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Abstract

The performance of Branch-and-Bound algorithms is severely impaired by the pres-
ence of symmetric optima in a given problem. We describe a method for the auto-
matic detection of formulation symmetries in MINLP instances. A software imple-
mentation of this method is used to conjecture the group structure of the problem
symmetries of packing equal circles in a square. We provide a proof of the conjecture
and compare the performance of spatial Branch-and-Bound on the original problem
with the performance on a reformulation that cuts away symmetric optima.
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1 Introduction

It is well known that problems involving a high degree of symmetry are partic-
ularly difficult to solve with Branch-and-Bound (BB) techniques. Intuitively,
since optimal solutions are to be found at leaf nodes of the BB tree, the pres-
ence of more optima causes longer branches, and hence a higher number of
nodes to explore. One possibility for breaking symmetries, proposed in [6,8], is
to reformulate the problem by adjoining symmetry-breaking constraints (SBC)
to the original formulation, yielding a reformulation of the narrowing type [7].
The main theoretical contribution of this paper is the determination of the
group structure of the problem of packing N equal circles in a square of side 2L
(see [10] and www.packomania.com). We also perform a computational study
to assess the efficacy of the proposed automatic symmetry-breaking technique.

1.1 Basic definitions and notation

For n ∈ N we let Sn be the symmetric group of order n (i.e. the group of all
permutations of n symbols) and Cn be the cyclic group of order n (i.e. the
group of rotations of a regular n-polygon). For a subset N ⊆ {1, . . . , n} we
let Sym(N) be the symmetric group on the symbols of N . When G acts on
a set X by means of the application gx of g to x for g ∈ G, x ∈ X, we let
Gx = {gx | g ∈ G} be the orbit of x in G and for a subset Y ⊆ X we let
stab(Y,G), the setwise stabilizer of Y in G, be the largest subgroup H ≤ G
such that HY = Y (i.e. hy ∈ Y for all h ∈ H, y ∈ Y ). For a permutation
π ∈ Sn let Γ(π) be the set of disjoint cycles σ such that π =

∏

σ∈Γ(π) σ. We

define π[N ] =
∏

σ∈Γ(π)∩stab(N,Sn) σ. For a directed graph D = (V,A) and v ∈ V

we denote by δ+(v) = {u ∈ V | (v, u) ∈ A} the forward star of v in D and
by δ−(v) = {u ∈ V | (u, v) ∈ A} its backward star. An automorphism of D
is a permutation π ∈ Sym(V ) such that ∀(u, v) ∈ A (π(u), π(v)) ∈ A. For
any subset U ⊆ V , the graph D′ (called minor) obtained by contracting U
has V r U ∪ {vU} as vertex set, and an arc (u, v) is in D′ either if u, v 6∈ U
and (u, v) ∈ A or if u 6∈ U , v = vU and ∃v′ ∈ U (u, v′) ∈ A (or vice versa).
If D has no cycles then it is a Directed Acyclic Graph (DAG); if there exists
a unique vertex v ∈ V with |δ−(v)| = 0 then we denote v by r(D) and call
it the root of D (the absence of cycles implies that DAGs have at least one
root). A DAG D = (V,A) such that ∀v ∈ V r {r(D)} |δ−(v)| = 1 is a tree;
for all v ∈ V r {r(D)} we define v−, the parent of v, to be the unique vertex
in δ−(v); if v = r(D) we assume v− = r(D). In a tree D = (V,A), for all
v ∈ V the level ℓ(v) of v is the smallest number of times the parent operator
need be applied to v in order to yield v−...− = r(D); given v ∈ V we denote by
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D[v] = (V [v], A[v]) the subgraph of D consisting of vertices u ∈ V for which
there is a directed path in D from v to u.

