Solving LP using random projections

Leo Liberti, Pierre-Louis Poirion, Vu Khac Ky^{1,2}

CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

Abstract

A celebrated result of Johnson and Lindenstrauss asserts that, in high enough dimensional spaces, Euclidean distances defined by a finite set of points are approximately preserved when these points are projected to a certain lower dimensional space. We show that the distance from a point to a convex set is another approximate invariant, and leverage this result to approximately solve linear programs with a logarithmic number of rows.

Keywords: Johnson-Lindenstrauss lemma, random projection.

1 Introduction

One of the computational "grand challenges" in Mathematical Programming is to solve ever larger Linear Programs (LP). We are currently able to routinely solve (sparse) LPs with a million variables and constraints. Developers of commercial solvers have seen customer LPs with up to a hundred million variables. What about a billion? This short paper is unfortunately *not* announcing such a breakthrough, but it possibly paves the way — if one is willing to accept an approximate solution with high probability.

¹ Email: {liberti,poirion,vu}@lix.polytechnique.fr

² Vu Khac Ky is supported by a Microsoft Research PhD grant.

We want to find approximate solution of LPs in standard form

$$\min\{cx \mid Ax = b \land x \ge 0\},\tag{1}$$

with high probability, where A is an $m \times n$ matrix, $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. The general idea is as follows: we pre-multiply A and b by a certain $k \times m$ matrix T (sampled randomly from certain distributions), with $k \ll m$. T is guaranteed with high probability to approximately preserve Euclidean distances among the columns of A and b. Since the worst-case complexity LP methods depends on both n and m, a large decrease in the number of rows is likely to have a beneficial impact on efficiency, and to allow for solving larger instances.

Such random projection methods are at the heart of the proof of the Johnson-Lindenstrauss Lemma (JLL), which states that, for any finite set $X \subseteq \mathbb{R}^m$ with |X| = n and $\varepsilon \in (0, 1)$ there exists a k of order $O(\frac{1}{\varepsilon^2} \ln n)$ and a mapping $T : \mathbb{R}^m \to \mathbb{R}^k$ such that:

$$\forall x, y \in X \quad (1 - \varepsilon) \|x - y\|_2 \le \|Tx - Ty\|_2 \le (1 + \varepsilon) \|x - y\|_2.$$
(2)

From here onwards, norms will always be Euclidean unless specified otherwise.

Random projections have been used previously to address optimization and/or learning algorithms involving the Euclidean norm only (see e.g. [2,1]). This is their natural setting, since a set of Euclidean distances is rotationally independent and rotational independence plays a prominent role in the original proof in the JLL [3]. As far as we know, this is the first application of the approximate preservation of the orthant $x \ge 0$ (which is definitely *not* rotationally independent), and is therefore interesting in its own right from a theoretical point of view.

For a matrix A we denote the *i*-th row by A_i and the *j*-th column by A^j . For a vector v and an index set J, we let $v_J = (v_j \mid j \in J)$. Let $\mathscr{C}(A) = \operatorname{cone}(A^j \mid j \leq n)$. For a problem P let $\mathcal{F}(P)$ be its feasible region.

2 A randomized algorithm for large LPs

Our proposed algorithm is as follows.

- 1. Sample a $k \times m$ random projector matrix T.
- 2. Solve $TP \equiv \min\{cx \mid TAx = Tb \land x \ge 0\}$, let c' be its optimal objective function value.
- 3. Retrieve an approximately optimal solution x^* of P as follows: a. let A'x = b' be the system $TAx = Tb \wedge cx = c'$,

let α be a uniform random vector in \mathbb{R}^n ;

- b. solve $TP_{\alpha} \equiv \min\{\alpha x \mid A'x = b' \land x \ge 0\}$, let y' be its optimal dual vector and $y = T^{\top}y'$;
- c. let J be the set of indices $j \leq n$ such that $yA^j = \alpha_j$, set $x_i^* = 0$ for each $j \notin J$;
- d. let \bar{x} be the solution of the $k \times k$ system $(A^J)^{\top} A^J x_J = (A^J)^{\top} b$, let $x_i^* = \bar{x}_j$ for each $j \in J$.

In the rest of this paper, we shall sketch the reason why this algorithm works.

