excel, the per-
formance difference between all methods is less remarkable than with the small set.

Table 4 Comparison tests on output sets of (k-means) class
Training set outputs

! inc inc uie uie qrt qrt sdp sdp sum

! pca rp pca rp pca rp pca rp !′ ≠ !

Training set inputs
|!| 245
!"#
$#%

0.061 0.042 0.059 0.013 0.094 0.108 0.064 0.025 0.363

!"#
$%

0.005 0.010 0.055 0.015 0.104 0.109 0.065 0.025 0.373

!"#
$%&

0.271 0.052 0.070 0.169 0.233 0.201 0.127 0.111 0.995

!"#
$%

0.093 0.026 0.094 0.076 0.191 0.236 0.079 0.117 0.976

!"#
$%&

0.082 0.067 0.105 0.047 0.084 0.133 0.071 0.087 0.459

!"#
"$

0.057 0.068 0.059 0.053 0.162 0.073 0.095 0.055 0.387

!"#
#$%

0.106 0.063 0.067 0.022 0.106 0.135 0.058 0.034 0.499

!"#
$#

0.095 0.065 0.093 0.021 0.103 0.139 0.074 0.018 0.516

|!| 3940
!"#
$#%

0.052 0.013 0.068 0.027 0.106 0.164 0.079 0.161 0.605

!"#
$%

0.001 0.000 0.067 0.028 0.106 0.167 0.080 0.159 0.607

!"#
$%&

0.063 0.022 0.020 0.016 0.124 0.201 0.070 0.127 0.607

!"#
$%

0.061 0.023 0.024 0.023 0.131 0.190 0.072 0.126 0.603

!"#
$%&

0.063 0.022 0.36 0.023 0.038 0.218 0.079 0.159 0.382

!"#
"$

0.062 0.024 0.047 0.025 0.120 0.035 0.076 0.164 0.398

!"#
#$%

0.063 0.021 0.023 0.024 0.126 0.195 0.033 0.149 0.452

!"#
$#

0.059 0.021 0.025 0.024 0.121 0.176 0.083 0.037 0.426

332 L. Liberti

1 3

10 Conclusion

We have surveyed some of the concepts and methodologies of distance geometry
which are used in data science. More specifically, we have looked at algorithms
(mostly based on mathematical programming) for representing graphs as vectors as
a pre-processing step to performing some machine learning task requiring vectorial
input.

We started with brief introductions to mathematical programming and distance
geometry. We then showed some ways to represent data by graphs, and introduced
clustering on vectors and graphs. Following, we surveyed robust algorithms for real-
izing weighted graphs in Euclidean spaces, where the robustness is with respect to
errors or noise in the input data. It turns out that most of these algorithms are based
on mathematical programming. Since some of these algorithms output high-dimen-
sional vectors and/or high-rank matrices, we also surveyed some dimensional reduc-
tion techniques. We then discussed a result about the instability of distances with
respect to randomly generated points.

The guiding idea in this survey is that distance geometry allows the application
many supervised and unsupervised clustering techniques based on vectors to the
problem of clustering on graphs. To demonstrate the applicability of this idea, we
showed that vectorial representations of graphs obtained using distance geometry
offer competitive performances when training an artificial neural network. While we
do not think that our limited empirical analysis allows any definite conclusion, we
hope that it will entice more research in this area.

Acknowledgements I am grateful to J.J. Salazar, the Editor-in-Chief of TOP, for inviting me to write this
survey. This work would not have been possible without the numerous co-authors with whom I pursued
my investigations in distance geometry, among which I will single out the longest-standing: C. Lavor,
N. Maculan, and A. Mucherino. I have first heard of concentration of measure as I passed by D. Maliou-
tov’s office at the T.J. Watson IBM Research laboratory: the door was open, the Johnson-Lindenstrauss
lemma was mentioned, and I could not refrain from interrupting the conversation and asking for clarifica-
tion, as I thought that there must surely be a mistake; incredibly, the result was true, and I am grateful to
Dr. Malioutov for hosting the conversation I eavesdropped on. I am very thankful to the co-authors who
helped me investigate random projections, in particular P.L. Poirion and K. Vu, without whom none of
our papers would have been possible. I learned about the existence of the distance instability result thanks
to N. Gayraud, who was in the audience during a talk I gave, and suggested it to me as I expressed puz-
zlement at the poor quality of k-means clusterings. João Fontes Gonçalves, a student in my M.Sc. course,
first made the remark following Eq. (6.1.3) (“why are you optimizing a constant?”). I am very grateful to

Table 5 Comparison tests on
output sets of (sentence graph)
class

Training set outputs

! inc inc uie uie qrt qrt sdp sdp

! pca rp pca rp pca rp pca rp

Training inputs
|!| 245

0.107 0.108 0.196 0.184 0.129 0.151 0.109 0.122
|!| 3940

0.097 0.098 0.124 0.119 0.136 0.113 0.114 0.106

333

1 3

Distance geometry and data science

S. Khalife, D. Gonçalves, and M. Escobar for reading the manuscript and making insightful comments.
This research was partly funded by the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agreement n. 764759 ETN “MINOA”.

References

Abadi M et al (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software
available from tensorflow.org. http://tenso rflow .org/

Achlioptas D (2003) Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J
Comput Syst Sci 66:671–687

Aggarwal C, Hinneburg A, Keim D (2001) On the surprising behavior of distance metrics in high dimen-
sional space. In: den Bussche JV, Vianu V (eds) Proceedings of ICDT, LNCS, vol 1973. Springer,
Berlin, pp 420–434

Ahmadi A, Majumdar A (2019) DSOS and SDSOS optimization: more tractable alternatives to sum of
squares and semidefinite optimization. SIAM J Appl Algebra Geom 3(2):193–230

Ahmadi A, Jungers R, Parrilo P, Roozbehani M (2014) Joint spectral radius and path-complete graph
Lyapunov functions. SIAM J Control Optim 52(1):687–717

Ailon N, Chazelle B (2006) Approximate nearest neighbors and fast Johnson–Lindenstrauss lemma. In:
Proceedings of the symposium on the theory of computing, STOC, vol. ’06. ACM, Seattle

Alfakih A, Khandani A, Wolkowicz H (1999) Solving Euclidean distance matrix completion problems
via semidefinite programming. Comput Optim Appl 12:13–30

Allen G (2012) Sparse higher-order principal components analysis. In: N. Lawrence, M. Girolami (eds)
Proceedings of the international conference on Artificial intelligence and Statistics, vol 22, pp
27–36. PMLR, La Palma

Allen-Zhu Z, Gelashvili R, Micali S, Shavit N (2014) Sparse sign-consistent Johnson-Linden-
strauss matrices: Compression with neuroscience-based constraints. Proc Natl Acad Sci
111(47):16872–16876

Aloise D, Cafieri S, Caporossi G, Hansen P, Perron S, Liberti L (2010) Column generation algorithms for
exact modularity maximization in networks. Phys Rev E 82(4):046112

Aloise D, Hansen P, Liberti L (2012) An improved column generation algorithm for minimum sum-of-
squares clustering. Math Program A 131:195–220

Aloise D, Caporossi G, Hansen P, Liberti L, Perron S, Ruiz M (2013) Modularity maximization in net-
works by variable neighbourhood search. In: Bader D, Sanders P, Wagner D (eds) Graph partition-
ing and graph clustering, contemporary mathematics, vol 588. AMS, Providence, pp 113–127

Amaldi E, Liberti L, Maffioli F, Maculan N (2009) Edge-swapping algorithms for the minimum funda-
mental cycle basis problem. Math Methods Oper Res 69:205–223

Anderson J (1995) An introduction to neural networks. MIT Press, Cambridge
Arriaga R, Vempala S (2006) An algorithmic theory of learning: Robust concepts and random projection.

Mach Learn 63:161–182
Asimow L, Roth B (1978) The rigidity of graphs. Trans AMS 245:279–289
Bahr A, Leonard J, Fallon M (2009) Cooperative localization for autonomous underwater vehicles. Int J

Robot Res 28(6):714–728
Barker G, Carlson D (1975) Cones of diagonally dominant matrices. Pac J Math 57(1):15–32
Barvinok A (2002) A course in convexity, No. 54 in graduate studies in mathematics. AMS, Providence
Barvinok A (1995) Problems of distance geometry and convex properties of quadratic maps. Discrete

Comput Geom 13:189–202
Barvinok A (1997) Measure concentration in optimization. Math Program 79:33–53
Beeker N, Gaubert S, Glusa C, Liberti L (2013) Is the distance geometry problem in NP? In: Mucherino

A., Lavor C., Liberti L., Maculan N. (eds) Distance geometry. Springer, New York, NY, pp 85–94
Belotti P, Lee J, Liberti L, Margot F, Wächter A (2009) Branching and bounds tightening techniques for

non-convex MINLP. Optim Methods Softw 24(4):597–634
ben Judah of Worms E (XII-XIII Century) Sodei Razayya
Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep networks.

Advances in neural information processing systems. NIPS, vol 19. MIT Press, Cambridge, pp
153–160

http://tensorflow.org/

334 L. Liberti

1 3

Ben-Tal A, Ghaoui LE, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton
Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1998) When is “nearest neighbor” meaningful? In: Beeri

C, Buneman P (eds) Proceedings of ICDT, LNCS, vol 1540. Springer, Heidelberg, pp 217–235
Bird S, Klein E, Loper E (2009) Natural language processing with Python. O’Reilly, Cambridge
Birge J, Louveaux F (2011) Introduction to stochastic programming. Springer, New York
Blömer J, Lammersen C, Schmidt M, Sohler C (2016) Theoretical analysis of the k-means algorithm: a

survey. In: Kliemann L, Sanders P (eds) Algorithm engineering, LNCS, vol 9220. Springer, Cham,
pp 81–116

Blumenthal L (1953) Theory and applications of distance geometry. Oxford University Press, Oxford
Böhm C, Jacopini G (1966) Flow diagrams, Turing machines and languages with only two formation

rules. Commun ACM 9(5):366–371
Bollobás B (1998) Modern graph theory. Springer, New York
Borg I, Groenen P (2010) Modern multidimensional scaling, 2nd edn. Springer, New York
Bottou L (2012) Stochastic gradient descent tricks. In: Montavon G et al (eds) Neural networks: tricks of

the trade, LNCS, vol 7700. Springer, Berlin, pp 421–436
Bourgain J (1985) On Lipschitz embeddings of finite metric spaces in Hilbert space. Isr J Math

52(1–2):46–52
Boutsidis C, Zouzias A, Drineas P (2010) Random projections for k-means clustering. Advances in neu-

ral information processing systems. NIPS. NIPS Foundation, La Jolla, pp 298–306
Brambilla A, Premoli A (2001) Rigorous event-driven (red) analysis of large-scale nonlinear rc circuits.

