Comparison of Deterministic and Stochastic Approaches to
Global Optimization

LEO LIBERTI*

DEI, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy,
*Corresponding author: E-mail: liberti@elet.polimi.it

SERGEI KUCHERENKO

CPSE, Imperial College London, SW7 2BY, UK,

E-mail: s.kucherenko@imperial.ac.uk

Abstract

In this paper we compare two different approaches to nonconvex global optimization. The first
one is a deterministic spatial Branch-and-Bound algorithm (sBB), whereas the second approach is a
quasi Monte Carlo (QMC) variant of a stochastic multi level single linkage (MLSL) algorithm. Both
algorithms apply to problems in a very general form and are not dependent on problem structure.
The test suite we chose is fairly extensive in scope, in that it includes constrained and unconstrained
problems, continuous and mixed-integer problems. The conclusion of the tests is that in general the
QMC variant of the MLSL algorithm is more efficient, although in some instances the Branch-and-
Bound algorithm is capable of locating the global optimum of hard problems in just one iteration.

Keywords: global optimization, convex envelope, bilinear programming, spatial Branch-and-Bound,
multi level single linkage, low discrepancy sequences

1 Introduction

The nonlinear optimization problems (NLPs) considered in this paper are of the form:

min, f(z)
I <g(@)< u 1)
zt <z< zV

where z € R, f: R > R, g: R* - R™, [,u € R™ are the lower and upper bounds of the constraints,
and ¥, 2¥ € R™ are the lower and upper bounds to the variables. The functions f and g are, in general,
nonconvex.

Global optimization algorithms are usually broadly divided into deterministic and stochastic. De-
terministic methods provide a theoretical guarantee of locating the global minimum, or at least a local
minimum whose objective function value differs by at worst € from the global one for a given € > 0.
Stochastic methods only offer a guarantee in probability. On the other hand, stochastic methods are
usually faster in locating a global optimum than deterministic ones. Moreover, stochastic methods adapt
better to black-box formulations and extremely ill-behaved functions, whereas deterministic methods
usually rest on at least some theoretical assumptions about the problem formulation and its analytical
properties. Comparisons between deterministic and stochastic global optimization methods are scarce
in the literature. A comparison of the deterministic graduated nonconvexity algorithm with different
versions of simulated annealing stochastic algorithms was performed in [5]. Author’s conclusion was that
stochastic algorithms are less efficient. Partly this result can be explained by the inefficiency of the

1 INTRODUCTION 2

chosen stochastic algorithms: e.g. Dekkers and Aarts found that the stochastic MLSL algorithm is more
efficient than simulated annealing algorithms [7]. Dixon and Jha compared the deterministic interval
method with the stochastic MLSL algorithm. Their conclusion was that the stochastic algorithm was at
least 8 times faster than the deterministic one [8]. Zabinsky reported results with several deterministic
methods, including a branch and bound scheme coupled with gradient search local optimization methods
[34]. Limitations of the deterministic approach such as the loose bounds and impossibility of solving
practical problems with more than 10 variables led the author to consider stochastic methods for global
optimization. Good results were obtained with the Improving Hit-and-Run method which is a version of
sequential random search methods.

In this paper, we compare the performances of a deterministic sBB method and a QMC variant of a
stochastic MLSL method on several classes of problems. Formulation (1) shows that the type of problems
we aim to solve are very general. The algorithms being tested are not tailored to any particular problem
structure (but see Section 2.1 about the treatment of bilinear terms in the sBB algorithm).

In deterministic global optimization, when the form of the problem is not known a priori, Branch-and-
Bound algorithms seem to be the most promising tool for finding the global solution efficiently. Many
variants of these algorithms (see for example [1], [2], [9]) are used in this area. The search space is the
whole definition range of all variables. At each step, the range of one of the variables is selected. Lower
and upper bounds to the objective function are then calculated relative to the current region. If these
bounds come within ¢ distance of each other, the upper bound is accepted as the best minimum in the
current region: if it is better than the current overall best minimum, it replaces it, otherwise the region
is discarded. If the bounds are farther apart than e, a branching variable and a branching point are
chosen and the region is split in smaller subregions; the original region is then discarded. The algorithm
terminates when there are no more regions to examine. The deterministic sSBB algorithm implementation
we used is based on the sBB algorithm with symbolic reformulation presented in [26, 29, 30]. In sBB
algorithms, the complexity of the problem may grow exponentially as a function of the number of variables.
For high dimensional problems it results in prohibitively large computational time.

The simplest form of a stochastic approach for global optimization is called Pure Random Search
(PRS). In PRS an objective function f(z) is evaluated at N randomly chosen points and the smallest
value of f(z) is taken as the global minimum. The PRS approach is not very efficient because the
expected number of iterations for reaching a specified tolerance grows exponentially in the dimension n
of the problem.

Advanced stochastic techniques use stochastic methods to search for the location of local minima and
then employ deterministic methods to solve a local minimization problem. Two phases are considered:
global and local. In the global phase, the function is evaluated in a number of randomly sampled points
from a uniform distribution over a unit hypercube H,. In the local phase the sample points are used as
starting points for a local minimization search. The efficiency of the multistage methods depends both
on the performance of the global stochastic and the local minimization phases.

In the most basic form of the multistage approach, a local search is applied to every sample point.
Inevitably, some local minima are found many times. Since the local search is the most CPU-time
consuming stage, ideally it should start just once in every region of attraction: this is the idea behind
various versions of the so-called clustering methods. Extensive reviews on this subject can be found in
[22, 23, 25] and [32]. One of the most efficient clustering methods is the MLSL algorithm developed by
Rinnooy-Kan and Timmer in [22, 23].

