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Abstract

The Distance Geometry Problem in three dimensions consists in finding an embedding in R
3 of

a given nonnegatively weighted simple undirected graph such that edge weights are equal to the

corresponding Euclidean distances in the embedding. This is a continuous search problem that can

be discretized under some assumptions on the minimum degree of the vertices. In this paper we

discuss the case where we consider the full-atom representation of the protein backbone and some

of the edge weights are subject to uncertainty within a given nonnegative interval. We show that a

discretization is still possible and propose the iBP algorithm to solve the problem. The approach is

validated by some computational experiments on a set of artificially generated instances.

1 Introduction

We consider the problem of determining a Euclidean embedding of a simple weighted graph, the so-
called Distance Geometry Problem (DGP). This problem has at least three important applications:
finding the three-dimensional conformation (the coordinates of all the atoms) of a molecule from a subset
of inter-atomic distances found using Nuclear Magnetic Resonance (NMR) [11, 17]; finding the position of
wireless sensors given some of the distances (estimated by monitoring the power needing to communicate
with each sensor’s neighbours) [4, 28]; and graph drawing (www.graphdrawing.org).

In this paper we consider the application to finding the three-dimensional conformation of proteins.
In this case, this problem is usually referred to as Molecular DGP (MDGP). Proteins are important
molecules which perform several functions in living beings. If their three-dimensional conformations are
discovered, they are able to reveal the specific function that each protein is supposed to perform. A web
database named Protein Data Bank (PDB) [1] is collecting all the three-dimensional conformations
of proteins that scientists in the world have been able to obtain. To date, a rather small percentange
of conformations on the PDB have been obtained through NMR experiments, where the corresponding
MDGP has been solved by general-purpose continuous approaches for global optimization. The meta-
heuristic Simulated Annealing [7, 23] is employed in most of the cases. However, various approaches for
solving the MDGP have been proposed in the literature, and recent surveys can be found in [11, 17].
Other interesting works include, for example, [18] and [8], and others can be found in the edited book
[25].

Let G = (V, E, d) be a nonnegatively weighted simple undirected graph representing an instance
of the MDGP. Vertices of G correspond to the atoms forming the molecule, and edges indicate if the
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distance between the respective atoms is known or not. Since we focus our attention on proteins and on
NMR experiments for obtaining estimates of inter-atomic distances, we are able to make the following
assumptions, which will allow us to discretize the problem:

1. Inter-atomic distances corresponding to the set E′ ⊂ E of all (unordered) pairs of atoms separated
by at most two covalent bonds will be represented by positive rational numbers, since bond lengths
and bond angles can be considered fixed at their equilibrium values in protein molecules [27].

2. There exists a set E′′ ⊂ E of pairs of atoms separated by exactly three covalent bonds, for which it
is possible to compute tight lower and upper bounds to the corresponding distances; these distances
will be represented by intervals of rational numbers and the possible values will be represented by
a discretized set of D values within this interval [24].

3. There exists a set F ⊂ E of inter-atomic distances which can be estimated using NMR measure-
ments. Note that NMR does not provide distances to all possible pairs of atoms: the atoms must
be closer than a given distance threshold (usually set between 4Å and 5Å), and they are usually hy-
drogen atoms [27]. In addition to this, since these distances are not precise, they will be represented
by positive rational intervals.

Distances corresponding to edges in F might be affected by experimental errors: in this paper we describe
a method which only uses edges in E′∪E′′ in order to discretize the search space. Distances corresponding
to F will only be used to verify feasibility of partial embeddings.

In general, embedding a general graph in Euclidean space requires a continuous search [17]. In this
paper, we discretize the problem and we propose the interval Branch-and-Prune (iBP) algorithm, which
is an extension of the algorithm given in [16]. We use Assumptions 1-2 to discretize the problem and
Assumption 3 to prune out unlikely configurations. Note that only distances from E′∪E′′ are used for the
discretization. The distances from NMR (in the subset F of E) are only used for pruning purposes. As a
consequence, the new discrete domain of the problem is completely independent from experimental NMR
data. As already remarked in our previous publications, the advantages in considering a discrete search,
with respect to a continuous one, are: increased efficiency, increased solution accuracy and completeness
(in the sense that all embeddings can be found).

The discretization of the search space is based on the observation that, in general, three spheres in
R

3 intersect in at most two points. This observation is also used to find graph embeddings in [2, 10, 29].
A similar observation for the intersection of three circles in R

2 (which in general consists of at most
one point) leads to a polynomial-time algorithm for the Sensor Network Localization Problem [4]. A
technique for reliably computing such intersection points is given in [3].