IEEE Trans Circ Syst I Fundam Theory Appl 48(8):938–946
Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikoloski Z, Wagner D (2008) On modularity

clustering. IEEE Trans Knowl Data Eng 20(2):172–188
Cafieri S, Hansen P, Liberti L (2010) Loops and multiple edges in modularity maximization of networks.

Phys Rev E 81(4):46102
Cafieri S, Hansen P, Liberti L (2011) Locally optimal heuristic for modularity maximization of networks.

Phys Rev E 83(056105):1–8
Cafieri S, Hansen P, Liberti L (2014) Improving heuristics for network modularity maximization using an

exact algorithm. Discrete Appl Math 163:65–72
Cauchy AL (1813) Sur les polygones et les polyèdres. Journal de l’École Polytechnique 16(9):87–99
Cayley A (1841) A theorem in the geometry of position. Camb Math J II:267–271
Chollet F et al (2015) Keras. https ://keras .io
Chomsky N (1965) Aspects of the theory of syntax. MIT Press, Cambridge
Choromanska A, Henaff M, Mathieu M, Arous GB, LeCun Y (2015) The loss surfaces of multilayer

networks. In: Proceedings of the international conference on artificial intelligence and statistics,
AISTATS, vol 18. JMLR, San Diego

COIN-OR (2006) Introduction to IPOPT: a tutorial for downloading, installing, and using IPOPT
Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural language process-

ing (almost) from scratch. J Mach Learn Res 12:2461–2505
Connelly R (1978) A counterexample to the rigidity conjecture for polyhedra. Publications Mathéma-

tiques de l’IHES 47:333–338
Cox T, Cox M (2001) Multidimensional scaling. Chapman & Hall, Boca Raton
D’Ambrosio C, Liberti L (2017) Distance geometry in linearizable norms. In: Nielsen F, Barbaresco F

(eds) Geometric science of information, LNCS, vol 10589. Springer, Berlin, pp 830–838
D’Ambrosio C, Liberti L, Poirion PL, Vu K (2019) Random projections for quadratic programming.

Math Program B (in revision)
D’Ambrosio C, Liberti L, Poirion PL, Vu K (2019) Random projections for quadratic programming.

Tech. Rep. 2019-7-7322, Optimization Online
Dantzig G (1983) Reminiscences about the origins of linear programming. In: Bachem A, Grötschel M,

Korte B (eds) Mathematical programming: the state of the art. Springer, Berlin
Dasgupta S, Gupta A (2002) An elementary proof of a theorem by Johnson and Lindenstrauss. Random

Struct Algorithms 22:60–65
D’Aspremont A, Bach F, Ghaoui LE (2014) Approximation bounds for sparse principal component analy-

sis. Math Program B 148:89–110
Dattorro J (2015) Convex optimization and Euclidean distance geometry. M!"oo , Palo Alto
Dauphin Y, Pascanu R, Gulcehre C, Cho K, Ganguli S, Bengio Y (2014) Identifying and attacking the

saddle point problem in high-dimensional non-convex optimization. Advances in neural informa-
tion processing systems. NIPS. NIPS Foundation, La Jolla, pp 2933–2941

https://keras.io

335

1 3

Distance geometry and data science

Demartines P, Hérault J (1997) Curvilinear component analysis: a self-organizing neural network for non-
linear mapping of data sets. IEEE Trans Neural Netw 8(1):148–154

Deo N, Prabhu G, Krishnamoorthy M (1982) Algorithms for generating fundamental cycles in a graph.
ACM Trans Math Softw 8(1):26–42

Dey S, Mazumder R, Molinaro M, Wang G (2017) Sparse principal component analysis and its !1-relaxa-
tion. Tech. Rep. arXiv :1712.00800 v1

Dias G, Liberti L (2016) Diagonally dominant programming in distance geometry. In: Cerulli R,
Fujishige S, Mahjoub R (eds) International symposium in combinatorial optimization, LNCS, vol
9849. Springer, New York, pp 225–236

Douven I (2017) Abduction. In: Zalta E (ed) The Stanford encyclopedia of philosophy. Stanford Univer-
sity, Stanford

Durrant R, Kabán A (2009) When is ‘nearest neighbour’ meaningful: a converse theorem and implica-
tions. J Complex 25:385–397

Eco U (1983) Horns, hooves, insteps. Some hypotheses on three kinds of abduction. In: Eco U, Sebeok T
(eds) Dupin, Holmes. Peirce. The Sign of Three. Indiana University Press, Bloomington

Eco U (1984) Semiotics and the philosophy of language. Indiana University Press, Bloomington
Eren T, Goldenberg D, Whiteley W, Yang Y, Morse A, Anderson B, Belhumeur P (2004) Rigidity, com-

putation, and randomization in network localization. IEEE, pp 2673–2684
Euler L (1862) Continuatio fragmentorum ex adversariis mathematicis depromptorum: II Geometria, 97.

In: Fuss P, Fuss N (eds) Opera postuma mathematica et physica anno 1844 detecta, vol I. Eggers &
C, Petropolis, pp 494–496

Fiedler M (1973) Algebraic connectivity of graphs. Czechoslov Math J 23(2):298–305
Flexer A, Schnitzer D (2015) Choosing !p norms in high-dimensional spaces based on hub analysis. Neu-

rocomputing 169:281–287
Floreano D (1996) Manuale sulle Reti Neurali Il. Mulino, Bologna
Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174
François D, Wertz V, Verleysen M (2007) The concentration of fractional distances. IEEE Trans Knowl

Data Eng 19(7):873–886
Friedler F, Huang Y, Fan L (1992) Combinatorial algorithms for process synthesis. Comput Chem Eng

16(1):313–320
Gayraud N (2017) Public remark. Le Monde des Mathématiques Industrielles at INRIA Sophia-Antipolis

(MOMI17)
Gilbreth F, Gilbreth L (1921) Process charts: first steps in finding the one best way to do work. In: Pro-

ceedings of the annual meeting. American Society of Mechanical Engineers, New York
Gill P (2006) User’s guide for SNOPT version 7.2. Systems Optimization Laboratory, Stanford Univer-

sity, California
Gödel K (1986) On the isometric embeddability of quadruples of points of r3 in the surface of a sphere.

In: Feferman S, Dawson J, Kleene S, Moore G, Solovay R, van Heijenoort J (eds) Kurt Gödel: col-
lected works, vol I, pp (1933b) 276–279. Oxford University Press, Oxford

Gonçalves D, Mucherino A, Lavor C, Liberti L (2017) Recent advances on the interval distance geometry
problem. J Glob Optim 69:525–545

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
Haeffele B, Vidal R (2017) Global optimality in neural network training. In: Proceedings of the confer-

ence in computer vision and pattern recognition, CVPR. IEEE, Piscataway, pp 4390–4398
Hagberg A, Schult D, Swart P (2008) Exploring network structure, dynamics, and function using Net-

workX. In: Varoquaux G, Vaught T, Millman J (eds) Proceedings of the 7th Python in science
conference (SciPy2008), Pasadena, pp 11–15

Hansen P, Jaumard B (1997) Cluster analysis and mathematical programming. Math Program 79:191–215
Henneberg L (1911) Die Graphische Statik der starren Systeme. Teubner, Leipzig
Heron (50AD) Metrica, vol I. Alexandria
Hinneburg A, Aggarwal C, Keim D (2000) What is the nearest neighbor in high dimensional spaces?

In: Proceedings of the conference on very large databases, VLDB, vol 26. Morgan Kaufman, San
Francisco, pp. 506–515

Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psy-
chol 24(6):417–441

IBM (2017) ILOG CPLEX 12.8 User’s Manual. IBM
Indyk P (2001) Algorithmic applications of low-distortion geometric embeddings. Foundations of com-

puter science. FOCS, vol 42. IEEE, Washington, DC, pp 10–33

http://arxiv.org/abs/1712.00800v1

336 L. Liberti

1 3

Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimension-
ality. In: Proceedings of the symposium on the theory of computing, STOC, vol 30. ACM, New
York, pp 604–613

Indyk P, Naor A (2007) Nearest neighbor preserving embeddings. ACM Trans Algorithms 3(3), Art. 31
Jain A, Murty M, Flynn P (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323
Johnson W, Lindenstrauss J (1984) Extensions of Lipschitz mappings into a Hilbert space. In: Hedlund

G (ed) Conference in modern analysis and probability, contemporary mathematics, vol 26. AMS,
Providence, pp 189–206

Jolliffe I (2010) Principal component analysis, 2nd edn. Springer, Berlin
Jordan M (1995) Why the logistic function? A tutorial discussion on probabilities and neural networks.