The efficiency of stochastic methods depends on the quality of sampled points. It has been recognized
through theory and practice that uniformly distributed deterministic sequences provide more accurate
results than purely random sequences. The low-discrepancy sequences (LDS) are designed specifically to
place sample points as uniformly as possible. Unlike random numbers, successive low discrepancy points
“know” about the position of their predecessors and fill the gaps left previously. Methods based on LDS
are known as QMC methods. QMC methods have superior performance to that of MC methods in almost
all applications. Improvement in time-to-accuracy using QMC methods can be as large as several orders

2 DETERMINISTIC SPATIAL BRANCH-AND-BOUND ALGORITHM 3

of magnitude. It was shown in [13] that application of LDS can significantly increase the efficiency of
MLSL methods.

2 Deterministic Spatial Branch-and-Bound Algorithm

The sBB algorithm used in these tests (based on [30]) is outlined below:

1. (Preprocessing) Generate reduction constraints. These help tighten the feasible region significantly
in the presence of linear equality constraints and bilinear terms (see section 2.1).

2. (Initialization) The list of regions to be explored initially contains a single region comprising the
whole set of variable ranges. Set the convergence tolerance ¢ and the best objective function value
U := c0. Optionally perform pre-processing steps (like e.g. optimization-based bounds tightening).

3. (Choice of Region) If the list of regions is empty, terminate the algorithm with solution U. Other-
wise, choose a region from the list. Delete this region from the list. Optionally perform feasibility-
based bounds tightening on this region.

4. (Lower Bound) Generate a (linear) convex relaxation of the original problem and solve it to obtain
an underestimation [of the objective function for the current region. If I > U or the relaxed
problem is infeasible, go back to step 3.

5. (Upper Bound) Attempt to solve the original (generally nonconvex) problem to obtain a locally
optimal objective function value w. If this fails, set u := +o00.

6. (Pruning) If U > u, set U := u. Delete all regions in the list that have lower bounds greater than
U, as they cannot possibly contain the global minimum.

7. (Check Region) If u — [< ¢, accept u as the global minimum for this region and return to step 3.
Otherwise, we may not yet have located the global minimum for the current region, so we proceed
to the next step.

8. (Branching) Apply a branching rule to the current region to split it into subregions. Add these to
the list of regions, assigning to them an (initial) lower bound of I. Go back to step 3.
The region selection at step 3 follows the simple policy of “choose the region with lowest lower objective

function bound” as the most promising for further consideration.

In the rest of this section we shall briefly discuss the most important steps of the sBB algorithm given
above.

2.1 Reduction Constraints

The full theory of reduction constraints is explained elsewhere [14, 15, 17]. Here, only a short introduction
is given. Let n € N, zy,...,z,,w;,...,w,,y be problem variables and suppose that the feasible region
of an optimization problem is defined by a set of constraints that include the following:

wr = Iy

Wn = Tnpy

n
E a;x; = b
i=1

2 DETERMINISTIC SPATIAL BRANCH-AND-BOUND ALGORITHM 4

where a1, ...,a,,b are real parameters and a; # 0 for all 4 < n. We can multiply the linear constraint
above by the variable y to obtain
n
Z a;z;y = by
i=1

and since w; = x;y for all i < n we get
Z a;w; = by (2)
i=1

i.e. alinear relation between the w variables and y. Constraint (2) is called a reduction constraint because
it reduces the number of bilinear constraints w; = z;y required to define the same feasible region. If we
discard one of the bilinear constraints, say w,, = z,y, from the formulation of the problem, we shall show
that we can use the (linear) reduction constraint ., a;w; = by instead.

For all i < n let z; = w; — z;y. Notice that since b = 2?21 a;x; we can re-write the reduction
constraint as

Y awi—yy ez =0 =
= Y ai(w; —ziy) =0
= Z?:l a;z; =0

Since the formulation of the problem includes the n — 1 bilinear constraints w; = z;y for all i < n — 1
(we have discarded the last), it follows that Vi < n — 1 we have z; = 0, so the linear relationship above
between the z variables is reduced to a,z, = 0. We had assumed a,, # 0, hence z,, = 0, i.e. w, = z,y,
as claimed.

The reasoning above is the essence of the usefulness of reduction constraints: they are linear constraints
that can replace bilinear terms in a nonlinear problem without modifying the feasible region. There are
many ways in which this concept can be generalized; see the cited papers for further details.

Creation of reduction constraints, as a pre-processing step to the Branch-and-Bound algorithm, often
produces much tighter convex relaxations. Instead of using McCormick’s convex relaxation of bilinear
terms (Eq. (10)-(13)), which is usually very loose, we employ linear reduction constraints that do not
need to be relaxed at all. The solution times are therefore dramatically reduced.

2.2 Standard Form

The convex relaxation solved at step 4 of the algorithm aims to find a guaranteed lower bound to the
objective function value. In the sBB algorithm, the convex relaxation is calculated automatically for a
problem in form (1). The problem is first reduced to a standard form where nonlinear terms of the same
type are collected in lists. Secondly, each nonlinear term is replaced by the corresponding convex under-
and overestimators.

The standard form is as follows:

zy = filzi) V(,k)eU
mLS x SmU

min &op; (3)
I< Az <u 4)

Ty = Xy V(i,j,k) e M (5)

o = ;”— V(i,j, k) € D (6)

T = a:;‘ V(i k) € P (7

(8)

(9)

2 DETERMINISTIC SPATIAL BRANCH-AND-BOUND ALGORITHM 5

where = (x1,...,x,) are the problem variables, A is a matrix of linear constraints, [,u are the linear
constraint bounds, z¥, 2V are the variable bounds, and the constraints (5)—(8) are the defining constraints
of the standard form; M, D are sets of triplets of variable indices which define the bilinear and linear
fractional terms while P, U are sets of variable index pairs which define power terms and terms involving
univariate functions f;. Each defining constraint has one of the forms:

added variable = operand (binary operator) operand,
added variable = (unary operator) operand,

where operand is an original or an added variable (added variables are all variables added to the original
variable set by the standardization procedure). The objective function has been replaced by the added
variable z,,; and a constraint of the form

Zopj = objective function
has been added to the problem constraints.

