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Several problems in optimization and control involve a matrix of decision variables to
be subject to a rank constraint. Although semidefinite programming is used as a general-
purpose tool to provide strong relaxations of such problems, finding feasible solutions mostly
relies on algorithmic techniques specific to the problem at hand. We present models for ex-
pressing rank constraints using mathematical programming, that provide a general-purpose
method to find feasible solutions. Our models were tested against the classical Distance
Geometry Problem.

1 Introduction

This paper presents modelling techniques for expressing the rank of a matrix A ∈Mm×n when
this involves decision variables of a Mathematical Program (MP). Requiring linear indepen-
dence of a set of vectors {vi | i ∈ N} ⊆ Rm (with N = {1, . . . , n} and n < m) of decision
variables is a nontrivial feat: the elementary definition, ∀α ∈ Rn,

∑
i∈N αivi = 0⇒ α = 0, re-

quires in general uncountably many nonlinear constraints, each involving either binary variables
or complementarity terms. We explore an equivalent definition of the rank of A (its number
of nonzero eigenvalues) to propose models consisting of a finite set of nonconvex constraints.
We showcase our results on an application to the Distance Geometry Problem (DGP).

2 The Distance Geometry Problem

In the DGP [5], we are given an integer K > 0 and a weighted undirected graph G = (V,E, d)
with d : E → R+ and |V | = n ≥ K, and we must find y : V → RK satisfying the polynomial
system

‖yi − yj‖2 = dij ∀(i, j) ∈ E, (1)

where y(i) = yi and d((i, j)) = dij . It was shown in [8] that the system above can be reformu-
lated exactly as

(ei − ej)>X(ei − ej) = d2ij ∀(i, j) ∈ E (2)

subject to X = Y >Y , where Y = [y1 y2 ... yn] is the matrix whose columns are the vectors
y and ei ∈ Rn is the canonical unit vector of all zeros except an 1 at the ith-position. The
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latter condition can also be written as rkX ≤ K (with rkX = K if Y is required to span RK).
The mapping between solutions of (1) and (2) is: if there exists X with rank K satisfying (2),
there is y1, ..., yn ∈ RK satisfying (1) with 〈yi, yj〉 = xij , ∀(i, j) ∈ E. There are polynomial
time algorithms to retrieve the vectors y associated to a solution X.

In [5] one finds the classical MP formulation used to solve the DGP. We however propose and
use a simpler formulation w.r.t. nonlinearities. In order to derive the formulation equivalent
to (2), we first expand the squared Euclidean norm term of (1) to obtain that ‖yi − yj‖22 =
〈(yi− yj), (yi− yj)〉 = 〈yi, yi〉− 2〈yi, yj〉+ 〈yj , yj〉 = xii− 2xij +xjj , ∀(i, j) ∈ E. Then, to each
(i, j) ∈ E, we associate a continuous variable sij = |xii− 2xij + xjj − (dij)

2| that measures the
deviation from the respective given distance. All global optima of the DGP have zero total
deviation. We can thus formulate the linear programming relaxation:

min
∑

(i,j)∈E

sij (3)

s.t. sij ≥ xii − 2xij + xjj − (dij)
2, ∀(i, j) ∈ E, (4)

sij ≥ −xii + 2xij − xjj + (dij)
2, ∀(i, j) ∈ E. (5)

It remains to formulate and adjoin to (3)-(5) the rank constraints over the matrixX. Contraints
(4) and (5) together guarantee that the total deviation (objective function) tends to zero
through positive values whenever ‖yi − yj‖22 6= (dij)

2 for any (i, j) ∈ E.