Tech. Rep. Computational Cognitive Science TR 9503, MIT
Kane D, Nelson J (2014) Sparser Johnson–Lindenstrauss transforms. J ACM 61(1):4
Kantor I, Matoušek J, Šámal R (2015) Mathematics++: selected topics beyond the basic courses. No. 75

in Student Mathematical Library. AMS, Providence
Khalife S, Liberti L, Vazirgiannis M (2019) Geometry and analogies: a study and propagation method for

word representation. In: Statistical language and speech processing, SLSP, vol. 7
Kingma D, Ba J (2015)ADAM: A method for stochastic optimization. In: Proceedings of ICLR. San Diego
Knuth D (1997) The art of computer programming, part I: fundamental algorithms, 3rd edn. Addison-

Wesley, Reading
Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22(1):79–86
Kuratowski C (1935) Quelques problèmes concernant les espaces métriques non-séparables. Fundam

Math 25:534–545
Lavor C, Liberti L, Maculan N (2006) Computational experience with the molecular distance geometry

problem. In: Pintér J (ed) Global optimization: scientific and engineering case studies. Springer,
Berlin, pp 213–225

Lavor C, Liberti L, Maculan N, Mucherino A (2012) The discretizable molecular distance geometry
problem. Comput Optim Appl 52:115–146

Lavor C, Liberti L, Mucherino A (2013) The interval Branch-and-Prune algorithm for the discretizable
molecular distance geometry problem with inexact distances. J Glob Optim 56:855–871

Lavor C, Liberti L, Donald B, Worley B, Bardiaux B, Malliavin T, Nilges M (2019) Minimal NMR dis-
tance information for rigidity of protein graphs. Discrete Appl Math 256:91–104

Lavor C, Souza M, Carvalho L, Liberti L (2019) On the polynomiality of finding KDMDGP re-orders.
Discrete Appl Math 267:190–194

Lehmann S, Hansen L (2007) Deterministic modularity optimization. Eur Phys J B 60:83–88
Levine R, Mason T, Brown D (1995) Lex and Yacc, 2nd edn. O’Reilly, Cambridge
Liberti L (2010) Software modelling and architecture: exercises. Ecole Polytechnique. https://www.lix.

polytechnique.fr/~liberti/swarchex.pdf
Liberti L (2009) Reformulations in mathematical programming: definitions and systematics. RAIRO-RO

43(1):55–86
Liberti L (2019) Undecidability and hardness in mixed-integer nonlinear programming. RAIRO-Oper

Res 53:81–109
Liberti L, Lavor C (2013) On a relationship between graph realizability and distance matrix completion.

In: Migdalas A, Sifaleras A, Georgiadis C, Papathanaiou J, Stiakakis E (eds) Optimization theory,
decision making, and operational research applications, proceedings in mathematics & statistics,
vol 31. Springer, Berlin, pp 39–48

Liberti L, Lavor C (2016) Six mathematical gems in the history of distance geometry. Int Trans Oper Res
23:897–920

Liberti L, Lavor C (2017) Euclidean distance geometry: an introduction. Springer, New York
Liberti L, Marinelli F (2014) Mathematical programming: Turing completeness and applications to soft-

ware analysis. J Comb Optim 28(1):82–104
Liberti L, Vu K (2018) Barvinok’s naive algorithm in distance geometry. Oper Res Lett 46:476–481
Liberti L, Lavor C, Maculan N (2008) A branch-and-prune algorithm for the molecular distance geom-

etry problem. Int Trans Oper Res 15:1–17
Liberti L, Cafieri S, Tarissan F (2009) Reformulations in mathematical programming: a computational

approach. In: Abraham A, Hassanien AE, Siarry P, Engelbrecht A (eds) Foundations of compu-
tational intelligence, vol 3. no 203 in Studies in Computational Intelligence. Springer, Berlin, pp
153–234

https://www.lix.polytechnique.fr/~liberti/swarchex.pdf
https://www.lix.polytechnique.fr/~liberti/swarchex.pdf

337

1 3

Distance geometry and data science

Liberti L, Cafieri S, Savourey D (2010) Reformulation optimization software engine. In: Fukuda K, van
der Hoeven J, Joswig M, Takayama N (eds) Mathematical software, LNCS, vol 6327. Springer,
New York, pp 303–314

Liberti L, Lavor C, Mucherino A, Maculan N (2010) Molecular distance geometry methods: from con-
tinuous to discrete. Int Trans Oper Res 18:33–51

Liberti L, Lavor C, Alencar J, Abud G (2013) Counting the number of solutions of kDMDGP instances.
In: Nielsen F, Barbaresco F (eds) Geometric science of information, LNCS, vol 8085. Springer,
New York, pp 224–230

Liberti L, Lavor C, Maculan N, Mucherino A (2014) Euclidean distance geometry and applications.
SIAM Rev 56(1):3–69

Liberti L, Masson B, Lavor C, Lee J, Mucherino A (2014) On the number of realizations of certain Hen-
neberg graphs arising in protein conformation. Discrete Appl Math 165:213–232

Liberti L, Swirszcz G, Lavor C (2016) Distance geometry on the sphere. In: Akiyama J et al (eds)
JCDCG2 , LNCS, vol 9943. Springer, New York, pp 204–215

Liberti L, D’Ambrosio C (2017) The Isomap algorithm in distance geometry. In: Iliopoulos C, Pissis
S, Puglisi S, Raman R (eds) Proceedings of 16th international symposium on experimental algo-
rithms (SEA), LIPICS, vol 75. Dagstuhl Publishing, Schloss Dagstuhl, pp 5:1–5:13

Liberti L, Lavor C, Mucherino A (2013) The discretizable molecular distance geometry problem seems
easier on proteins. In: Mucherino A, Lavor C, Liberti L, Maculan N (eds) Distance geometry: the-
ory, methods and applications. Springer, New York, pp 47–60

Linial N, London E, Rabinovich Y (1995) The geometry of graphs and some of its algorithmic applica-
tions. Combinatorica 15(2):215–245

Majumdar A, Ahmadi A, Tedrake R (2014) Control and verification of high-dimensional systems with
dsos and sdsos programming. Conference on decision and control, vol 53. Piscataway, IEEE, pp
394–401

Malliavin T, Mucherino A, Lavor C, Liberti L (2019) Systematic exploration of protein conformational
space using a distance geometry approach. J Chem Inf Model 59:4486–4503

Manning C, Schütze H (1999) Foundations of statistical natural language processing. MIT Press,
Cambridge

Mansouri J, Khademi M (2015) Multiplicative distance: a method to alleviate distance instability for
high-dimensional data. Knowl Inf Syst 45:783–805

Matoušek J (2013) Lecture notes on metric embeddings. Tech. rep, ETH Zürich
Matoušek J (2008) On variants of the Johnson-Lindenstrauss lemma. Random Struct Algorithms

33:142–156
Maxwell J (1864) On the calculation of the equilibrium and stiffness of frames. Philos Mag

27(182):294–299
McCormick G (1976) Computability of global solutions to factorable nonconvex programs: Part I-Con-

vex underestimating problems. Math Program 10:146–175
McCulloch W (1961) What is a number, that a man may know it, and a man, that he may know a number?

Gen Semant Bull 26–27:7–18
Mencarelli L, Sahraoui Y, Liberti L (2017) A multiplicative weights update algorithm for MINLP. EURO

J Comput Optim 5:31–86
Menger K (1928) Untersuchungen über allgemeine Metrik. Math Ann 100:75–163
Menger K (1931) New foundation of Euclidean geometry. Am J Math 53(4):721–745
Merris R (1994) Laplacian matrices of graphs: a survey. Linear Algebra Appl 198:143–176
Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013) Distributed representations of words and

phrases and their compositionality. In: Burges C, Bottou L, Welling M, Ghahramani Z, Weinberger
K (eds) Advances in neural information processing systems, NIPS, vol 26. NIPS Foundation, La
Jolla, pp 3111–3119

Miller G (1995) Wordnet: a lexical database for English. Commun ACM 38(11):39–41
Milnor J (1964) On the Betti numbers of real varieties. Proc AMS 15:275–280
Minsky M (1986) The society of mind. Simon & Schuster, New York
Moitra A (2018) Algorithmic aspects of machine learning. CUP, Cambridge
Moro A (2008) The boundaries of Babel. MIT Press, Cambridge
Morris C (1946) Signs. Language and behavior. Prentice-Hall, New York
Mucherino A, Lavor C, Liberti L (2012) Exploiting symmetry properties of the discretizable molecular

distance geometry problem. J Bioinform Comput Biol 10(1–15):1242009

338 L. Liberti

1 3

Mucherino A, Lavor C, Liberti L, Maculan N (eds) (2013) Distance geometry: theory, methods, and
applications. Springer, New York

Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E
69:026113

Object Management Group (2005) Unified modelling language: superstructure, v. 2.0. Tech. Rep. for-
mal/05-07-04, OMG

O’Donoghue B, Chu E, Parikh N, Boyd S (2016) Operator splitting for conic optimization via homogene-
ous self-dual embedding. J Optim Theory Appl 169(3):1042–1068

Paton K (1969) An algorithm for finding a fundamental set of cycles of a graph. Commun ACM
12(9):514–518

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Peirce C (1878) Illustrations of the logic of science, part 6: induction, deduction, and hypothesis. Popul
Sci Mon 13:470–482

Penrose R (1989) The emperor’s new mind. Penguin, New York
Pfeffer A (2016) Practical probabilistic programming. Manning Publications, Shelter Island
Popper K (1968) The logic of scientific discovery. Hutchinson, London
Potra F, Wright S (2000) Interior-point methods. J Comput Appl Math 124:281–302
Proni G (2016) Is there abduction in Aristotle? Peirce, Eco, and some further remarks. Ocula 17:1–14
Radovanović M, Nanopoulos A, Ivanović M (2010) Hubs in space: Popular nearest neighbors in high-

dimensional data. J Mach Learn Res 11:2487–2531
Rousseau F, Vazirgiannis M (2013) Graph-of-word and TW-IDF: new approach to ad hoc IR. In: Pro-

ceedings of CIKM. ACM, New York
Saerens M, Fouss F, Yen L, Dupont P (2004) The principal components analysis of a graph, and its

relationships to spectral clustering. In: Boulicaut JF, Esposito F, Giannotti F, Pedreschi D (eds)
Proceedings of the European conference in machine learning (ECML), LNAI, vol 3201. Springer,
Berlin, pp 371–383