The algorithm for reducing a MINLP to the standard form is described in detail in [26, 30]. It works
by recursively tackling nonlinear terms in the problem and forming linear and defining constraints as it
goes along.

2.3 Convex Relaxation

This is the second stage of the process where the actual convex relaxation of the original problem is built.
The algorithm for convexification is entirely symbolic (as opposed to numeric) and hence performs very
efficiently even in presence of very complicated mathematical expressions. Having reduced a problem
to the standard form, we replace every nonlinear equation of the kind z; = v(x;,zs) with a convex
relaxation consisting of convex over- and underestimating inequality constraints. The rules we follow to
build over- and underestimators are as follows:

1. ®; = zjz}, is replaced by four linear inequalities (McCormick’s envelopes, [20]):

T; > m]I-‘mk +TrTj — le’xi’ (10)
x; > iL';JSEk +zfz; - x?m,ﬁj (11)
zi < aimp+apT; — oy (12)
z; < xgj:ck +zrT; — :c?a:ﬁ (13)

2. z; = xj/xy, is reformulated to z;x4 = x; and the rules for multiplication are applied.

3. z; = f(z;) where f is concave univariate is replaced by two inequalities: the function itself and the

secant.
z; < f(xg) (14)
Uy _ f(gl
vo> g+ 1T G (15)

4. similarly, z; = f(z;) where f is convex univariate is replaced by

f@f) = f(=})

Z;

z; > f(zy) (17)

IN
~
~~
8

B
S—r

+
<

3 STOCHASTIC MULTILEVEL SINGLE LINKAGE METHOD 6

5. x; = a:g where 0 < ¢ < 1 the function is concave univariate and falls into category 3 above.

6. x; = x?m for each m € N is convex univariate and falls into category 4 above.

7. x; = :c;‘fmJrl can be convex, concave, or piecewise convex and concave with a turning point at 0.

If the range of z; does not include 0, the function is convex or concave and falls into a category
described above. A convex relaxation for the case where the range includes 0 is given in [16].

We deliberately chose to make the convex relaxation linear. Although this may generate looser lower
bounds than with a nonlinear relaxation, and hence more Branch-and-Bound iterations, the cost of solving
a linear problem at each iteration will be significantly less than that of a nonlinear problem.

3 Stochastic Multilevel Single Linkage Method

In the simplest variant of a multistage method, a small number of random points are sampled and then
a deterministic local search procedure is applied to all these points. All located stationary points are
sorted and the one with the lowest value of the objective function is taken as a global minimum. One
problem with this technique is that the same local minimum may be located several times. Ideally, the
local search should be started only once in every region of attraction. The region of attraction of a local
minimum z* is defined as the set of points starting from which a given local search procedure converges
to x*.

Among various versions of clustering methods, the MLSL method [22, 23] is one of the most efficient.
In this method only those sample points whose function values are small enough are chosen as starting
points. Points are grouped into clusters. A cluster is initiated by a seed point. The seed point is normally
a local minimum z* € X* that has already been found (where X* is the set of all local minima of the
problem). All sample points within a critical distance are assigned to the same cluster. The critical
distance ry, is given by:

o (m(B)amg(kN))%_ (18)

Wn kN
where

T2
Wp = ———
L(1+2)
is the volume of the n-dimensional unit ball, m(B) is the Lebesgue measure of a feasible region B (if
B = H,, then m(B) = 1), k is an iteration index, s is a known parameter, [22, 23]. In our calculations s
was equal to 2.

The improvement in efficiency can be archived by selecting points with the lowest values of an objective
function and discarding the rest of the sampled points. Let X be a set of N sampled points, and let
(f(z;)|z; € X) be the sequence of corresponding objective function values ordered so that f(z;) < f(%i+1)
for all i < N. The reduced sample set is defined as:

X, = {meX|i=1,...,N,}, (19)

where N, = aN with 0 < a < 1. We note, that some local minima can be discarded without affecting
the global minimum search.

Reliable termination criteria of the global stage was developed in [6]. It is based on Bayesian estimates
for the number of real minima not yet identified and the probability that the next local search will locate a
new local minimum. An optimal Bayesian stopping rule is defined as follows: if W different local minima,

4 DESCRIPTION OF TEST SUITE 7

have been found after N local searches started in uniformly distributed points, then the expectation of
the number of local minima is
W(N-1)

Weap = N_wW_2 (20)

provided that N > W + 2. The searching procedure is terminated if We,p, < W 4 0.5.

3.1 The MLSL algorithm

The general scheme of the MLSL algorithm is outlined below:

1. Set W =0, k = 0. Set k4 to the maximum allowed number of iterations. Initialize the list of
local minima X* to the empty list.

2. Set k=k+1,i=0.
3. Sample a set X of N points from a uniform distribution over H,,.

4. Evaluate an objective function on a set X, build the sequence (f(x;)) sorted in order of increasing
function values, and select a reduced set X, according to (19).

5. Set 1 =i + 1 and take z; € X,.

6. Assign the sample point z; to some cluster C; if 3 z; , z; € C; such that o(z;,z;) < ri, f(z;) <
f(x;), where ry, is a critical distance given by (18). If z; is not assigned to any cluster yet, then start
a local search at z; to yield a local minimum z*. If z* ¢ X*, then add z* to X*,set W =W + 1
and initiate the W-th cluster with z*. Assign z; to this cluster.

7. If i < N, go to step (5).

8. If k = ks or the stopping criterion (20) is satisfied, then terminate. Else go to step (2).

3.2 Deterministic Sequences

As in other cases of transition from MC to QMC algorithms, a significant improvement in efficiency
can be achieved simply by substituting random points with LDS. Central to the QMC approach is the
choice of LDS. Different principles were used for constructing LDS by Holton, Faure, Sobol’, Niederreiter
and others. Many well-known LDS were constructed mainly upon asymptotic considerations, as a result
they do not perform well in real practical tests. Points generated by the Sobol’ LDS produce a very
uniform filling of the space even for a rather small number of points N, which is a very important case
in practice ([27], [28]). Many practical studies have proven that Sobol’ LDS is superior to other LDS in
many respects. This is the reason why Sobol’s LDS were used in the present study.

