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Abstract

A celebrated result of Johnson and Lindenstrauss asserts that, in high enough di-
mensional spaces, Euclidean distances defined by a finite set of points are approx-
imately preserved when these points are projected to a certain lower dimensional
space. We show that the distance from a point to a convex set is another approxi-
mate invariant, and leverage this result to approximately solve linear programs with
a logarithmic number of rows.
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1 Introduction

One of the computational “grand challenges” in Mathematical Programming
is to solve ever larger Linear Programs (LP). We are currently able to rou-
tinely solve (sparse) LPs with a million variables and constraints. Developers
of commercial solvers have seen customer LPs with up to a hundred million
variables. What about a billion? This short paper is unfortunately not an-
nouncing such a breakthrough, but it possibly paves the way — if one is willing
to accept an approximate solution with high probability.
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We want to find approximate solution of LPs in standard form

min{cx | Ax = b ∧ x ≥ 0}, (1)

with high probability, where A is an m× n matrix, c ∈ R
n and b ∈ R

m. The
general idea is as follows: we pre-multiply A and b by a certain k×m matrix T
(sampled randomly from certain distributions), with k � m. T is guaranteed
with high probability to approximately preserve Euclidean distances among
the columns of A and b. Since the worst-case complexity LP methods depends
on both n and m, a large decrease in the number of rows is likely to have a
beneficial impact on efficiency, and to allow for solving larger instances.

Such random projection methods are at the heart of the proof of the
Johnson-Lindenstrauss Lemma (JLL), which states that, for any finite set
X ⊆ R

m with |X| = n and ε ∈ (0, 1) there exists a k of order O( 1
ε2
lnn) and

a mapping T : Rm → R
k such that:

∀x, y ∈ X (1− ε)‖x− y‖2 ≤ ‖Tx− Ty‖2 ≤ (1 + ε)‖x− y‖2. (2)

From here onwards, norms will always be Euclidean unless specified otherwise.

Random projections have been used previously to address optimization
and/or learning algorithms involving the Euclidean norm only (see e.g. [2,1]).
This is their natural setting, since a set of Euclidean distances is rotationally
independent and rotational independence plays a prominent role in the orig-
inal proof in the JLL [3]. As far as we know, this is the first application of
the approximate preservation of the orthant x ≥ 0 (which is definitely not
rotationally independent), and is therefore interesting in its own right from a
theoretical point of view.

For a matrix A we denote the i-th row by Ai and the j-th column by
Aj. For a vector v and an index set J , we let vJ = (vj | j ∈ J). Let
C (A) = cone(Aj | j ≤ n). For a problem P let F(P ) be its feasible region.

2 A randomized algorithm for large LPs

Our proposed algorithm is as follows.

1. Sample a k ×m random projector matrix T .
2. Solve TP ≡ min{cx | TAx = Tb ∧ x ≥ 0},

let c′ be its optimal objective function value.
3. Retrieve an approximately optimal solution x∗ of P as follows:

a. let A′x = b′ be the system TAx = Tb ∧ cx = c′,



let α be a uniform random vector in R
n;

b. solve TPα ≡ min{αx | A′x = b′ ∧ x ≥ 0},
let y′ be its optimal dual vector and y = T�y′;

c. let J be the set of indices j ≤ n such that yAj = αj,
set x∗

i = 0 for each j �∈ J ;

d. let x̄ be the solution of the k × k system (AJ)
�
AJxJ = (AJ)

�
b,

let x∗
j = x̄j for each j ∈ J .

In the rest of this paper, we shall sketch the reason why this algorithm works.

3 The random projector

Among the many distributions that T can be sampled from, the simplest has
each component of T sampled independently from N (0, 1√

k
). Since T is a

linear map, it obviously preserves feasibility. In the (yet unpublished) report
[4], we prove that, if b, Aj are unit vectors for j ≤ n and b �∈ C (A), then
∃C > 0 such that:

Prob(Tb �∈ C (TA)) ≥ 1− 2n(n+ 1)e−C(ε2−ε3)k

for all ε > 0 in a certain “reasonable” interval. Since b ∈ C (A) iff ∃x ≥ 0
s.t. Ax = b, our result shows that if P is infeasible then TP highly likely to be
infeasible, and this probability can be made arbitrarily close to 1 as k grows. 3

4 Solving the projected LP

Since F(P ) = F(TP ) with high probability, a bisection argument shows that
P and TP both have objective function values c′ with high probability. Thus,
we can find c′ by simply solving TP using a standard LP solver. On the other
hand, we can prove that the primal solution x′ of TP is infeasible in P with
probability 1, so we need a different strategy to compute the certificate.

5 Solution retrieval

Steps a-d in the algorithm of Sect. 2 provide a primal solution retrieval method
via the dual LP using complementary slackness. The dual y′ of Pα is such
that y′A′ ≤ α. Since A′ = (TAc)�, we write y′ = (ȳ, yc) so that we have
ȳTA + ycc ≤ α (�). Letting y = (ȳT, yc) we have y(Ac)� ≤ α (†), which
3 I.e. as m grows, which, since P is in standard form, also means that n grows.



means that y is a valid dual solution to the problem Pα = min{αx | Ax =
b ∧ cx = c′ ∧ x ≥ 0}. By complementary slackness of TPα, at least k of
the n inequalities in (�) are satisfied at equality (say those corresponding to
the index set J), which means the same holds for (†). By complementary
slackness of Pα, ∀j �∈ J we have x∗

j = 0. The nonzero components of x∗ are
those indexed by J , and we can find them by identifying the corresponding k
columns of Ax = b and then solving a k × k linear system.

6 Perspectives

So, how far are we down the road to solving large LPs? If we only consider
dense, randomly generated feasibility problems Ax = b ∧ x ≥ 0, the following
table shows that this approach does actually save us some time.

Uniform ε k ≈ CPU savings accuracy
(0, 1) 0.1 0.5m 10% 100%
(0, 1) 0.15 0.25m 90% 100%
(0, 1) 0.2 0.12m 97% 100%
(−1, 1) 0.1 0.5m 30% 50%
(−1, 1) 0.15 0.25m 92% 0%
(−1, 1) 0.2 0.12m 99.2% 0%

For sparse LPs, as expected, the issues concerning size, values of the con-
stant C, and values of ε (none of which we know how to estimate, much less
compute) make it impossible to obtain any CPU time saving. For validation
purposes, we ran a simple experiment on the afiro and recipe instances of
the NetLib [5], and obtained a valid objective function value and primal solu-
tions in around 10% and 20% of the total number of independent runs of our
randomized algorithm.
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