Salgado E, Scozzari A, Tardella F, Liberti L (2018) Alternating current optimal power flow with genera-
tor selection. In: Lee J, Rinaldi G, Mahjoub R (eds) Combinatorial optimization (Proceedings of
ISCO 2018), LNCS, vol 10856, pp 364–375

Sánchez AB, Lavor C (2020) On the estimation of unknown distances for a class of Euclidean distance
matrix completion problems with interval data. Linear Algebra Appl 592:287–305

Saxe J (1979) Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th
Allerton conference in communications, control and computing, pp 480–489

Schaeffer S (2007) Graph clustering. Comput Sci Rev 1:27–64
Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https ://

doi.org/10.1016/j.neune t.2014.09.003. arXiv :1404.7828 [cs.NE]
Schoenberg I (1935) Remarks to Maurice Fréchet’s article Sur la définition axiomatique d’une classe

d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert. Ann Math 36(3):724–732
Schumacher M, Roßner R, Vach W (1996) Neural networks and logistic regression: part I. Comput Stat

Data Anal 21:661–682
Seshu S, Reed M (1961) Linear graphs and electrical networks. Addison-Wesley, Reading
Singer A (2011) Angular synchronization by eigenvectors and semidefinite programming. Appl Comput

Harmon Anal 30:20–36
Smith E, Pantelides C (1999) A symbolic reformulation/spatial branch-and-bound algorithm for the

global optimisation of nonconvex MINLPs. Comput Chem Eng 23:457–478
Steinhaus H (1956) Sur la division des corps matériels en parties. Bulletin de l’Académie Polonaise des

Sciences Cl. III 4(12):801–804
Tabaghi P, Dokmanić I, Vetterli M (2019) On the move: localization with kinetic Euclidean distance

matrices. In: International conference on acoustics, speech and signal processing (ICASSP). IEEE,
Piscataway

Tawarmalani M, Sahinidis N (2004) Global optimization of mixed integer nonlinear programs: a theoreti-
cal and computational study. Math Program 99:563–591

Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality
reduction. Science 290:2319–2322

Thoreau H (1849) Resistance to civil government. In: Peabody E (ed) Æsthetic papers. J. Wilson, Boston
van Rossum G et al (2019) Python language reference, version 3. Python Software Foundation

https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1404.7828

339

1 3

Distance geometry and data science

Vavasis S (1991) Nonlinear optimization: complexity issues. Oxford University Press, Oxford
Vempala S (2004) The Random projection method. No. 65 in DIMACS series in discrete mathematics

and theoretical computer science. AMS, Providence
Venkatasubramanian S, Wang Q (2011) The Johnson–Lindenstrauss transform: an empirical study. Algo-

rithm engineering and experiments. ALENEX, vol 13. SIAM, Providence, pp 164–173
Verboon A (2014) The medieval tree of Porphyry: an organic structure of logic. In: Worm A, Salonis P

(eds) The Tree. Symbol, allegory and structural device in medieval art and thought, international
medieval research, vol 20. Brepols, Turnhout, pp 83–101

Vershynin R (2018) High-dimensional probability. CUP, Cambridge
Vidal R, Ma Y, Sastry S (2016) Generalized principal component analysis. Springer, New York
Vu K, Poirion PL, Liberti L (2018) Random projections for linear programming. Math Oper Res

43(4):1051–1071
Vu K, Poirion PL, D’Ambrosio C, Liberti L (2019) Random projections for quadratic programs over a

Euclidean ball. In: Lodi A et al (eds) Integer programming and combinatorial optimization (IPCO),
LNCS, vol 11480. Springer, New York, pp 442–452

Vu K, Poirion PL, Liberti L (2019) Gaussian random projections for Euclidean membership problems.
Discrete Appl Math 253:93–102

Wikipedia: Civil disobedience (thoreau) (2019). http://en.wikip edia.org/wiki/Civil _Disob edien ce_(Thore
au). [Online; accessed 190804]

Wikipedia: Computational pragmatics (2019). http://en.wikip edia.org/wiki/Compu tatio nal_pragm atics .
[Online; accessed 190802]

Wikipedia: Diagonally dominant matrix (2019). http://en.wikip edia.org/wiki/Diago nally _domin ant_matri
x. [Online; accessed 190716]

Wikipedia: Flowchart (2019). http://en.wikip edia.org/wiki/Floch art. [Online; accessed 190802]
Wikipedia: Principal component analysis (2019). http://en.wikip edia.org/wiki/Princ ipal_compo nent_

analy sis. [Online; accessed 190726]
Wikipedia: Rectifier (neurl networks) (2019). http://en.wikip edia.org/wiki/Recti fier_(neura l_netwo rks).

[Online; accessed 190807]
Wikipedia: Slutsky’s theorem (2019). http://en.wikip edia.org/wiki/Sluts ky%27s_theor em. [Online;

accessed 190802]
Williams H (1999) Model building in mathematical programming, 4th edn. Wiley, Chichester
Woodruff D (2014) Sketching as a tool for linear algebra. Found Trends Theor Comput Sci 10(1–2):1–157
Wüthrich K (1989) Protein structure determination in solution by nuclear magnetic resonance spectros-

copy. Science 243:45–50
Xu G, Tsoka S, Papageorgiou L (2007) Finding community structures in complex networks using mixed

integer optimisation. Eur Phys J B 60:231–239
Yemini Y (1978) The positioning problem—a draft of an intermediate summary. In: Proceedings of the

conference on distributed sensor networks. Carnegie-Mellon University, Pittsburgh, pp 137–145
Yemini Y (1979) Some theoretical aspects of position-location problems. In: Proceedings of the 20th

annual symposium on the foundations of computer science, pp. 1–8. IEEE, Piscataway
Yun C, Sra S, Jadbabaie A (2018) Global optimality conditions for deep neural networks. In: Proceedings

of the 6th international conference on learning representations. ICLR, La Jolla, CA
Zhang L, Mahdavi M, Jin R, Yang T, Zhu S (2013) Recovering the optimal solution by dual random pro-

jection. In: Shalev-Shwartz S, Steinwart I (eds) Conference on learning theory (COLT), Proceed-
ings of machine learning research, vol 30, pp 135–157. ⟨http://mlr.org⟩

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://en.wikipedia.org/wiki/Civil_Disobedience_%28Thoreau)
http://en.wikipedia.org/wiki/Civil_Disobedience_%28Thoreau)
http://en.wikipedia.org/wiki/Computational_pragmatics
http://en.wikipedia.org/wiki/Diagonally_dominant_matrix
http://en.wikipedia.org/wiki/Diagonally_dominant_matrix
http://en.wikipedia.org/wiki/Flochart
http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Principal_component_analysis
http://en.wikipedia.org/wiki/Rectifier_%28neural_networks)
http://en.wikipedia.org/wiki/Slutsky%27s_theorem
http://mlr.org

Vol:.(1234567890)

TOP (2020) 28:348–349
https://doi.org/10.1007/s11750-020-00560-3

1 3

DISCUSSION

Comments on: Distance geometry and data science

Robert J. Vanderbei1

Published online: 5 June 2020

© Sociedad de Estadística e Investigación Operativa 2020

Mathematics Subject Classification 51K05 · 65K10 · 90C22

This paper provides an excellent introduction to a broad class of modern problems
called distance geometry problems. The paper begins with a nice and simple defini-
tion of this family of problems and then further motivates the study of this class by
giving a number of interesting real-world examples where these problems play an
important role. These examples range from the analysis of nuclear magnetic reso-
nance (NMR) data to determine the molecular structure of important biochemicals
such as proteins and DNA to speech (and writing) recognition and on to the broad
class of machine learning problems in which large data sets are mapped into much
lower dimensional spaces and then clustered intelligently into meaningful subsets.

After making the importance of distance geometry problems clear, the paper
naturally transitions into a discussion of the various algorithms that one can use to
solve these problems. The problems are fundamentally nonconvex nonlinear optimi-
zation problems and so there are many different approaches one can employ ranging
from fast simple heuristics, to linear inner and outer approximations, and on up to
interesting semidefinite programming (SDP) approaches.

The semidefinite programming approach often provides the best answer to the
problem but, as is well known, algorithms for solving SDP’s don’t scale well with
problem size and so this leads one to consider heuristic approximations that provide
good solutions very quickly. The paper discusses a few different such approxima-
tions. My favorite one is the diagonal dominance approximation. This approxima-
tion is fairly simple to describe (see the paper for the details) and provides a good
approximation.

The last section of the paper discusses how the various methods described in the
paper perform on clustering sentences in the (available from archive.org) text of
H.D. Thoreau’s book On the Duty of Civil Disobedience.

This comment refers to the invited paper available at https ://doi.org/10.1007/s1175 0-020-00563 -0

 * Robert J. Vanderbei
 rvdb@princeton.edu

1 Department of Operations Research and Financial Engineering, Princeton University, Princeton,
NJ 08544, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-020-00560-3&domain=pdf
https://doi.org/10.1007/s11750-020-00563-0

349

1 3

Comments on: Distance geometry and data science

I have spent decades of my life engaged in research into optimization both from a
theoretical perspective and the more applied implementation of efficient algorithms.
But, I have not been much involved in the more modern application of optimization
tools to help solve problems in data science and machine learning. However, I do
teach an introductory optimization course here at Princeton and in that educational
role I have felt that I should introduce the students to some of the more modern
applications in the area of data science and machine learning. To that end, I would
like to briefly describe the final projects I made for my class over the last few years.
The modern tool I introduced in these final projects involved solving support vector
machine (SVM) optimization problems to solve a few interesting and practical real-
world problems.