4 Description of Test Suite

In this section we give a brief description of each of the test problems that we have solved. A summary
of problem statistics is reported in Table 1.

As stated in [31] the choice of test problems should be systematic, so that they represent different types
of problems ranging from easy to difficult to solve. In our work we tried to follow this recommendation.
Some of the problems we used are well known tests for global optimization. For some of these problems
we used a classification into degrees of difficulty suggested in [31].

4 DESCRIPTION OF TEST SUITE 8

Problem Variables | Constraints
sixhump (21) 2 0
schaffleri (22)

n=3 3 0
n=2=5 5 0
n =10 10 0
n = 30 30 0
n =40 40 0
n =50 50 0
schaffler2 (23)

n=3 3 0
n=4 4 0
n=2=5 5 0
n==6 6 0
n="7 7 0
n=2~8 8 0
n=29 9 0
n =10 10 0
griewankl (24)

n=2 2 0
n =10 10 0
griewank?2 (25)

n =2 2 0
n =10 10 0
schubert1 (26) 3 0
schubert? (26) 5 0
blendingl (28) 21 30
blending?2 (28) 25 42
simpleminlp (29) || 6 | 5
yuani (30) 5 5
yuan2 (31) 9 7

Table 1: Problem statistics.

4.1 Six-hump Camel Back Function

The “six hump back camel function”, introduced n [8], is a well known test for global optimization
algorithms.

21 1
_ Jnin 422 — 1—033‘11 + gm? + z119 — 422 + 42} (21)

The global optimum is located at = (—0.0883,0.7125) and has an objective function value of —1.03136.
According to the classification of problems into the degrees of difficulty suggested in [31] this problem
belongs to a class of "easy” (E1) problems.

4.2 Schaffler Function

This test function was introduced in [24]. The formulation below depends on an integer n, thus it is
actually a family of different problems.

n

1 ¢ — . 2 2 —

71.051;1;?52.95 1+ 590.22(:1:z Zi—1)” + 627 — cos(12x1). (22)
=

4 DESCRIPTION OF TEST SUITE 9

By inspection it is easy to note that, for all n € N, the global optimum is at z = (0,...,0) with an
objective function value of 0. This ceases to be apparent if one solves the following modified problem:

n
—1.05?51izn§2.95 1+ 590 22(93, —2;1)% + 62% + cos(12z,). (23)
=

The plus sign in front of the cosine term complicates the geometrical properties of the problem. In this
case there are many symmetrical global optima positioned at

z = (£0.2414, ..., +0.2414)

having an objective function value 0.3794.

4.3 Griewank Function

This test function was introduced in [32]. The formulation below depends on an integer n that can take
two values (2 and 10).

) 1 n) n z
_;rsuwn91+ EZ.’EZ —Hcos(%), (24)
=1 i=1
where d = 200, » = 100 for n = 2, and d = 4000, r = 600 for n = 10. Both problems belong to the class
of "moderate” (M2) [31].

As in problem (22), here it is again evident by inspection that the global optimum is at = (0,...,0)
with objective function value 0. Again, this ceases to be the case if one considers the following modified
problem:

1w . 2 T
min 1+ —fo—kncos(—.), (25)

—r<z<r d = i1 \/')T
where we have replaced the minus sign in front of the cosine product term with a plus sign. See
[19] for more details about the Griewank function. For m = 2 the global optimum for (25) is at

z = (3.1104,0.0) and has an objective function value 0.0488. For n = 10 the global optimum is at
x = (£3.1400,0.0,...,0.0) and has an objective function value 0.0024. The trend, for increasing values
of n and d, is for z; to tend to 7 so that the sign of the cosine product is again turned to “minus”.
Obviously this has a positive cost on the sum of squares, which becomes negligible because of the d factor
in the denominator.

4.4 Schubert Functions

These test functions were introduced in [7]. The first is defined as

n—1
. E .2 I + 5 1) 2 .92 1'1'-}—1 + 5 1 2
Lon (10 sin®(m 1)+ i_E 1 (4.%, +1)*(1 4 10sin (7r74) + (4$n +1) (26)

with n = 3; the second is defined as

n—1
R N A 2 .2 .)2 .2
_min % (sm (3maxq) + '_E 1 (i —1)*(1 +sin”(3nzi41)) + (@n — 1)°(1 + sin”(272y,)) (27)

with n = 5.

The global optima of these problems are located at z = (1,...,1) with an objective function value of
0. Both problems belong to the class of "easy” (E2) problems [31].

4 DESCRIPTION OF TEST SUITE 10

4.5 Adhya’s Multi-quality Blending Problems

These two blending problems from the petrolchemical industry are taken from [3], where they were
named example 1 and example 2 respectively. Various types of crude oils of different qualities and
coming from different sources are mixed together to produce several end-products subject to certain
quality requirements and demands. These are bilinear problems with many local optima. The solution
of this type of blending problem is important because of the direct application to the industrial world as
well as for the mathematical challenges it poses. The literature on pooling and blending bilinear problems
is vast [3, 10, 33].

Here, we use the general blending problem formulation found in [3], p. 1958:

ming g, Y55 Y02y Cijfig — Dy i 2y Tjk
Yl fis =Yk =0 Vi<p
Tjw Doy Tik — Doty Aijw fij =0 Vi<pVw<l
Z;}:l Tjk S Sk Vk S r
Z§:1 QjwTik — Zkw E§=1 zjr <0 Vk <rVw<l
fr<f<flgh<g<qv,at <z <al,

(28)

where f;; is the flow of input stream ¢ into pool j, z;; is the total flow from pool j to product k¥ and
gjw is the w-th quality of pool j; p is the number of pools, r the number of products, I the number of
qualities, n; the number of streams; ¢;;,dg, Sk, Zkw, Aijw are parameters (their values are reported in [3],
p. 1967).