This work, which continues the sequence of papers [15, 14, 10, 16, 19, 20, 21], moves an important step
towards taking into account the characteristics peculiar to NMR data. In order to discretize the search
space, we assumed (irrealistically) in [10, 16, 20] that all distances for pairs in E′ ∪ E′′ ∪ F are known
precisely. In [21] we only consider NMR distances referring to hydrogen pairs; consequently, we compute
a partial 3D structure including hydrogens only, neglecting other atoms. In [14, 15] this limitation is
removed by considering a linear algebra based method [29] for computing non-hydrogen positions. We
also developed a strategy for managing wrong distances in [22]. We remark that only precise distances
(rather than intervals) are considered in [15, 14, 21, 22].

Our first attempt to consider interval data has been presented in [19]. We assumed that the distances
in F are defined by a lower and an upper bound, and we modified the pruning phase of the Branch-and-
Prune (BP) algorithm [16] from a “by value” form to a “by interval” form. However, the distances needed
for discretization were still supposed to be exact. We further observed that even a very low uncertainty
on these distances is able to spoil the discretization process, in which case no solutions can be found.

In the present work, we address the latter phenomenon. Even though interval data are used, we
will be able to mantain the discretization process. We propose three concurrent improvements towards
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considering real NMR data: (a) we only consider NMR distances referring to hydrogen atoms; (b) we
represent them by intervals; (c) we compute the positions of non-hydrogen atoms together with the ones of
hydrogen atoms, thereby avoiding the numerical instabilities due to solving linear systems. The proposed
iBP algorithm relies on a carefully hand-crafted atom sequence which exploits repetitions in order to
make sure that for each atom being placed there are distances to three previously placed atoms. These
distances guarantee that the discretization process can be applied independently from the considered
instance and of the presence or not of interval represented distances. Preliminary results in this direction
have been presented in [13]. The idea of exploiting certain vertex sequences in order to prove that certain
graphs have rigid embeddings first appeared in [5]; see [6] for an extensive discussion.

The rest of this paper is organized as follows. In Sect. 2 we introduce notation, some main concepts,
and give some preliminary definitions. In Sect. 3 we construct the protein backbone graph and a vertex
sequence that allows the discretization of the search space. In Sect. 4 we propose the interval Branch-
and-Prune (iBP) algorithm for the protein backbone graph using the order in the vertex sequence. In
Sect. 5 we present some computational results. Sect. 6 concludes the paper.

2 Preliminary notions

We formally define in this section the decision problems discussed in the paper and briefly recall the
original BP algorithm.

Distance Geometry Problem in 3 dimensions (DGP3). Given a nonnegatively weighted
simple undirected graph G = (V, E, d) where d : E → R+, is there an embedding x : V → R

3

such that
∀{u, v} ∈ E ‖x(u) − x(v)‖ = d(u, v) ? (1)

Since DGP1 (where x maps into R) is NP-complete [26] and contained in DGP3, and it is not known
whether DGP3 is itself in NP, it follows that DGP3 is NP-hard.

Notation. For a graph G = (V, E) and a subset V0 ⊆ V we let G[V0] be the subgraph of G induced by
V0; for v ∈ V we let δE(v) = {u ∈ V | {u, v} ∈ E} be the set of vertices adjacent to v (if there is no
ambiguity we omit the E index). For an order < on V and v ∈ V we let γ<(v) = {u ∈ V | u < v} be the
set of predecessors of v in the order < and ρ<(v) = |γ<(v)| + 1 be the rank of v in the order < (if there
is no ambiguity we omit the < index).

In [10, 12] we introduced a subclass of DGP3 whose instances can be solved using a discrete search
algorithm.

Discretizable Molecular Distance Geometry Problem (DMDGP). Given a nonneg-
atively weighted simple undirected graph G = (V, E, d) where d : E → R+, a subset V0 ⊆ V

and an order < on V such that:

• V0 = {1, 2, 3} and G[V0] is a clique (Start)

• for all v ∈ V r V0 we have

1. v − 3, v − 2, v − 1 ∈ δ(v) ∩ γ(v) (Discretization)

2. d(v−3, v−2)+d(v−2, v−1) > d(v−3, v−1) (Strict Triangular Inequalities),

is there an embedding x : V → R
3 such that (1) holds ?

As in the MDGP instances, vertices of G correspond to the atoms forming the molecule and edges
indicate if the distance between the respective atoms is known or not.
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The DMDGP is NP-hard [10, 12] and its instances can be solved using the BP algorithm [16]: the
first 3 vertices in V0 can be embedded by Start; inductively, any vertex v of rank greater than 3 can be
placed at the intersection of three spheres centered at v − 3, v − 2, v − 1 with respective radii d(v − 3, v),
d(v − 2, v), d(v − 1, v) by Discretization; this intersection consists of at most 2 points x′

v, x′′
v by

Strict Triangular Inequalities. This gives rise to a binary tree search whose leaves represent valid
embeddings of G. Branches can be pruned using distances from v to vertices in δ(v) ∩ γ(v) (other than
the ones used for the discretization) that are incompatible with either x′

v or x′′
v or both. This yields an

extremely fast algorithm [16] which is also able to find all embeddings for a given graph (modulo rotations
and translations).