For the first SVM project, I had each student in the class write out the entire
alphabet six times on a piece of paper. I scanned each student’s alphabets and made
a database of about 400 hand-written alphabets for the training set for the SVM. I
also had each student write a message that I also scanned. Each student was then
tasked with using their support vector machine to “read” the messages written by
the other students in the class. The support vector machine did a pretty good job of
identifying the handwritten characters. But, it was far from perfect.

The last time I taught the class, I had them do a simpler support vector machine.
Rather than trying to classify digitized scans of letters into one of 26 possible letters,
I thought it would be easier to do a binary type classification problem. Inspired by
that desire and given online access to profile pictures of each student in the class,
I thought it would be interesting to see if a support vector machine could easily be
trained to do gender recognition. To test this out, I downloaded the profile pictures
of the roughly 70 students enrolled in the class. I converted the digital jpeg files to a
226 × 164 pixel array for each of the red, green and blue channels. Each picture can,
therefore, be vectorized into an array of size 226 × 164 × 3 = 111,192 . This seemed
very much too high dimensional for a simple problem like gender recognition.
Therefore, I converted each picture to grayscale by averaging the red, green, and
blue frames and then I downsampled the pixels by a factor of 10 in each dimension.
The downsampled data consists of arrays of size 23 × 17 = 391 . Using just 20 ran-
domly selected downsampled images as the training set and then predicting the gen-
der associated with each of the other images, the SVM got the correct answer about
97% of the time. To me, this was amazingly surprising. And, it raises an interesting
question: might one or some of the dimensional reduction techniques described in
Liberti’s paper be able to reduce things to a dimension significantly smaller than 391
and still perform as well as the simple binning procedure I used? I hope someone, I
myself or Leo Liberti or someone else who reads this paper, will be able to answer
this question soon.

I enjoyed reading the paper. It gives a very good explanation of the many ideas
and tools and applications of distance geometry. It also provides an excellent set of
references to places in the literature where one can continue learning more about
this interesting subject.

Vol:.(1234567890)

TOP (2020) 28:340–345
https://doi.org/10.1007/s11750-020-00561-2

1 3

DISCUSSION

Comments on: Distance geometry and data science

Carlile Lavor1

Published online: 5 June 2020
© Sociedad de Estadística e Investigación Operativa 2020

1 Connecting Distance Geometry (DG) and Data Science (DS)

What is the relationship involving Aristotle, Euler, Sherlock Holmes, Turing,
Umberto Eco, Chomsky, and Penrose, and disciplines like mathematical programing
(MP), statistics, computer science, logic, semiotics, and mathematics?

This study presents an answer, putting together Distance Geometry and Data
Science.

Data Science (DS) is a term well known in the Operational Research community,
differently from Distance Geometry (DG).

To the best of my knowledge, this is the first time that a strong mathematical con-
nection between DG and DS is established.

The survey is rich and dense. All the mathematical concepts are presented in
a formal and elegant way. After carefully reading it, I prepared this text having in
mind to produce a “user guide”, considering the main ideas necessary to understand
the proposed application. I hope I have succeeded and attracted more people to DG
(all the terms in italics are explained in the survey).

2 The fundamental problem in DG

The origin of DG is associated to Karl Menger, a mathematician also related to the
Travelling Salesman Problem and to the famous Vienna Circle. The fundamental
problem of DG, called the Distance Geometry Problem (DGP), is to embed graphs
in some Euclidean space, formally defined as follows (we fix Euclidean distances
and ℝK , but other norms and vector spaces are discussed):

This comment refers to the invited paper available at https ://doi.org/10.1007/s1175 0-020-00563 -0.

 * Carlile Lavor
 clavor@ime.unicamp.br

1 University of Campinas (IMECC-UNICAMP), Campinas, SP 13081-970, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-020-00561-2&domain=pdf
https://doi.org/10.1007/s11750-020-00563-0

341

1 3

Comments on: Distance geometry and data science

Definition 1 Given a integer K > 0 and a simple connected undirected graph
G = (V ,E) , whose edges are weighted by d ∶ E → (0,∞) , find a function
x ∶ V → ℝK such that

where xu = x(u) , xv = x(v) , and duv = d({u, v}).

Solving a DGP instance is to embed G in ℝK in such a way that each edge is
drawn as a line segment of size equal to its weight.

When the DGP input data do not contain errors and a special vertex order (Lavor
et al. 2019) is provided, the DGP can be solved by combinatorial algorithms. To
deal with instances where distances are uncertain, noisy or wrong, the survey pre-
sents a continuous approach based on MP methods.

A classical way to do this is to reformulate the DGP as the optimization problem,

which may accommodate data uncertainties. This problem belongs to the class of
nonconvex NLP formulations, which is an NP-hard class.

There are many applications of DG, mainly related to K ∈ {1, 2, 3} (Billinge et al.
2018). In DS problems, however, K is not fixed anymore. It varies according to the
application and solution method.

In addition to graphs, another essential definition in DS is the concept of a dis-
tance matrix. A matrix M ∈ ℝn×n , whose elements are given by

for points x1 ,… , xn in some Euclidean space, is called a Euclidean distance matrix
(EDM).

Note that the DGP input, for |V| = n , can be given by a partial EDM in ℝn×n ,
where only entries corresponding to edges in E are defined, and the DGP solution
x ∶ V → ℝK can also be represented as a matrix in ℝn×K.

3 DG approach to DS

DS deals with problems on large data sets, usually represented in Euclidean spaces
with high dimensions, and a key task is to provide meaning to these sets, for exam-
ple, by clustering methods.

3.1 Graph embeddings

If data are represented by graphs, we could embed them in some Euclidean space
(exactly the DGP) to extract information from the data. In the given application, four
methods are used for graph embeddings.

(1)∀{u, v} ∈ E, ||xu − xv||2 = duv,

(2)min
∑

{u,v}∈E

(
||xu − xv||

2
2
− d2

uv

)2
,

m ij = ||xi − xj||
2
2
,

342 C. Lavor

1 3

3.1.1 Unconstrained minimization

Even if the distances are noisy or wrong, the problem (2) can yield approxi-
mate solutions or be used to refine solutions obtained by other methods. Another
advantage of DG solution methods based on MP is that it allows for modification
of the objective function. For example, if uncertainties on distance values are rep-
resented by real intervals [d

uv
, duv] , {u, v} ∈ E , the problem (2) can be replaced by

This formulation considers a problem more general than (1), since equalities are
replaced by inequalities. Other formulations are discussed based on (3).

3.1.2 Semidefinite programming

A semidefinite programming (SDP) relaxation for the DGP is proposed, given by

where {u, v} ∈ E and Xuv = xT
u
xv . The solution of this problem is an element of ℝn×n ,

which is a Gram matrix of another matrix Y that satisfies the DGP equation (1). The
point is that Y ∈ ℝn×n rather than in ℝn×K.

3.1.3 Incidence vector and Fréchet embeddings

Two other methods for embedding graphs G = (V ,E) in Euclidean spaces are pre-
sented. The first one is very simple, called incidence vector embedding, based on
the incidence information of G, and the other one, called Fréchet embedding, is
more sophisticated. Although both methods are fast and robust (with time com-
plexity O(n2) and O(n3) , respectively), the embeddings are given in high-dimen-
sional space (O(n), for |V| = n).

3.2 Dimensionality reduction

All the four methods mentioned above, mainly ones that yield high-dimensional
embeddings, need a post-process called dimensionality reduction (DR). The basic
idea of DR is to take vectors in high dimension, let us say n, and represent them
in ℝK , with K ≪ n , according to some criteria.

DR is an important task of DS, and many methodologies are proposed in the
literature. Without DR, many DS methods cannot be used in practice.

(3)min
∑

{u,v}∈E

(
max {0, d2

uv
− ||xu − xv||

2
2
} +max {0, ||xu − xv||

2
2
− d

2

uv
}
)
.

Xuu + Xvv − 2 Xuv =d
2
uv

X ⪰0,

343

1 3

Comments on: Distance geometry and data science

3.2.1 Principal component analysis (PCA)

The most famous DR technique is the Principal Component Analysis (PCA). The
two PCA traditional interpretations are presented. The geometric interpretation is
that PCA gives the smallest possible enclosing ellipsoid for the given vectors in
ℝn , and the statistical interpretation is that PCA finds the coordinate changes which
make the data vectors be uncorrelated in theirs components.

Motivated by DG, the survey gives another interpretation, where PCA is seen as
a modification of the multidimensional scaling (MDS), which takes into account the
only K nonnegative principal components.

In the classic MDS, we may define the problem as to find an approximate solu-
tion for a DGP instance G = (V ,E, d) , given in terms of a partial EDM M (and with-
out fixing the dimension K), whose known elements muv are defined by

In fact, this basic version of MDS is a heuristic method to solve the Euclidean dis-
tance matrix completion problem (EDMCP), whose difference from the DGP is that
the dimension K of the embedding space is obtained as part of the output of the
problem, given as the rank of the solution matrix. This “simple” change has a big
impact on the analysis of the worst case complexity of the problems: while the DGP
is NP-hard, even when an !-approximation solution is sought, EDMCP !-approxi-
mation solutions can be found in polynomial time.

From the eight theorems (including their proofs “adapted” to DS) provided in the
survey, there is one (Theorem 5) which is original, related to a new SDP formula-
tion for the EDMCP. This theorem says that the EDMCP solution can be obtained
in polynomial time from the solution of the SDP formulation. An important corol-
lary is that the solution of the proposed SDP formulation provides an approximation
solution even if the given matrix M cannot be completed to an EDM.

3.2.2 Random projection (RP)

The solution of the SDP relaxation for the DGP mentioned in Sect. 3.1.2 is a matrix
that, in general, does not have rank K. Based on the Barvinok’s naive algorithm,
which gives an approximate solution to the system (i = 1,… , m)

where x ∈ ℝn , Qi are symmetric matrices in ℝn×n , ai ∈ ℝ , and m is polynomial in
n, the study also describes a DR method that finds an approximation solution to the
SDP relaxation that has rank K (in the DGP case, i ranges over the edge set E).