3 The random projector

Among the many distributions that T can be sampled from, the simplest has each component of T sampled independently from $\mathcal{N}(0, \frac{1}{\sqrt{k}})$. Since T is a linear map, it obviously preserves feasibility. In the (yet unpublished) report [4], we prove that, if b, A^j are unit vectors for $j \leq n$ and $b \notin \mathscr{C}(A)$, then $\exists \mathcal{C} > 0$ such that:

$$\mathsf{Prob}(Tb \notin \mathscr{C}(TA)) \ge 1 - 2n(n+1)e^{-\mathcal{C}(\varepsilon^2 - \varepsilon^3)k}$$

for all $\varepsilon > 0$ in a certain "reasonable" interval. Since $b \in \mathscr{C}(A)$ iff $\exists x \ge 0$ s.t. Ax = b, our result shows that if P is infeasible then TP highly likely to be infeasible, and this probability can be made arbitrarily close to 1 as k grows.³

4 Solving the projected LP

Since $\mathcal{F}(P) = \mathcal{F}(TP)$ with high probability, a bisection argument shows that P and TP both have objective function values c' with high probability. Thus, we can find c' by simply solving TP using a standard LP solver. On the other hand, we can prove that the primal solution x' of TP is infeasible in P with probability 1, so we need a different strategy to compute the certificate.

5 Solution retrieval

Steps a-d in the algorithm of Sect. 2 provide a primal solution retrieval method via the dual LP using complementary slackness. The dual y' of P_{α} is such that $y'A' \leq \alpha$. Since $A' = (TAc)^{\top}$, we write $y' = (\bar{y}, y^c)$ so that we have $\bar{y}TA + y^c c \leq \alpha$ (*). Letting $y = (\bar{y}T, y^c)$ we have $y(Ac)^{\top} \leq \alpha$ (†), which

³ I.e. as m grows, which, since P is in standard form, also means that n grows.

means that y is a valid dual solution to the problem $P_{\alpha} = \min\{\alpha x \mid Ax = b \land cx = c' \land x \ge 0\}$. By complementary slackness of TP_{α} , at least k of the n inequalities in (\star) are satisfied at equality (say those corresponding to the index set J), which means the same holds for (†). By complementary slackness of $P_{\alpha}, \forall j \notin J$ we have $x_j^* = 0$. The nonzero components of x^* are those indexed by J, and we can find them by identifying the corresponding k columns of Ax = b and then solving a $k \times k$ linear system.

6 Perspectives

So, how far are we down the road to solving large LPs? If we only consider dense, randomly generated feasibility problems $Ax = b \land x \ge 0$, the following table shows that this approach does actually save us some time.

Uniform	ε	$k \approx$	CPU savings	accuracy
(0,1)	0.1	0.5m	10%	100%
(0,1)	0.15	0.25m	90%	100%
(0, 1)	0.2	0.12m	97%	100%
(-1,1)	0.1	0.5m	30%	50%
(-1,1)	0.15	0.25m	92%	0%
(-1,1)	0.2	0.12m	99.2%	0%

For sparse LPs, as expected, the issues concerning size, values of the constant C, and values of ε (none of which we know how to estimate, much less compute) make it impossible to obtain any CPU time saving. For validation purposes, we ran a simple experiment on the **afiro** and **recipe** instances of the NetLib [5], and obtained a valid objective function value and primal solutions in around 10% and 20% of the total number of independent runs of our randomized algorithm.

References

- Ailon, N. and B. Chazelle, Approximate nearest neighbors and fast Johnson-Lindenstrauss lemma, in: Proceedings of the Symposium on the Theory Of Computing, STOC 06 (2006).
- [2] Indyk, P. and A. Naor, Nearest neighbor preserving embeddings, ACM Transactions on Algorithms 3 (2007), p. Art. 31.
- [3] Johnson, W. and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in: G. Hedlund, editor, Conference in Modern Analysis and Probability, Contemporary Mathematics 26 (1984), pp. 189–206.
- [4] Ky, V. K., P.-L. Poirion and L. Liberti, Using the johnson-lindenstrauss lemma in linear and integer programming, Technical Report 1507.00990v1[math.OC], arXiv (2015).
- [5] NetLib, LP instance library (2015), http://www.netlib.org/lp/.