2 Automatic symmetry detection

In this section we discuss a method for computing Mathematical Program
(MP) symmetries automatically; conceptually, it is the same as in [8] and
similar to [14] but the formal presentation is different. We consider a Mixed-
Integer Nonlinear Program (MINLP) P :

min{f(x) | g(x) ≤ 0 ∧ x ∈ X},(1)

where f : Rn → R, g : Rn → Rm, x ∈ Rn, and X ⊆ Rn is a set which
might include variable ranges xL ≤ x ≤ xU as well as integrality constraints
on a subset of variables {xi | i ∈ Z} for some Z ⊆ {1, . . . , n}. Let G(P )
be the set of global optima of P and F(P ) be its feasible region. We define
the action of Sn on Rn as follows: ∀π ∈ Sn, x ∈ Rn let π(x1, . . . , xn) =
(xπ−1(1), . . . , xπ−1(n)) so that, for example, (1, 2, 3)(x1, x2, x3) = (x3, x1, x2).
The group G∗

P = stab(G(P ), Sn) is called the solution group of P . The solution
group is the largest subgroup of Sn which maps every global optimum into
another global optimum. Since G∗

P depends on G(P ) it cannot, in general,
be found before the solution process. We therefore try to find subgroups of
G∗

P . In particular, we consider the subgroup of G∗
P consisting of all variable

permutations which “fix the formulation” of P . For π ∈ Sn and σ ∈ Sm we
define σPπ to be the following MINLP:

min{f(πx) | σg(πx) ≤ 0 ∧ πx ∈ X},(2)

where σ acts on g = (g1, . . . , gm) by σg = (gσ−1(1), . . . , gσ−1(m)). Consider the
group ḠP = {π ∈ Sn | ∃σ ∈ Sm (σPπ) = P}. Whenever P is a Mixed-
Integer Linear Program (MILP), ḠP is called the LP relaxation group [11].
For general MINLPs, determining whether ∀x ∈ dom(f) f(πx) = f(x) and
∀x ∈ dom(g) σg(πx) = g(x) is an undecidable problem.

We therefore introduce the following restriction: f, gi (i ≤ m) must be
strings of the formal language L on the alphabet A given by the operators
in {+,−,×,÷, ↑, log, exp, (, )} (where a ↑ b = ab), the variable symbols in
{x1, . . . , xn} and the constant symbols in R, where L is recognized by the
following formal grammar [13]:

e : t | e + t | t− t
t : p | t× p | p÷ p
p : f | f ↑ f
f : l | − (e) | log(e) | exp(e) | (e)
l : xi (1 ≤ i ≤ n) | c (c ∈ R).



















(3)



The lexical recognition performed by the grammar to decide whether a
string a of A ∗ belongs to L naturally yields the (well-known) derivation tree

Da = (Va,Aa) of a [13]. The expression tree T ′
a = (V ′

a, A
′
a) associated to a is

such that V ′
a consists of all the symbols of A in a, and, for u ∈ V ′

a there is
an arc (u, v) whenever v = argmin{ℓDa

(z) − ℓDa
(u) | ℓDa

(z) > ℓDa
(u) ∧ z ∈

Da[u
−]}. For all v ∈ Va we let λ(v) (v’s label) be the alphabet symbol that

v represents. Let V = {x1, . . . , xn} ⊆ A be the set of variable symbols of
A . For two nodes u, v ∈ V ′

a we define the equivalence relation u ∼ v given
by λ(u), λ(v) ∈ V ∧ λ(u) = λ(v), and consider the DAG Ta = (V,A) defined
as T ′

a/∼ (i.e. Ta is the graph minor obtained by contracting each set in the
partition V ′

a/∼).

For example, the string a = x1 × (x2 + x1) is recognized by the grammar
(3) to be an element of L . It yields the derivation tree Da (dashed arrows)
and the expression tree T ′

a (full arrows) below. The DAG Ta obtained by
contracting the two vertices labelled by x1 is shown in the upper right box.
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For a, b ∈ L we define a ∼= b if and only if Ta = Tb: this can be established
in linear time in |a|, |b| by simply recursing on the respective DAGs. It is easy
to show that if a ∼= b then dom(a) = dom(b)∧ ∀x ∈ dom(a) a(x) = b(x) (thus
the functions represented by the strings a, b are equal), but the converse may
not hold. For a MP P ′ defined as min{f ′(x) | g′(x) ≤ 0 ∧ x ∈ X ′}, we write
P ∼= P ′ if: (a) P, P ′ have the same number of variables and constraints; (b)
X = X ′; (c) f ∼= f ′ and ∀i ≤ m (gi

∼= g′
i). We are finally in a position to

define the formulation group GP = {π ∈ Sn | ∃σ ∈ Sm (σPπ ∼= P )} of P . It
is easy to show that GP ≤ ḠP ≤ G∗

P [6]. For MILPs, GP = ḠP [8].