We recently also proposed a generalization of the DMDGP to dimensions higher than 3, the Dis-

cretizable Distance Geometry Problem (DDGP) [20]. In the three-dimensional case (DDGP3),
the main difference with the DMDGP stands in the Discretization assumption. Instead of the three
immediate predecessors of v, any vertices u, w and z having rank smaller than v can be considered.
It follows that the DDGP3 relies on assumptions which are weaker than the ones of the DMDGP. In
particular, the Discretization assumption of the DDGP3 does not reflect any feature of molecules or
proteins, and therefore the DDGP3 can be considered as a more generic problem that can be employed
in other applications arising in fields different from biology. Since the DDGP3 contains the DMDGP, and
the DMDGP is NP-hard [10, 12], the DDGP3 is also NP-hard.

An interesting subproblem which arose from the DMDGP and the DDGP3 is the following. Given
a graph G representing an instance of the DGP3 for which the assumptions for the DMDGP or the
assumptions for the DDGP3 are not satisfied, can we sort the vertices of G such that the assumptions
become satisfied? Since the DDGP3 relies on weaker assumptions, we investigated the possibility to
reorder the vertices of G for having the DDGP3 assumptions satisfied, and we found an efficient solution
method [9]. In that work, however, all the distances are considered to be exact, and this does not reflect
real experimental data. An immediate extension of this problem could be: can we sort the vertices of G

in order to have the assumptions satisfied (and so to discretize the problem) using only distances from
E′ and E′′?

This is a very interesting problem that we will not try (at least in this work) to solve in general.
We rather carefully hand-craft a sequence of atoms, related to protein backbones, having the desired
features. Even though the assumptions for the DDGP3 are weaker, we consider here the DMDGP,
because its assumptions can be verified in a easier way by checking any picture drawing the considered
sequence of atoms.

In order to facilitate our task, we also allow for repeated atoms in the sequence. This trick allows us
to consider distances between copies of the same atom, that are naturally equal to 0, thus increasing the
number of exact distances that can be considered. Obviously, since the same atom can be duplicated sev-
eral times, the final sequence of atoms could have a length which is much larger than the original sequence
of atoms. However, this increase in length is not reflected on the tree obtained by the discretization, be-
cause copies of an atom which has been already placed somewhere can only take one position. In other
words, there is no branching on the tree in correspondence with duplicated atoms.

We remark that we are making no claim as to the necessity of vertex repetition: we have not proved
that there is no order (without repetitions) on V with the desired properties. In fact we conjecture that
quite the reverse holds, i.e. the existence of an order with repetitions might imply the existence of an
order without repetitions satisfying the first two requirements of the DMDGP (or of the DDGP3); in this
sense, vertex repetitions are to be considered as merely a tool to facilitate a complex task.



3 A VERTEX ORDER FOR PROTEIN BACKBONES 5

3 A vertex order for protein backbones

3.1 Vertex orders with repetitions

We present in this section the definition of repetition order (re-order), and we will show later that our
hand-crafted vertex order is a re-order.

Let G = (V, E, d) be the nonnegatively weighted simple undirected graph associated to an instance of
the DGP3. The set of edges E can be partitioned into those edges {u, v} ∈ E′ for which d(u, v) is a real
nonnegative number, and those edges {u, v} ∈ E′′ for which d(u, v) is a finite set of points belonging to
a positive rational interval [dL

uv, dU
uv]. We remark that, in the practice, we consider nonnegative rational

numbers, but we formally define each graph G with real nonnegative weights. For notational simplicity,
we assume for the rest of this section that d(E′′) is a set of intervals — we shall exploit their discretization
in Sect. 4. Let V ′ = V ∪ {0}.

3.1 Definition

A repetition order (re-order) is a sequence r : N → V ′ with length |r| ∈ N (for which ri = 0 for all i > |r|)
such that:

• G[{r1, r2, r3}] is a clique

• for all i ∈ {4, . . . , |r|} the sets {ri−2, ri}, {ri−1, ri} are edges in E′

• for all i ∈ {4, . . . , |r|} the set {ri−3, ri} is either a singleton (i.e. ri−3 = ri) or an edge in E′ ∪ E′′.

In practice, a re-order builds a longer (virtual) protein backbone whose edge structure is derived from
the original graph G and it attempts to at least partially satisfy the requirements of a DMDGP instance.
To this end, it exploits edges in E′ (i.e. those corresponding to known precise distances). The first two
properties ensure that there are at least two adjacent predecessors (namely ri−2 and ri−1) corresponding
to precise distances, for i = {3, 4, . . . , |r|}. If {ri−3, ri} is an edge in E′ or ri−3 = ri, then ri can be
placed in at most 2 points because of Discretization. If {ri−3, ri} is an edge in E′′ the locus of ri is
the homeomorphic image of an interval in R

3, as shown in Fig. 1. The search can then be made discrete
(although possibly not binary) by considering Assumption 2 on E′′ (see Sect. 1).

dL

dU

Figure 1: The intersection of two spheres with a spherical shell.