The proposed methodology is a kind of random projection (RP), a class of DR
techniques more general than Barvinok’s naive algorithm and typically applied in
clustering large databases.

RP methods exploit an important phenomenon in DS, called concentration of
measure. It refers to the fact that, under certain conditions, a function of many ran-
dom variables tends to concentrate its value in a narrow range.

m uv = d2
uv
, {u, v} ∈ E.

xTQix = ai,

344 C. Lavor

1 3

A crucial result in RP is the so-called Johnson–Lindenstrauss Lemma , which
suggests that, in high-dimensional spaces, most of the information encoded by
isometries of a set of points can be maintained up to a tolerance in much smaller
dimensional spaces (the reduced dimension is logarithmic in the number of points).
This means that all the distances will be preserved within a small relative error.

4 ANN application in natural language processing

Many concepts and results are illustrated with an application to a natural language
processing task, where a simple Artificial Neural Network (ANN) is used to cluster
sentences in a given text. After transforming sentences into graphs, they are embed-
ded in some Euclidean space and then, some DR technique is applied.

The objective is to compare ANN performances with different vector representa-
tions, based on the four embedding methods of section 3.1. PCA and RP, mentioned
in Sect. 3.2, are used for dimensionality reduction.

The ANN was trained to learn two types of clusterings (by k-means and sen-
tence graph), considered as the ground truth outputs, and the training sets were con-
structed for a small and a large sentence set (respectively, with 245 and 3940 sen-
tences). All codes were implemented using Python 3 with known external libraries.

The MP methods are more competitive, compared to Incidence Vector Embed-
ding (IVE) and Fréchet Embedding (FE), when k-means is used. For the small sen-
tence set, the best method is IVE (but MP methods are not far behind) and the worst
is FE. For the large sentence set, the best method is the one based on unconstrained
minimization (with the other MP method, based on SDP, not far behind) and the
worst ones are IVE and FE.

5 Final remarks

I have no doubt that DG approach has a great potential in DS, with many possibili-
ties for research work. However, the theory presented is much more convincing than
the computational results related to the application.

For the readers interested in new mathematical methods in DS, I would also
include another approach, based on Algebraic Topology. For some references, see
Adhikari (2016), Carlsson (2009) and Snášel et al. (2017).

If understanding the secrets of complex learning is also associated to the geomet-
ric aspects of the problem, Distance Geometry, in addition to Algebraic Topology,
can contribute to this huge challenge of the twenty-first century.

Acknowledgements I would like to thank Prof. J. Salazar, the Editor-in-Chief of TOP, for inviting me to
write this comment. I did that during a sabbatical year at the National Autonomous University of Mexico
(UNAM), at the Center for Applied Physics and Advanced Technology (CFATA). I am also grateful to
the Brazilian Research Agencies FAPESP and CNPq, for the financial support.

345

1 3

Comments on: Distance geometry and data science

References

Adhikari M (2016) Basic algebraic topology and its applications. Springer, India
Billinge S, Duxbury P, Gonçalves D, Lavor C, Mucherino A (2018) Recent results on assigned and unas-

signed distance geometry with applications to protein molecules and nanostructures. Ann Oper Res
271:161–203

Carlsson G (2009) Topology and data. Bull Am Math Soc 46:255–308
Lavor C, Souza M, Mariano L, Liberti L (2019) On the polinomiality of finding KDMDGP re-orders.

Discrete Appl Math 267:190–194
Snášel V, Nowaková J, Xhafa F, Barolli L (2017) Geometrical and topological approaches to big data.

Future Gener Comput Syst 67:286–296

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Vol:.(1234567890)

TOP (2020) 28:346–347
https://doi.org/10.1007/s11750-020-00562-1

1 3

DISCUSSION

Comments on: Distance geometry and data science

Emilio Carrizosa1

Published online: 5 June 2020
© Sociedad de Estadística e Investigación Operativa 2020

As in the tasting menu of a top restaurant, Liberti offers us a carefully selected taste-
ful sequence of dishes (sections), with high interest on their own, but presented in
such a way that the paper as a whole has a solid entity.

The paper—closer to a short book rather than to a paper according to its length,
width, and depth—presents Liberti’s original viewpoint on Distance Geometry (and
on Mathematical Optimization), with an impressive and coherent cocktail of tech-
niques from different domains of (Applied) Mathematics.

After a section devoted to introducing Mathematical Optimization—known for
the readers of TOP, but absolutely necessary to introduce the notation, terminology,
and approach used throughout the paper—the Distance Geometry Problem (DGP)
is introduced, motivated with applications in several fields, and analyzed in terms of
problems complexity. DGP is here mostly focused in realizations in K-dimensional
Euclidean spaces, though mentions to other norms appear along the text. Part of the
analysis would, however, be extended, not only to more general classes of distances
induced by norms, but also to proximity notions weaker than distances. In particular,
asymmetric gauges, such as the so-called skewed gauges, Chaudhuri (1996), Plastria
(1992) may yield an adequate framework for data settings in which the symmetry
assumption on distance d may be violated. This would pose a more general case of
DGP in which not only the realization x ∶ V ⟶ ℝK , but also the skewed gauge is
to be found to match the values d(u, v).

I also find of interest to explore how far one can go with the achievements on the
DGP presented in the paper if the realization x ∶ V ⟶ ℝK is replaced by a point-
to-set mapping which maps each v ∈ V to some set Bv of given shape, e.g., a ball of
center to be determined and radius rv, as in Carrizosa et al. (2018b), or a rectangle
conforming a partition of a region, as in Carrizosa et al. (2017).

As stated, DGP considers as input a simple undirected graph G = (V,E)
with weight edge function d. A few words on the extension to dynamic graphs
{Gt = (Vt,Et) ∶ t ∈ T} with dynamic edge function dt would pose the problem of

This comment refers to the invited paper available at https ://doi.org/10.1007/s1175 0-020-00563 -0.

 * Emilio Carrizosa
 ecarrizosa@us.es

1 IMUS, Instituto de Matemáticas de la Universidad de Sevilla, Seville, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-020-00562-1&domain=pdf
https://doi.org/10.1007/s11750-020-00563-0

347

1 3

Comments on: Distance geometry and data science

finding realizations which would now be curves xv(t) in ℝK
, or moving balls Bv(t),

like in Carrizosa et al. (2018a, 2019).
The paper is not only about Distance Geometry, but also about Data Science, and,

in particular, about how to address in Data Science problems in which input data
are represented by graphs, such as those cases discussed in Section 4. Liberti asserts
that many standard Data Science procedures have their input in vectorial form.
Therefore, one could use Distance Geometry tools to represent graphs and vectors
and then apply the standard Data Science procedures, possible after a dimensional-
ity reduction to avoid the unbearably high dimension of the vectorization. Needless
to say, the approach proposed is sound, and the experimental results, far from con-
clusive, are promising and call for much further experiments in the future for other
problems.

In the meanwhile, Liberti also gives excellent masterclasses on dimensionality
reduction techniques often used/usable in Data Science—I found particularly illumi-
nating the discussion on Random Projections and its use in Mathematical Optimiza-
tion—and on the disturbing phenomenon of distance instability and concentration of
distances.

Summarizing, the paper is an extremely rich source of ideas and tools, presented
with originality, in Distance Geometry, and in Data Science, glued through, of
course, Mathematical Optimization.

Acknowledgements Funded by FQM-329 and P18-FR-2369, Junta de Andalucía, Spain, both with ERD
Funds, and EU H2020 MSCA RISE NeEDS Project 822214. The support is gratefully acknowledged.

References

Carrizosa E, Guerrero V, Romero Morales D (2017) Visualizing proportions and dissimilarities by space-
filling maps: a large neighborhood search approach. Comput Operat Res 78:369–380

Carrizosa E, Guerrero V, Hardt D, Romero Morales D (2018a) On building online visualization maps for
news data streams by means of mathematical optimization. Big Data 6(2):139–158

Carrizosa E, Guerrero V, Romero Morales D (2018b) Visualizing data as objects by DC (difference of
convex) optimization. Math Program 169:119–140

Carrizosa E, Guerrero V, Romero Morales D (2019) Visualization of complex dynamic datasets by means
of mathematical optimization. Omega 86:125–136

Chaudhuri P (1996) On a geometric notion of quantiles for multivariate data. J Am Stat Assoc
91:862–872

Plastria F (1992) On destination optimality in asymmetric distance Fermat-Weber problems. Ann Oper
Res 40:355–369

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Vol:.(1234567890)

TOP (2020) 28:350–357
https://doi.org/10.1007/s11750-020-00564-z

1 3

DISCUSSION

Rejoinder on: Distance geometry and data science

Leo Liberti1

Published online: 5 June 2020
© Sociedad de Estadística e Investigación Operativa 2020

Mathematics Subject Classification 51K05 · 90Cxx

1 Introduction

The invited surveys at TOP are routinely assigned to three reviewers, who write
public (and signed) reports. The author of the survey is then given the opportunity
of a rebuttal.

This process may surprise those of us used to publish articles in applied math-
ematics and theoretical computer science, where reviewer reports are invariably
anonymous and unpublished. Philosophers and literary critics (among others), how-
ever, often write text against someone else’s opinion. Such articles depart from the
scientific habit of expressing oneself formally and with as little bias as possible. Phi-
losophers, linguists, semioticians, and literary critics often employ the singular per-
sonal pronoun, condemn other colleagues’ opinions without hesitation, ridicule them
using all sorts of rhetorical tricks, and at times resort to bouts of unfathomably scath-
ing prose. One is reminded of William of Baskerville’s reference to the grammarians
Gabundus and Terentius, who debated over the vocative of ego for 2 weeks, and then,
unable to come to an agreement, resorted to physical violence, see Eco (1980).