3 Modelling the rank

The rank is modeled as the number of nonzero eigenvalues of X using the eigensystem and
eigendecompositon to encode eigenvalues and eigenvectors as decision variables.
Eigensystem: we assume that λi(X) ⊆ [Li, Ui] for i ∈ N (with Li, Ui ∈ R) and that all

nonzero eigenvalues have absolute value greater than a given ε > 0. Define a sequence of
binary decision variables like z : N → {0, 1}. Moreover, let δij be the Kronecker delta for
i, j ∈ N . Consider the system of constraints:

∀i, j ∈ N,
∑
k∈N

xikϑkj = λjϑij , (6)

∀i, j ∈ N,
∑
k∈N

ϑkiϑkj = δij , (7)

∀i ∈ N, λ2i ≥ ε2zi, (8)

∀i ∈ N, Lizi ≤ λi ≤ Uizi. (9)

Constraints (6) represent the eigensystem. Constraints (7) state that the set {ϑ1, ..., ϑn} is
an orthonormal eigenbasis of Rn associated to X. Constraints (8)-(9) require that for all
i ∈ N , λi = 0⇔ zi = 0. By elementary linear algebra, the system above always has a solution
whenever λ, ϑ are allowed to range over the complex numbers. The DGP as modeled in Section
2 actually require X to be a symmetric matrix. By adjoining symmetry constraints to X:

∀i < j ∈ N, xij = xji, (10)

we make sure the system can be solved over the reals. We call MES the model (6)-(10).



Eigendecomposition: the next model follows directly from substituting (6) by constraints
that represent the eigendecomposition of X:

∀i, j ∈ N, xij =
∑
k∈N

ϑikϑjkλk. (11)

It is simple to see that constraints (11) implicitly guarantee that X is symmetric. Hence we
do not need to adjoin constraints (10) to the model (11),(7)-(9), henceforth named MED. If
we do add (10) to MED, the total number of constraints (11) are reduced as follows:

∀i ≤ j ∈ N, xij =
∑
k∈N

ϑikϑjkλk, (12)

to obtain a third model given by the constraints (12),(7)-(10), called MEDRS.
Rank constraint : finally, rank constraints can be constructed by means of the z variables:∑

i∈N
zi = r, r ∈ N. (13)

We remark that other types of constraints (e.g. the rank is bounded above by r) and objectives
(e.g. the rank must be maximum) can be constructed similarly. In the DGP, r = K in (13).

Additional constraints: we make use of extra constraints that may improve the performance
of the solver used. Namely, they are: the trace constraint (TC), symmetry breaking constraints
(SBCs) [4] on the λ variables and complementary constraints (CCs) on the z and λ variables.

4 Computational experiments

The models MES, MED and MEDRS were combined either with a TC or with SBCs or with
both. The formulations were solved using BARON 14.0.3 [9, 7] under the GAMS [6] environ-
ment, publicly available at the NEOS Server [1]. We adjoined CCs to all formulations because
BARON may benefit from it [7]. Execution time was limited to 3 hours of wall clock time; we
considered ε = 0.005 and we set GAMS termination option optca [6] to 0.001. The eigenvalues’
bounds ([3, Thm. 1]) were computed using Eigen [2], a C++ template library for linear algebra.

Table 1 reports the results for all MES, MED and MEDRS based formulations. Per instance
and for each formulation, the table exhibits the best solution found, the elapsed wall clock
time (in seconds), the number of nodes explored and the solver status (opt = optimal, feas =
feasible, nsf = no solution found). Best values are emphasized in boldface.

The results obtained so far are too few (only 4 instances were submitted to testing) to
draw definitive conclusions on which family of models performs the better, but we observe a
slight advantage to the MEDRS based formulations: optimal solutions were found in 12 out
of 16 runs, with 2 overall better performances (C0700odd.1 and lavor11) and a second place
(C0700odd.2). On the other hand, the MES based formulations performed the worse: only
in 8 of 16 runs an optimum was found, not even a feasible solution found for lavor11 and no
overall better performance. Some execution times (particularly those for C0150alter.1 and the
MES models) surpassed the pre-established time limit due to unknown reasons. In general,
the only certainty we have so far is that it is unlike to solve big instances (all instances have
at most 11 points except for C0150alter.1 that has 26) unless we either improve the modelling
or the bounds on the x variables; the latter improvement would also yield an improvement in
the bounds of the eigenvalues variables; theoretically, tighter bounds would favor BARON [7].
Another options would be to try other global optimization solvers or a VNS like heuristic.