The objective function value at the global optimum is —549.8031 in both cases. The values of the
variables f,z are also the same in both cases:

f = (7.5443,19.752,0,4.9224,2.7812)
(0,19.2097, 0, 8.0866, 0, 5.7903, 0, 1.9133)

z
whereas the values of the quality variables ¢ change:

d = (3.1708,2.382,3.2764,1.5854,2.278,2.8917, 3.361, 1.2166)
¢" = (3.1708,2.382,3.2764,1.5854,4.2763, 5.382, 2.278, 2.8917, 3.361, 1.2166, 3, 5.083)

where ¢’ are the values of g at the global optimum of example 1, and ¢" are the corresponding values for
example 2.

4.6 A Simple MINLP Example

The following example was taken from [14]. It is an example of a nonlinear mixed-integer problem having

one binary variable, x5. The solution techniques (both the deterministic and stochastic methods) make

use of a continuous reformulation of the problem with the addition of an integrality enforcing constraint
2

Ty = T5-

min, 2 4+ 12y — 123 — 27124 + T2 + 3ToTy — ToTs + T3T4 + 377 + 20475 —)
—x1 — X4 — xg + € 7278
T14+To—T3+T4+25=1
To — Ty — Ty = —1
1+ 2x5 — 223 > 0
2x1 + Txg — 23 <0
€374 — log(zg) — 2226 < 1
Vi <4 ; € [0,10]
Ty € {0, 1}
1 S Te S 2

The global solution is at x = (0,0,0,0,1,2), with an objective function value —1.

5 IMPLEMENTATION OF THE BENCHMARK: OOOPS 11

4.7 Yuan MINLPs

The following examples come from [11]. They are nonlinear mixed-integer problems. The solution
techniques make use of a continuous reformulation of the problem including the integrality enforcing
constraints y = y? for each binary variable y.

ming,, 271+ 3zy + 3y + 2y> — Y3)

y1+$%:%
3
Sys+a2 =3
8

yl+-ﬁ'1§g \ (30)
y2 + 325 <3
—y1—y2+y3 <0
0<z<10
y € {0,1}°)

The global solution of problem (30) is at = (1.12,1.31), y = (0,1,1) with an objective function value
7.6672.

ming, (1 —1)2+ (y2—2)2+ (y3 —1)? —log(ya + 1) + (z1 — 1)® + (2 — 2) + (z3 — 3)?)
ity tys+ri+a2+23<5
yi+ai+ay+ai <y
z1+y1 <
T2+ Y2
3 + Y3
Ya + 21
Y5 + 75
ys + 3
ys + a5 <
0<z<10
y e {0,1}*)

The global solution of problem (30) is at = (0.2,0.8,1.908), y = (1,1,0,1) with an objective function
value 4.5796.

(31)

—

N S
~~

A INIANININIA

[
=
(=)

[

5

5 Implementation of the Benchmark: ooOPS

Both algorithms have been tested and benchmarked with the help of 00OPS, a software framework for
optimization [18]. 0oOPS is an integrated object-oriented optimization system. It consists of a parser
(that reads an algebraic formulation of an optimization problem), a symbolic computational module (that
carries out elementary algebraic simplifications and computes derivatives symbolically), and a set of solver
wrappers for interfacing with different numerical solvers. At the time of writing 0oOPS interfaces to two
global optimization solvers (the two methods explained in this paper) and three local solvers (SNOPT
[12], the NAG eO4vct nonlinear local solver [21], and LPSOLVE [4], a freely distributable code for large
sparse linear systems).

Both SNOPT and the NAG solver were used as nonlinear local search procedures in both the deter-
ministic and the stochastic codes. The solution of the (linear) convex relaxation of the problem, within
the sBB algorithm, was carried out using both SNOPT and LPSOLVE. In terms of performance com-
parison, it was observed that on small and medium-sized problems, such as those proposed in this paper,
SNOPT and the NAG solver are roughly equivalent in terms of numerical accuracy and computational
efficiency.

6 RESULTS OF THE TESTS 12

6 Results of the Tests

Most of the run-time parameters of the deterministic and stochastic solver modules are very different.
This is also true of the performance criteria. It turns out that the most significant comparisons (apart
from the obvious indication on whether the method actually located the global optimum or not) are based
on the following criteria:

1. CPU time;

2. The number of calls to the nonlinear local solver procedure (NLP).

The second performance criterion refers to the fact that usually (not always) most of the CPU-time, in
both algorithms, is spent finding local minima.

There are other performance criteria which only apply to one method or the other, but not to both.
Thus, we shall present the results in three tables. In Table 2 given in Section 6.1 we have listed the
common performance criteria; Table 3 refers to the deterministic sSBB algorithm, whilst Table 4 given
in Section 6.2 refers to the QMC variant of the MLSL algorithm. All of the tests have been carried out
under the 00OPS framework running under Linux on a Pentium IIT 80MHz PC with 256MB RAM.

In the first column of table 2 we list the names of the problems as assigned throughout this paper.
Each of the other three columns (“Global Opt.?”, “CPU Time”, “Local NLP Calls”) lists the performance
criteria for the method comparisons: whether a global optimum has been found, the CPU time, and
the number of calls to the nonlinear local optimization procedure. These columns are divided in two
subcolumns containing the data from the deterministic and stochastic methods.

Small differences in overall performances of the two algorithms were revealed for griewank1 function
(24) with n = 10, schaffler1 function (22) with n = 5 and schaffler2 function (23) with n = 3,4,5,6.
For the schaffleri function (22) with n = 30,40,50 and schubert2 function (27), the deterministic
method showed better performance than SobolOpt while for all other cases SobolOpt showed a superior
performance. There were also two problems for which the deterministic method failed to find a global
minimum.