Clearly, this stylistic difference is based on the extent of the formal structure
in mathematics and philosophy or literary criticism. Mathematical statements are
proved true or false. Debates might arise on whether a proof technique or algo-
rithmic methodology is better than another, but if both are provably correct, these
debates are likely to be mild, at least when conducted in published text. Philosophi-
cal or literary opinions have subtle natural language semantics and real-world prag-
matics. Thus, unable to prove truth or falsehood, practitioners of such disciplines
apparently find opposing debates as important to the conception of innovative
thought as collaborative dialogues.

This comment refers to the invited paper available at https ://doi.org/10.1007/s1175 0-020-00560 -3,
https ://doi.org/10.1007/s1175 0-020-00561 -2, https ://doi.org/10.1007/s1175 0-020-00562 -1

 * Leo Liberti
 liberti@lix.polytechnique.fr

1 LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s11750-020-00564-z&domain=pdf
https://doi.org/10.1007/s11750-020-00560-3
https://doi.org/10.1007/s11750-020-00561-2
https://doi.org/10.1007/s11750-020-00562-1

351

1 3

Rejoinder on: Distance geometry and data science

As a professional computer scientist and applied mathematician who is fascinated
by philosophy, linguistics, and literature, I was enthusiastic about the proposal to
write a survey for TOP along the lines of debating philosophers. I expected vicious
attacks from my three reviewers, to which I would have delivered unassailable
retorts: only geography would spare us the riotous destiny of Gabundus and Ter-
entius. This (luckily) was not to be: I had helpful, constructive and even admirative
reports. Helpful because they allowed me to correct mistakes and rewrite unclear
parts (these “minor issues” are not public, as they would be boring and pointless to
anyone but me; suffice it to say that all such issues were addressed). Constructive
because they provided some new directions for further inquiry, and short summa-
ries which will no doubt be very useful to readers. For the praise, I am truly grate-
ful. Therefore, this text will be a commentary on my commentators, more than a
rebuttal.

The rest of this text answers the commentators in the order in which I received
their reports.

2 Robert vanderbei

Robert first provides a succinct summary of my survey, as is customary when writ-
ing reviews. He then makes two main points. In the first one, he says that his favorite
technique among those I reviewed is the approximation of the PSD cone by the cone
of Diagonally Dominant (DD) matrices. The second point mentions an exercise in
Machine Learning (ML) he conducts in his class, where he uses a Support Vector
Machine (SVM) to recognize the gender of his students from pictures of their faces,
and wonders whether the dimensional reduction techniques I discussed in my survey
might apply successfully to his set-up.

2.1 Diagonally dominant programming

This, as I made it clear in the survey, is a simple idea which was turned into an
impressively powerful algorithmic technique by Amir Ali Ahmadi and some co-
authors. Amir Ali used to be a colleague of mine when I worked at IBM Research,
and is now a colleague of Robert’s at Princeton University. Amir Ali’s original
motivation was to efficiently (if approximately) solve Polynomial Programming
(PP) problems arising in control. His treatment is more general than mine in several
directions. In Ahmadi and Majumdar (2019), he takes the point of view of polyno-
mial optimization

where g(x) = (g1 (x),… , gm(x)) is a sequence of multivariate polynomials, and aims
at providing a computationally efficient approximation to the Semidefinite Programs
(SDP) arising from Lasserre’s hierarchy of relaxations to Eq. (1).

The optimal value of Eq. (1) is trivially the same as the optimal value of the
problem

(1)min {p(x) | g(x) ≥ 0 ∧ x ∈ ℝ
n},

352 L. Liberti

1 3

where K = {g(x) ≥ 0 ∧ x ∈ ℝn} . Note that Eq. (2) is a problem with a single varia-
ble ! and uncountably many constraints. Note also that the feasible region of Eq. (2)
is

Proving that ! ∈ F is equivalent to proving that the polynomial p(x) − ! is non-
negative as x ranges over K. Such a proof is established by the sufficient (but not
necessary) condition that p(x) − ! should have a representation by means of sum-
of-squares (SOS) polynomials. A polynomial q(x) is SOS iff it can be written as
q (x) =

∑
i si(x) where, for each i, there is a polynomial ti(x) such that si(x) = ti(x)

2 .
Then p(x) − ! ≥ 0 over K if it has a representation

with each q i(x) being SOS. Checking that a polynomial q(x) of degree ≤ 2d (for
some d ∈ ℕ) is SOS can be done by an SDP that expresses q(x) as a quadratic form
in some monomials. First one forms the vector z of all monomials in n variables up
to degree 2d. Then, one tries to compute the coefficients of the quadratic form by
solving the following feasibility SDP:

If the SDP in Eq. (4) is feasible, then q(x) is SOS. Checking the SOS representa-
tion in Eq. (3) can also be done via SDP (see https ://en.wikip edia.org/wiki/Sum-
of-squar es_optim izati on for details, keeping in mind that each gi(x) ≥ 0 is reformu-
lated to an equation gi(x) + s2

i
= 0 , where si is a slack variable). As d increases, the

SDPs in Eq. (4) form a hierarchy of relaxations of the original problem Eq. (1), each
tighter than the next, see Lasserre (2009). These relaxations are usually known as
Lasserre’s hierarchy. Given the number of monomials in z, the SDPs in the hierarchy
have large sizes. Since SDP solvers do not scale well with size, this technique is
computationally challenging.

This is where DD matrices come in: as I explain in the survey, the cone of DD
matrices is strictly contained in the cone of PSD matrices; moreover, membership
in the DD cone can be characterized by Linear Programming (LP). This immedi-
ately yields a hierarchy of inner LP approximations to SDP relaxations of Eq. (1).
Amir Ali’s work also proposes outer approximations, obtained by considering the
dual DD cone. The reason why the dual DD cone contains the PSD cone is that the
former can be characterized by the inequalities ∀v ∈ F v⊤Xv ≥ 0 , where F is a finite
set of generators of the DD cone (i.e. a symmetric matrix X satisfies those inequali-
ties iff it is in the dual DD cone). Since the latter is characterized by the inequali-
ties ∀v ∈ ℝn v⊤Xv ≥ 0 , which clearly imply any finite subset thereof (and, specifi-
cally, those in F), the containment of the PSD cone in the dual DD cone follows.

(2)max {! | ∀x ∈ K ! ≤ p(x)},

F = {! | ∀x ∈ K p(x) − ! ≥ 0 }.

(3)p(x) − ! = q0 (x) +
∑

i≤m

qi(x)gi(x),

(4)q(x) = z⊤Qz

Q ⪰ 0.

}

https://en.wikipedia.org/wiki/Sum-of-squares_optimization
https://en.wikipedia.org/wiki/Sum-of-squares_optimization

353

1 3

Rejoinder on: Distance geometry and data science

Obviously, this yields a hierarchy of outer LP approximations to SDP relaxations,
which might also be considered as a hierarchy of LP relaxations (since outer approx-
imations provide relaxations). Another contribution of Amir Ali’s is to improve the
relaxation tightness using Second-Order Cone Programming (SOCP) at some com-
putational cost: for this, he proposes to use scaled DD matrices (see Ahmadi and
Majumdar (2019) for more details), resulting in hierarchies of SOCP approxima-
tions to SDP relaxations.

The last very minor point I want to mention about Amir Ali’s work is that he had
called his approximations DSOS/SDSOS at the beginning of his research work on
these topics, see Majumdar (2014), a name I found decidedly unwieldy. I called it
Diagonally Dominant Programming (DDP) in my own application of his ideas to
different problems (DGP Dias and Liberti (2016) and ACOPF Salgado et al. (2018))
and advised him to use that name, which he does in (Ahmadi and Majumdar 2019,
end of § 3.1).

2.2 Machine learning

Robert found that a SVM can recognize genders from 67 face pictures (given 40 of
them as a training set) almost perfectly, even when the pictures are downsampled
from 678 × 164 to 23 × 17 pixels, and asks whether Principal Component Analysis
(PCA) or Random Projections (RP) could do better than downsampling as a dimen-
sional reduction technique. I tested both techniques, and both failed to improve on
his results. Here are a couple of explanations.

1. Robert used the LOQO Nonlinear Programming (NLP) solver (https ://vande rbei.
princ eton.edu/loqo/LOQO.html), whereas, in replicating his test, I used IPOPT,
see COIN-OR (2006). He reported an accuracy of 97%, whereas I obtained 100%.
Obviously, there is no method that can improve on a 100% success rate by defini-
tion—and so neither PCA nor RP did better than downsampling.

2. In fact, the success rates I obtained using PCA/RP were lower: around about 80%.
As ever, generality comes at a cost, either in terms of precision or computational
resources. PCA/RP are both general techniques that apply to all possible finite
sets of vectors. Downsampling only makes sense on images. This could explain
why downsampling performed better than PCA/RP as a dimensional reduction
methodology on images.

3 Carlile Lavor

Carlile provides a structured summary of the contents of my survey, which will
no doubt be of help to readers. He makes two other points: that computational
topology is a mathematical discipline which is worth considering when dealing
with large datasets, and that my computational results are not very convincing. I
agree with both of these statements.

https://vanderbei.princeton.edu/loqo/LOQO.html
https://vanderbei.princeton.edu/loqo/LOQO.html

354 L. Liberti

1 3

3.1 Computational topology

The cornerstone of computational topology appears to be the
“persistence of homology”, which I will briefly recap here.
The input to many scientific problems often comes in the shape of a very large

number of high dimensional vectors. Knowing the “overall shape” of this large
cloud of points might help algorithmic tasks considerably. Topology’s business
is precisely that of giving a formal grounding to the vague idea elicited by the
words “overall shape”. Topology defines qualitative features of shape, e.g. by
determining how many “holes” it has.

Persistence of homology algorithms will “grow” Sn −1 (xi, r) spheres around
each of the m data points x1 ,… , xm in the given data set X ⊂ ℝn , with r increasing
from a small ! > 0 to some large enough value. These spheres can be treated as
charts of an atlas defining a manifold containing X.