Computing GP involves testing whether the two formulations P and Q =
σPπ (for some σ ∈ Sm, π ∈ Sn) have the property P ∼= Q. To this purpose
we construct a DAG representation of MPs. To ease notation, we let g0 =



f . Let D(P ) = (V,A) be the DAG given by (
⋃

0≤i≤m Tgi
)/ ∼. We define

a color label γ : V → N such that: (i) nodes u, v ∈ V ∩ V with same
ranges and integrality constraints have the same color (permute like variables);
(ii) the root of Tg0

has a different color from the roots of the Tgi
’s (do not

permute objective with constraints); (iii) for all 1 ≤ i ≤ m the roots of Tgi

all have the same color (permute constraints order); (iv) for distinct i < j ∈
{0, . . . ,m}, two nodes u ∈ Vgi

, v ∈ Vgj
not in V have different colors (do

not permute operators from different mathematical expressions); (v) for all
i ∈ {0, . . . ,m}, two nodes in u, v ∈ Vgi

not in V with same operator label,
same tree levels (these are well defined for the DAGs Tgi

because ∼ only applies
to nodes in V ), and in the case of noncommutative operators, same position
in the ordered lists δ+(u−), δ+(v−), have the same color (within the same
mathematical expression, permute operators which “play the same role”). We
then define an equivalence relation ∼γ on the nodes of V such that u ∼γ v if
γ(u) = γ(v), and consider the partition V1 . . . ,Vq of V induced by ∼γ. We
let HP be the largest group of automorphisms of D fixing each Vh, i.e. such
that ∀h ≤ q (HPVh = Vh). Consider the mapping φ : HP → Sym(V )
given by φ(π) = π[V ]. Then φ is a group homomorphism, and Im(φ) = Gp

(Theorems 1,2 in [8]). This reduces the Graph Isomorphism (GI) problem [2]
to the problem of computing GP : we use the GI-based software nauty [12]
to compute a set of generators for HP and then use φ to obtain a set of
generators G for GP . It is not known whether GI is in P or NP-complete;
nauty has exponential complexity. Graph classes for which GI is as difficult as
for general graphs are termed GI-complete: it is known that GI is polynomial
on trees but DAGs are GI-complete. Our DAGs are “almost trees” and we
can therefore expect them to be “practically easy” — this is in fact the case,
as the computational experiments in [8] show.

Once GP is known, we aim to find a reformulation Q of P which ensures
that at least one symmetric optimum of P is in G(Q). Such reformulations
are known as narrowings [7]. A set of constraints h(x) ≤ 0 are SBCs with
respect to π ∈ GP if there is y ∈ G(P ) such that h(πy) ≤ 0. Adjoining SBCs
to P yields a narrowing Q of P [8]. Let Ω be the set of nontrivial orbits of the
action of GP on V , and let ω ∈ Ω. Then ∀j ∈ ω xmin ω ≤ xj are SBCs with
respect to GP [8].

3 Circle packing in a square

Circle Packing in a Square (CPS). Given N ∈ N and L ∈ Q+, can N
non-overlapping circles of unit radius be arranged in a square of side 2L?



We formulate the CPS as the following nonconvex NLP:

max{α | ∀i < j ≤ N ‖xi − xj‖
2 ≥ 4α ∧ x ∈ [1 − L,L − 1]2N}(4)

For any given N,L > 1, if a global optimum (x∗, α∗) of (4) has α∗ ≥ 1 then
the CPS instance is a YES one. Although the CPS is not usually formulated
as (4) [10], our formulation is equivalent to the more usual one of maximizing
the radius of circles in a unit square. Solving the nonconvex NLP (4) to global
optimality using standard sBB solvers yields search trees of disproportionate
sizes even for very small instances. One of the reasons for the slow convergence
of sBB is that (4) has many symmetries.

Using the method described in Sect. 2, we conjecture that GSPS = C2×SN .
This is intuitively reasonable, i.e. we expect to be able to permute the two
dimension indices and the circle indices. We show in Thm. 3.1 that this is
indeed the case. Let Q be the CPS formulation (4).

Theorem 3.1 The formulation group of the CPS is isomorphic to C2 ×SN .

Proof. For all i < j ≤ N call the constraints ‖xi − xj‖
2 ≥ 4α the distance constraints.