In the following two subsections we present tests results specific to each of the algorithms.

6.1 Tests with the sBB Algorithm

Table 3 lists the numerical results obtained with the deterministic sBB algorithm.

e The column Problem lists the names of the problems as assigned throughout this paper.

e The column Tterations lists the number of main algorithmic iterations taken. This is equal to the
number of Branch-and-Bound nodes examined.

e The column Glob. Opt. Iteration lists the iteration at which the global optimum was located (this is
useful to have a rough idea about the quality of the best current optimum when the sBB algorithm
is used heuristically — that is, stopped after a fixed amount of time processing instead of satisfying
the termination conditions).

e The column N. Red. Constr. (Number of Reduction Constraints) lists the number of reduction
constraints generated for the problem (see Section 2.1).

Our implementation of the sBB algorithm does not depend on many numerical parameters. The main
parameter affecting convergence speed is the € tolerance (see step 7 of the sBB algorithm in Section 2),

6 RESULTS OF THE TESTS 13

Problem Global Opt? CPU time Local NLP Calls
Det. | Stoch. || Det. Stoch. || Det. | Stoch.

sixhump (21) yes | yes 0:01 0:01 6 6

schaffleri (22)

n=3 local | yes 0:04 0:00 8 2

n=2=5 yes yes 0:00 0:00 1 3

n =10 yes yes 2:20 0:00 56 11

n =30 yes yes 0:01 0:33 1 220

n =40 yes yes 0:01 20.35 1 4028

n =50 yes yes 0:01 2:17:30 || 1 16206

schaffler2 (23)

n=3 yes yes 0:02 0:00 8 3

n=4 yes yes 0:01 0:00 2 3

n=>5 yes yes 0:05 0:10 4 8

n==6 yes yes 0:15 0:11 12 6

n=7 yes yes 0:38 0:13 2 13

n=28 yes yes 1:52 0:37 5 23

n=9 yes yes 7:22 0:50 38 26

n =10 yes yes 26:06 0:27 2 16

griewankl (24)

n=2 yes yes 0:00 0:02 16 23

n =10 yes yes 0:01 0:01 36 18

griewank2 (25)

n=2 yes yes 16:57 0:02 224 | 28

n =10 NC | yes >10h 0:01 - 16

schubert1 (26) yes | yes 2:45:00 | 0:00 6 13

schubert2 (27) yes | yes 0:00 0:02 1 68

blendingl (28) yes | yes 4:20 0:01 160 | 32

blending? (28) yes | yes 13:55 | 0:01 307 | 16

simpleminlp (29) || yes | yes 0:15 0:00 9 4

yuanl (30) yes | yes 0:13 0:00 485 | 5

yuan2 (31) yes | yes 1:05 0:00 1241 | 15

Table 2: Performance comparison of the two methods ([hh:Jmm:ss). NC = method did not converge
within the time specified in the CPU time column.

which was set to 1 x 1079 for the whole test suite. It is a typical feature of Branch-and-Bound algorithms,
due to its exponential behaviour, to either converge to the global optimum very quickly (in less than 10
iterations) or to take a long time and computational effort to find it. The results of Table 3 confirm this.

The sBB algorithm on the schaffler1 test function (22) generally exhibited better performance than
the MLSL algorithm in high dimensional cases. The main reason for this is the tightness of the convex
relaxation. In particular, the scaling factors 590 and 6 on the quadratic terms exceed by far the extent of
the variation given by the cosine term. It results in the cosine term being virtually negligible, implying
near convexity of the problem. In a few instances it was possible to obtain convergence in just 1 iteration
of Branch-and-Bound, due to the extreme tightness of the convex relaxation. The cases n = 3 and n = 10
merit a special mention, since they are very far off the average values of the other cases. No numeric
computations are ever performed in the global phase of the sBB, as all local minima are found by the local
optimization procedure used as a “black box”. The cases 3,10 are those where the local optimization
procedure exhibited the highest instability. We were, however, not able to ascertain the exact cause for
this occurrence. Note that in the instance n = 3, a local optimum was located rather than the global one
(thus the column GOI is marked as "not applicable” (NA)).

6 RESULTS OF THE TESTS

Problem Iterations | Glob. Opt. Iteration | N. Red. Constr.
sixhump (21) 215 1 0
schaffleri (22)

n=3 2199 NA 0
n=>5 1 1 0
n =10 9913 8665 0
n = 30 1 1 0
n = 40 1 1 0
n =50 1 1 0
schaffler2 (23)

n=3 1051 1 0
n=4 595 1 0
n=2=5 1759 1 0
n==6 3949 1 0
n="7 7583 1 0
n=2~8 14883 1 0
n=29 35167 1 0
n =10 71707 1 0
griewankl (24)

n=2 11 7 0
n =10 25 15 0
griewank?2 (25)

n=2 61345 24 0
n =10 >360000 | 14124 0
schubert1 (26) >105000 | NA 0
schubert?2 (27) 1 1 0
blendingl (28) 1257 8 8
blending2 (28) || 2283 42 12
simpleminlp (29) || 35 3 25
yuani (30) 1943 1 2
yuan2 (31) 5495 1 0

14

Table 3: Results obtained with the deterministic Branch-and-Bound method (NA = not applicable).

In the sixhump, schaffler?2, schubert2, yuanl, yuan?2 cases, the global optimum was located at the
first iteration; however, the sBB algorithm took a considerable amount of time to make sure that the
located optimum was global. This is due to the good quality of the local solver and partially also to
reduction constraints pre-processing (yuani).

In most other cases (griewankl, blendingl, blending2, simpleminlp) the global optimum was
located in an acceptably low number of sBB iterations, and the algorithm again spent most of the time
proving that the located optimum was global. This is due to reduction constraints pre-processing and/or

effective bounds tightening techniques (steps 1 and 3 of the sBB algorithm in Section 2).