Model Instance Best Time Nodes St. Instance Best Time Nodes St.
mes C0700odd.1 0.00 74.62 3 opt C0700odd.2 0.00 857.04 1255 opt

mes trace C0700odd.1 0.00 120.54 11 opt C0700odd.2 0.00 570.58 724 opt
mes sbcs C0700odd.1 0.00 459.59 886 opt C0700odd.2 0.00 760.26 684 opt

mes trace sbcs C0700odd.1 0.00 10.40 1 opt C0700odd.2 0.00 760.80 1439 opt
med C0700odd.1 0.00 5.10 1 opt C0700odd.2 0.00 11.69 1 opt

med trace C0700odd.1 0.00 50.92 49 opt C0700odd.2 0.00 5.99 1 opt
med sbcs C0700odd.1 0.00 7.71 1 opt C0700odd.2 0.00 104.35 46 opt

med trace sbcs C0700odd.1 0.00 118.41 166 opt C0700odd.2 0.00 79.00 56 opt
medrs C0700odd.1 0.00 4.96 1 opt C0700odd.2 0.00 7.98 1 opt

medrs trace C0700odd.1 0.00 11.23 6 opt C0700odd.2 0.00 64.47 85 opt
medrs sbcs C0700odd.1 0.00 5.49 1 opt C0700odd.2 0.00 8.77 1 opt

medrs trace sbcs C0700odd.1 0.00 123.86 77 opt C0700odd.2 0.00 40.99 6 opt

mes lavor11 - 10800.00 145 nsf C0150alter.1 - 14922.54 1 nsf
mes trace lavor11 - 10800.00 34 nsf C0150alter.1 - 12962.56 1 nsf
mes sbcs lavor11 - 10800.00 65 nsf C0150alter.1 - 10800.04 1 nsf

mes trace sbcs lavor11 - 10800.00 82 nsf C0150alter.1 - 10800.08 1 nsf
med lavor11 0.00 598.25 46 opt C0150alter.1 - 10999.20 1 nsf

med trace lavor11 0.00 363.20 46 opt C0150alter.1 - 10810.50 1 nsf
med sbcs lavor11 0.00 1181.55 36 opt C0150alter.1 - 10821.59 1 nsf

med trace sbcs lavor11 0.00 912.91 46 opt C0150alter.1 - 10800.41 1 nsf
medrs lavor11 0.00 18.85 1 opt C0150alter.1 - 10980.55 1 nsf

medrs trace lavor11 0.00 21.26 1 opt C0150alter.1 - 10916.17 1 nsf
medrs sbcs lavor11 0.00 1353.86 285 opt C0150alter.1 - 10800.04 1 nsf

medrs trace sbcs lavor11 0.00 17.51 1 opt C0150alter.1 - 10972.76 1 nsf

Table 1: Results obtained from all DGP formulations using BARON 14.0.3.

References

[1] J. Czyzyk, M. Mesnier, and J. Mor. The NEOS server. IEEE Journal on Computational
Science and Engineering, 5(3):68–75, 1998.

[2] G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[3] M. Hladk. Bounds on eigenvalues of real and complex interval matrices. Applied Mathe-
matics and Computation, 219(10):55845591, 2013.

[4] L. Liberti. Symmetry in mathematical programming. In S. Leyffer and J. Lee, editors,
Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics
and its Applications, pages 263–286. Springer, New York, 2012.

[5] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and
applications. SIAM Review, 56(1):3–69, 2014.

[6] R. E. Rosenthal. GAMS - A users guide. GAMS Development Corporation, Washington,
December 2014.

[7] N. Sahinidis. BARON 14.0.3: Global Optimization of Mixed-Integer Nonlinear Programs,
User’s Manual, 2014.

[8] A. M.-C. So and Y. Ye. Theory of semidefinite programming for sensor network localization.
Mathematical Programming B, 109(2-3):367–384, 2007.

[9] M. Tawarmalani and N. Sahinidis. A polyhedral branch-and-cut approach to global opti-
mization. Mathematical Programming, 103(2):2005, 2005.