This process can be used to draw a contact graph G = (X,Er) parametrized by
the radius r: for a given value of r, two points x, y ∈ X are linked by an edge
{x, y} ∈ Er if the two spheres Sn−1 (x, r) and Sn−1 (y, r) have a non-empty intersec-
tion. When r is very small, G is empty (it has no edges). As r grows, G will even-
tually become a clique. But the change of the structure of this graph in function
of r gives interesting qualitative information about the shape of X: when does it
become connected, biconnected, or chordal? Non-chordal connected graphs offer
the possibility of associating chord-free cycles to holes in the shape of the data.

I have long desired to use persistence of homology in my work, but have not
found the time to deploy the existing software packages on my own pet problems.
I hope Carlile’s comment in this direction will serve as a call to action.

3.2 Underwhelming computational results

Carlile notes that “the theory presented is much more convincing than the compu-
tational results related to the application.” I wholeheartedly agree with him.

Here is the story of these somewhat “meh” results. I had carried out a few tests
a long time ago, and found remarkable improvements in using DG realizations
over incidence vectors. At the time of writing the survey, I chased around my
hard disk for the code leading to those results, and failed to find it. So I set about
re-writing it. To my utter surprise, the results I obtained with the new code were
anything but remarkable. Now I am stricken by doubt: did I have a truly precious
insight in the code I had written before, or just a bug? Knowing myself I would
opt for the latter, but I prefer dreaming of the former.

4 Emilio Carrizosa

In his extended summary, Emilio makes two oversweeping generalizations of the
DGP, neither of which had occurred to me before, and both as fascinating as they
are evident once someone (else) points them out: (i) the DGP with proximity notions

355

1 3

Rejoinder on: Distance geometry and data science

weaker than distances, and (ii) the DGP realizing each vertex in a point set, rather
than a single point. Since I do not know much about either weakenings/relaxations
of distances or point-to-set mappings, I will only sketch very superficial rebuttals to
his points, and thank Emilio for pointing me into two promising and exciting new
directions.

4.1 DGP with weaker proximity notions

The DGP asks for the solution x ∈ ℝn×K of

where G is a simple undirected graph and d ∶ E → ℝ≥0 . Most of the times the norm
in Eq. (5) is the !2 (Euclidean) norm. The 1-norm and ∞ norms are discussed in
D’Ambrosio and Liberti (2017). It stands to reason that the choice of norm should
come from the application; moreover, each norm might require a different solution
method (and sometimes a norm is used to approximate a different norm Crippen
(2015)).

The !2 norm is usually employed in engineering: clock synchronization
(!2 = !1 = !∞ norm on the real time line), see Singer (2011), sensor network locali-
zation (Aspnes et al. 2006; Bachrach and Taylor 2005; Biswas et al. 2006; Krislock
and Wolkowicz 2010), protein conformation from NMR data (Crippen and Havel
1988; Havel et al. 1983; Liberti et al. 2014; Liberti and Lavor 2017), localization
of unmanned submarine vehicles, see Bahr et al. (2009). The fundamental reason
for this choice is of course that, in a Euclidean space, the length of the shortest
path between two points is the !2 norm of the difference of the corresponding vec-
tors, paired with the assumption that our physical three-dimensional space is close
enough to a Euclidean space. While this assumption is reasonable enough for clock
synchronization, protein conformation, and submarines, it can fail rather spectac-
ularly in sensor network localization in closed spaces (e.g. inside a building). In
this case, the Euclidean distance between pairs of mobile communicating agents is
assumed to be proportional to the amount of battery necessary to sustain commu-
nication. Walls, doors, moving entities all contribute to decrease the strength of the
electromagnetic signal between pairs of agents, which means they have to use more
battery. As a result, the estimated distances may be larger than is actually the case.

The foregoing discussion clearly indicates the need for solving the DGP with
metrics other than the one induced by the !2 norm. In fact, communication across
the outer wall of a building might require something other than a norm altogether.
On the outside, we have air with different temperature and pressure, as well as wind:
this means that the signal is transmitted differently on either side of the wall. In turn,
this would require a generalized distance function which is nondifferentiable on the
plane representing the wall. Such distance functions have been discussed in Plastria
(2019): the construction uses asymmetric generalizations of norms called gauges,
see Plastria (2009).

(5)∀{i, j} ∈ E(G) ‖xi − xj‖ = dij,

356 L. Liberti

1 3

Other generalizations of distances based on norms concern other relaxations of
the metric axioms, i.e. the sufficiency of zero norm values to infer a zero vector
argument (pseudonorms or seminorms) and the triangular inequality (quasinorms).

4.2 Point-to-set realizations

Emilio also proposes a generalization of DGP realizations, i.e. the solution of
Eq. (5). In short, instead of x mapping the vertex set V(G) of the graph G to points in
ℝK , he suggests that x might map V(G) to P(ℝK) : each vertex is mapped onto a sub-
set of ℝK . He proposes balls and hyper-rectangles (the latter refers to his paper Car-
rizosa et al. (2017) where he actually solves a DGP-type problem by mapping verti-
ces to rectangles in the plane).

I can contribute to the list of examples with continuous curves: these would repre-
sent the trajectories of a set of points as they move in ℝK with constrained distances:
a possible application is in localization of mobile agents in time, be they people
carrying smartphones or submarines involved in a complex underwater operation.
In Tabaghi et al. (2020), curves are assumed to be polynomial (resp. bandlimited
periodic) functions. The authors parametrize the problem on the vector of monomi-
als (resp. sum terms), and obtain an SDP along the lines of Lasserre’s SDP hierarchy
sketched in Sect. 2.1 of this rebuttal.

5 Conclusion

Thanks to my three reviewers, I had the opportunity of recalling a few topics related
to but missing from my survey: relaxation hierarchies for polynomial problems,
computational topology, generalizations of norms, and time-dependent distance
geometry. As I come to the end of this work, I find myself wishing that every one
of my paper were so much fun to write. I am deeply grateful to my reviewers, and
once again to the Editor-in-Chief of TOP, J.J. Salazar, for giving me this wonderful
opportunity.

References

Ahmadi A, Majumdar A (2019) DSOS and SDSOS optimization: more tractable alternatives to sum of
squares and semidefinite optimization. SIAM J Appl Algebra Geometry 3(2):193–230

Aspnes J, Eren T, Goldenberg D, Morse S, Whiteley W, Yang R, Anderson B, Belhumeur P (2006) A
theory of network localization. IEEE Trans Mobile Comput 5(12):1663–1678

Bachrach J, Taylor C (2005) Localization in sensor networks. In: Stojmenović I (ed) Handbook of Sensor
Networks. Wiley, Hoboken, pp 3627–3643

Bahr A, Leonard J, Fallon M (2009) Cooperative localization for autonomous underwater vehicles. Int J
Robotics Res 28(6):714–728

Biswas P, Lian T, Wang T, Ye Y (2006) Semidefinite programming based algorithms for sensor network
localization. ACM Trans Sensor Netw 2:188–220

Carrizosa E, Guerrero V, Morales DR (2017) Visualizing proportions and dissimilarities by space-filling
maps: a large neighborhood search approach. Comput Oper Res 78:369–380

COIN-OR (2006) Introduction to IPOPT: a tutorial for downloading, installing, and using IPOPT

357

1 3

Rejoinder on: Distance geometry and data science

Crippen G (2015) An alternative approach to distance geometry using l∞ distances. Discrete Appl Math
197:20–26

Crippen G, Havel T (1988) Distance Geometry and Molecular Conformation. Wiley, New York
D’Ambrosio C, Liberti L (2017) Distance geometry in linearizable norms. In: Nielsen F, Barbaresco F

(eds) Geometric Science of Information, LNCS, vol 10589. Springer, Berlin, pp 830–838
Dias G, Liberti L (2016) Diagonally dominant programming in distance geometry. In: Cerulli R,

Fujishige S, Mahjoub R (eds) International Symposium in Combinatorial Optimization, LNCS, vol
9849. Springer, New York, pp 225–236

Eco U (1980) Il nome della rosa. Bompiani, Milano
Havel T, Kuntz I, Crippen G (1983) The theory and practice of distance geometry. Bulletin of Mathemati-

cal Biology 45(5):665–720
Krislock N, Wolkowicz H (2010) Explicit sensor network localization using semidefinite representations

and facial reductions. SIAM J Opt 20:2679–2708
Lasserre J (2009) Moments and sums of squares for polynomial optimization and related problems. J

Global Opt 45:39–61
Liberti L, Lavor C (2017) Euclidean Distance Geometry: An Introduction. Springer, New York
Liberti L, Lavor C, Maculan N, Mucherino A (2014) Euclidean distance geometry and applications.

SIAM Rev 56(1):3–69
Majumdar A, Ahmadi A, Tedrake R (2014) Control and verification of high-dimensional systems with

dsos and sdsos programming. In: Conference on Decision and Control, vol. 53, pp. 394–401. IEEE,
Piscataway

Plastria F (2009) Asymmetric distances, semidirected networks and majority in fermat-weber problems.
Ann Oper Res 167:121–155

Plastria F (2019) Pasting gauges I: shortest paths across a hyperplane. Discrete Appl Math 256:105–137
Salgado E, Scozzari A, Tardella F, Liberti L (2018) Alternating current optimal power flow with genera-

tor selection. In: J. Lee, G. Rinaldi, R. Mahjoub (eds.) Combinatorial Optimization (Proceedings of
ISCO 2018), LNCS, vol. 10856, pp. 364–375

Singer A (2011) Angular synchronization by eigenvectors and semidefinite programming. Appl Comput
Harmonic Anal 30:20–36

Tabaghi P, Dokmanić I, Vetterli M (2020) Kinetic Euclidean distance matrices. IEEE Trans Signal Pro-
cess 68:452–465

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