6.2 Tests with the QMC variant of MLSL Method

Table 4 lists the numerical results obtained with the QMC variant of MLSL method.

e The column Problems lists the names of the problems as assigned throughout this paper.

e The column N lists the total number of sampled points at each iteration. For the Sobol” LDS

6 RESULTS OF THE TESTS 15

Problem N N, Tterations | N. Loc. Min.
sixhump (21) 256 128 1 6
schaffleri (22)

n=3 16 4 1 2
n=>5 128 8 1 2
n =10 32 16 1 3
n = 30 8192 256 1 3
n =40 16384 4096 |1 4
n =50 1048576 | 16384 | 1 3
schaffler2 (23)

n=3 64 8 2 2
n=4 8 4 4 2
n=>5 32 16 2 3
n==6 128 16 2 3
n="1 32 16 2 3
n=28 256 64 1 3
n=9 256 64 1 3
n =10 64 8 4 3
griewankl (24)

n=2 32768 128 2 23
n =10 32768 128 2 14
griewank?2 (25)

n=2 32768 128) 28
n =10 32768 128 2 16
schubert1 (26) 32 16 10 12
schubert?2 (27) 1024 512 3 63
blendingl (28) 64 32 1 28
blending2 (28) | 128 16 |1 15
simpleminlp (29) || 8 4 1 2
yuani (30) 16 8 1 4
yuan2 (31) 4096 32 1 10

Table 4: Results obtained with the QMC variant of MLSL method.

the equidistribution property and improved discrepancy estimates hold when N is a power of 2;
therefore in all these experiments N was taken to be equal to 2™, where m € N.

e The column N, lists the reduced number of sampled points at each iteration.
e The column Tterations lists the number of iterations in the global stage.

e The column N. Loc. Min. lists the total number of located minima.

Four independent runs for each test problems were performed (for each run a different part of the
Sobol’ LDS was used). Values N and N, given in Table 4 are the smallest sample sizes for which a global
minimum or global minima (like e.g. problem sixhump) were found in all four runs.

For the sixhump test function for the presented set of parameters N/N,. all six minima were found
and the number of NLP calls was equal to the number of located minima. N and N, can be further
reduced without sacrificing the probability of finding both global minima, although some local minima
in this case can be missed.

Both schafflerl and schaffler2 problems up to dimension n=10 were easy to solve. To solve
high dimensional problems (schafflerl n=30, n=40, n=>50) a large number of the total sampled N

7 CONCLUSION 16

and reduced N, points were required. Increasing the dimensionality from n=30 to n=50 resulted in N
increasing 128 fold, N, increasing 64 fold and the CPU time increasing approximately 250 fold. It is
known that uniformity properties of the Sobol’ LDS degrade as dimensionality grows, although it effects
only functions with all variables being equally important [28], which is the case for the schafflerl
objective function: apart from variable x;, all other variables are equally important. We can conclude
that for high dimensional objective functions with equally important variables the QMC variant of MLSL
method becomes less efficient than for other types of objective functions.

The griewankl and griewank?2 functions have a very large number of local minima. For such functions
the region of attraction of the global minimum generally is very small, as a result a very large number of
points must be sampled to locate it. It is interesting to note that the two-dimensional problem is more
difficult to solve by using QMC based or stochastic methods than the ten-dimensional one. This is in
line with the results of [22], [23] and [31]. For problems with a very large number of local minima the
Bayesian termination criterion does not produce reliable results [16]. Because of this reason a standard
multistart method which does not use clustering and Bayesian stopping techniques was also successfully
tested for location of the the global minimum. Results are presented elsewhere [13].

The schubert1 function has also a very large number of local minima, however it belongs to a class
of “easy” problems [31]. Our results show that it was much easier to solve this problem in terms of the
required N and N, then griewankl, n=2, although these two problems have a comparable number of
local minima. The schubert2 problem was more difficult to solve then the schubertl one: the required
N and N, were approximately one order of magnitude higher then those for the schubert1 function. It
is in line with the increase in the number of local minima from 53 for schubert1 to 15° for schubert2.

All mixed-integer problems problems, and the relatively high dimensional blendingl and blendingl
were easy to solve. The yuan2 problem was the most difficult in terms of the required N, although the
presented CPU time does not show the complexity of the problem because of its low dimensionality.

7 Conclusion

In this study deterministic sSBB and the QMC variant of the stochastic MLSL optimization method were
compared with respect to their practical performance on a number of constrained and unconstrained
continuous and mixed-integer problems of various complexity. General performance criteria such as the
number of calls of a local minimizer and the CPU time were used for comparison. We can conclude
that the QMC variant of stochastic MLSL method is capable of finding a global minimum with a high
probability in a reasonable amount of computer time. This method is generally more efficient than the
sBB method, although in some special instances the sBB method can exhibit superior performance due
to the structure of problems. This work provides general guidelines with regard to the performance of
the considered algorithms in global optimization.

8 Acknowledgments

We are grateful to Prof. Costas Pantelides for his support and interest in this work. One of the authors
(SK) expresses his gratitude to I. M. Sobol’ for numerous discussions and the invaluable help in improving
the presented techniques.

One of the authors (SK) gratefully acknowledges the financial support of the United Kingdom’s
Engineering and Physical Sciences Research Council (EPSRC) under Platform Grant GR/N08636.

REFERENCES 17

References

[1] C. Adjiman, S. Dallwig, C. Floudas and A. Neumaier, “A global optimization method, aBB,
for general twice-differentiable constrained NLPs: I. Theoretical advances”, Computers &
Chemical Engineering, vol. 22(9), pp. 1137-1158, 1998.

[2] C. Adjiman, Global Optimization Techniques for Process Systems Engineering. PhD thesis,
Princeton University, June 1998.

[3] N. Adhya, M. Tawarmalani, and N. Sahinidis, “A Lagrangian approach to the pooling problem,”
Industrial and Engineering Chemistry Research, vol. 38, pp. 1956-1972, 1999.