Let (x, α) ∈ G(Q); the following claims are easy to establish.

(i) The permutation τ =
∏

i≤N (xi1, xi2) is in GQ (invariance of distance constraints);
notice that 〈τ〉 ∼= S2 = C2.

(ii) For any i ≤ N − 1, the permutation σi = (xi1, xi+1,1)(xi2, xi+1,2) is in GQ (invariance
of distance constraints); notice that 〈σi | i ≤ N − 1〉 ∼= SN .

(iii) Any permutation moving α to one of the x variables is not in GQ. This follows
because the α has different range constraints than those of the x variables, hence the
corresponding node colors given by γ in D are different.

(iv) If π ∈ GQ such that π(xi1) = xi2 for some i ≤ N then π(xi1) = xi2 for all i ≤ N , as
otherwise the term xi1xj1 + xi2xj2 (appearing in the distance constraints) would be
mapped to a term not appearing in the problem.

(v) For any i ≤ N − 1, if π ∈ GQ such that π(xik) = xi+1,k for some k ≤ 2, then
π(xik) = xi+1,k for all k ≤ 2, as otherwise the term xi1xi+1,1 + xi2xi+1,2 (appearing
in some of the distance constraints) would be mapped to a term not appearing in the
problem.

Let K = 〈τ〉 and HN = 〈σi | i ≤ N − 1〉. Claims (i)-(ii) imply that K,HN ≤ GQ. It is easy

to check that KHN = HNK; it follows that KHN ≤ GQ [4] and hence K,HN are normal

subgroups of KHN . Since K ∩ HN = {e}, we have KHN
∼= K × HN

∼= C2 × SN ≤ GQ [1].

Now suppose π ∈ GQ with π 6= e. By Claim (iii), π cannot move α so it must map xi1 to

xj2 for some i < j ≤ N ; the action i → j on the circles indices can be decomposed into a

product of transpositions i → i+1, . . . , j − 1 → j. Thus, by Claim (v) (resp. iv), π involves

a certain product γ of τ and σi’s; furthermore, since by definition γ maps xi1 to xj2, any

permutation in GQ (including π) can be obtained as a product of these elements γ; hence

π is an element of KHN , which shows GQ ≤ KHN , implying GQ
∼= C2 × SN . 2



By Thm. 3.1, GQ = 〈τ, σi | i ≤ N − 1〉. It is easy to show that there is
just one orbit in the natural action of GQ on the set A = {1, . . . , N} × {1, 2},
and that the action of GQ on A is not symmetric (otherwise GQ would be
isomorphic to SN2, contradicting Thm. 3.1).

Proposition 3.2 For any fixed h ≤ 2,

∀i ≤ N r {1} xi−1,h ≤xih(5)

are SBCs with respect to any π ∈ GQ.

Proof. Let x̄ ∈ G(Q); since the σi generate the symmetric group acting on the N circles,

there exists a permutation π ∈ GQ such that (x̄π(i),h | i ≤ N) are ordered as in (5). 2

4 Computational results

A partial computational study on the SPS is currently in revision [9]. Here we
focus on the CPS problem. We compare the effect of three distinct symmetry-
breaking devices: (i) fixing the first circle to (−L + 1, L − 1) (this can always
be done by [10] and the technical report cited therein); (ii) adjoining the weak

SBCs discussed at the end of Sect. 2; (iii) adjoining the strong SBCs given
in Prop. 3.2. In particular, we test the configurations original (A), weak (B),
strong (C), fix (D), strong+fix (E). We remark that weak+fix is the same as fix,
as the weak SBCs imply the first circle. Our comparative solutions, yielded
by running Couenne [3] on CPS instances in the configurations A-E described
above, have been obtained on one 2.4GHz Intel Xeon CPU of a computer
with 24 GB RAM running Linux. These results are shown in the table below,
which contains the following statistics at termination (occurring after at most
2h of user CPU time): the objective function value f ∗ of the incumbent, the
gap still open, the seconds of user CPU time taken, the number of BB nodes
closed, the number of BB nodes still on the tree. The last column, labelled
R.t., lists the reformulation time: i.e. the seconds of user CPU time taken to
find the formulation group, its longest orbit, and to adjoin the weak SBCs to
the formulation.
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