[4] M. Berkelaar, K. Eikland and P. Notebaert, LPSOLVE,
http://groups.yahoo.com/group/lpsolve, 2004.

[5] A. Blake, “Comparison of the efficiency of deterministic and stochastic algorithms for visual
reconstruction,” IEEE Transactions on Pattern Analisys and Machine Intelligence, vol. 11, pp.
2-12, 1989.

[6] C.G.E. Boender, The Generalized Multinomial Distribution: A Bayesian Analysis and Applica-
tions, PhD thesis, Erasmus Universiteit Rotterdam and Centrum voor Wiskunde en Informatica
Amsterdam, 1984.

[7] A. Decker and E. Aarts, “Global optimization and simulated annealing,” Mathematical
Programming, vol. 50, pp. 367-393, 1991.

[8] L. Dixon, J. Gomulka, and G. Szego, “Towards a global optimization technique,” In L. Dixon
and G. Szego, editors, Towards Global Optimization, pages 29-54, Amsterdam, 1975. North
Holland.

[9] T. Epperly and E. Pistikopoulos, “A reduced space branch and bound algorithm for global
optimization,” Journal of Global Optimization, vol. 11, pp. 287-311, 1997.

[10] L. Foulds, D. Haughland, and K. Jornsten, “A bilinear approach to the pooling problem,”
Optimization, vol. 24, pp. 165-180, 1992.

[11] C. Floudas, P. Pardalos, C. Adjiman, W. Esposito, Z. Gumus, S. Harding, J. Klepeis, C. Meyer,
and C. Schweiger, Handbook of Test Problems in Local and Global Optimization. Kluwer
Academic Publishers, Dordrecht, 1999.

[12] P. Gill, User’s Guide for SNOPT 5.3. Systems Optimization Laboratory, Department of
EESOR, Stanford University, California, Feb 1999.

[13] S. Kucherenko and Yu. Sytsko, “Application of deterministic low-discrepancy sequences to non-
linear global optimization problems,” Computational Optimization and Applications (accepted
for publication), 2004.

[14] L. Liberti, “Linearity embedded in nonconvex programs,” Journal of Global Optimization
(accepted for publication), 2004.

[15] L. Liberti, “Reduction constraints for the global optimization of NLPs,” International Trans-
actions in Operations Research, vol. 11, no. 1, pp. 34-41, 2004.

[16] L. Liberti and C. Pantelides, “Convex envelopes of monomials of odd degree,” Journal of
Global Optimization, vol. 25, pp. 157-168, 2003.

[17] L. Liberti and C.C. Pantelides, “An exact reformulation algorithm for large nonconvex NLPs
inppving bilinear terms,” Journal of Global Optimization (submitted), 2004.

REFERENCES 18

[18] L. Liberti, P. Tsiakis, B. Keeping, and C. Pantelides, 00OPS. Centre for Process Systems
Engineering, Chemical Engineering Department, Imperial College, London, UK, v. 1.24, Jan
2001.

[19] M. Locatelli, “A note on the Griewank test function,” Journal of Global Optimization, vol.
25, pp. 169-174, 2003.

[20] G. McCormick, “Computability of global solutions to factorable nonconvex programs: Part i —
convex underestimating problems,” Mathematical Programming, vol. 10, pp. 146-175, 1976.

[21] Numerical Algorithms Group, NAG Library, http://www.nag.co.uk, 2002.

[22] A.H.G. Rinnooy-Kan and G.T. Timmer, “Stochastic global optimization methods; part i:
Clustering methods,” Mathematical Programming, vol. 39, pp. 27-56, 1987.

[23] A.H.G. Rinnooy-Kan and G.T. Timmer, “Stochastic global optimization methods; part ii:
Multilevel methods,” Mathematical Programming, vol. 39, pp. 57-78, 1987.

[24] S. Schaffler, “Unconstrained global optimization using stochastic integral equations,” Technical

Report, Technisce Universitit Miinchen, Institut fiir Angewandte Mathematik und Statistik,
1994.

[25] F. Schoen, “Two-phase methods for global optimization,” Handbook of Global Optimization
2: Heuristic Approaches (edited by P. Pardalos and E. Romeijn), Kluwer Academic Publishers
2, pp. 151-177, 2002.

[26] E. Smith, On the Optimal Design of Continuous Processes. PhD thesis, Imperial College of
Science, Technology and Medicine, University of London, October 1996.

[27] L Sobol’, “On the distribution of points in a cube and the approximate evaluation of integrals,”
Computational Mathematics and Mathematical Physics, vol. 7, pp. 86-112, 1967.

[28] I. Sobol’, “On quasi-Monte Carlo integrations,” Mathematics and Computers in Simulation,
vol. 47, pp. 103-112, 1998.

[29] E. Smith and C. Pantelides, “Global optimisation of nonconvex MINLPs,” Computers and
Chemical Engineering, vol. 21, pp. S791-S796, 1997.

[30] E. Smith and C. Pantelides, “A symbolic reformulation/spatial branch-and-bound algorithm
for the global optimisation of nonconvex MINLPs,” Computers and Chemical Engineering,
vol. 23, pp- 457-478, 1999.

[31] A. Torn, M. Afi and S. Vjitanen, “Stochastic global optimization, Problem Classes and Solution
Techniques,” Journal of Global Optimization, vol. 14, pp. 437-447, 1999.

[32] A. Torn and A. zilinskas, Global Optimization. Springer-Verlag, Berlin, 1989.

[33] V. Visweswaran and C. Floudas, “New formulations and branching strategies for the gop
algorithm.” In I.E. Grossmann, editor, Global Optimization in Engineering Design, Dordrecht,
1996. Kluwer Academic Publishers.

[34] Z.B. Zabinsky, “Stochastic methods for practical global optimization,” Journal of Global
Optimization, vol. 13, pp. 433-444, 1998.