Thus, any re-order corresponds to an instance of the DMDGP, where some of the edges {ri−3, ri} may
not correspond to precise distances, but rather to intervals. In the following, we will introduce a graph
representation of the protein backbones and we will show that their atoms, in their natural order, do not
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define a re-order. Then, we will present our hand-crafted vertex order and prove that it is a re-order.
Finally, we will discuss how to deal with edges {ri−3, ri} which correspond to interval data.

In the rest of this section we construct the protein backbone graph GPB and a vertex sequence with
repetitions which happens to be a re-order for GPB.

3.2 The protein backbone graph

Proteins are chains of smaller molecules called amino acids, which are chemically bound to each other.
All amino acids share a common structure, which can be represented by the graph GAA as shown below:

CN

H

H̄

H̃

Hα

Cα

Ō

O
GSC

where H, N, C, O represent respectively hydrogen, nitrogen, carbon and oxygen atoms (we used tildes
and bars to distinguish between atoms of the same type); Cα is a carbon atom bound to the side chain
represented by the subgraph GSC (we remark that amino acids only differ by the structures of their side
chains); Hα is a hydrogen atom bound to the carbon Cα. All the edges in GAA represent covalent bonds,
whose associated weight is a real number.

During the protein synthesis, a sequence of amino acids bind together to form a chain. This operation
can be described by the following graph operations. Let G′

1 be the graph associated to the first amino
acid, and let G′

2 be the graph associated to the second amino acid. In order to obtain the graph G12 =
(V12, E12), representing two bound amino acids, we need to make the following operations on the two
graphs G′

1 and G′
2:

1. G′
1[{C, O, Ō, H̃}] is contracted to a vertex labelled C1, yielding a modified graph G1 = (V1, E1);

2. G′
2[{H̄, N}] is contracted to a vertex labelled N2, yielding a modified graph G2 = (V2, E2);

3. V12 = V1 ∪ V2;

4. E12 = E1 ∪ E2 ∪ {C1, N2}.

The graph operations are shown graphically in Fig. 2. If we now replace G1 by G12 it is clear that the
same operation can be carried out again recursively any finite number p ∈ N of times. If we repeat
this operation for all the amino acids forming a protein, then the resulting graph G12...p, with edge set
E12...p encoding the covalent bonds, represents the whole protein. Since all the edges of the graphs of
the single amino acids represent covalent bonds, and therefore the weights associated to their edges are
real numbers, all the edges of the protein graph G12...p are weighted by real numbers. Note that all the
graphs representing the single amino acids are connected to each other by the edge {Ci, N i+1} and that
they all have the same structure, apart from the initial graph G1 and the final graph Gp, because of the
initial H in G1 and a final COOH group in Gp.

Our current focus is on protein backbones only. Then, we will not consider the amino acid side
chains, but rather only the common part of each amino acid. The graph GPB of a protein backbone can
be obtained by removing all the graphs GSC from each amino acid forming the protein. A well-known
chemical property can help us to find known real distances between some pairs of atoms in VPB: namely, all
angles between consecutive covalent bonds are known real numbers [27]. This allows us to compute all the
sides of the associated triangles exactly. For all i ∈ {1, . . . , p} we let Ēi

T = {{Hi, Ci
α}, {N

i, Hi
α}, {N

i, Ci},
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C

C

CN

N

N

H

HH

H

H̄

H̄

H̄

H̃

H̃

H̃

Hα

HαHα

Hα

Cα

CαCα

Cα

Ō

Ō

Ō

O

O

O
GSC

GSCGSC

GSC

C1 N2

+ =

Figure 2: The binding of two amino acids.

{Hi
α, Ci}. Furthermore, let E1

T = Ē1
T ∪ {{H0, H1}, {H0, C1

α}, {C
1
α, N2}, {C1, H2}, {C1, C2

α}}, for all
i ∈ {2, . . . , p − 1} let Ei

T = Ēi
T ∪ {{Ci

α, N i+1}, {Ci, Hi+1}, {Ci, Ci+1
α }}, and let E

p
T = Ē

p
T ∪ {{Cp

α, Op},
{Cp

α, Op+1}, {Cp, Hf}, {O
p, Op+1}, {Op+1, Hf}}. We let

VPB = {H0, H1, N1, C1
α, H1

α, C1, . . . , Hi, N i, Ci
α, Hi

α, Ci, . . . , Hp, Np, Cp
α, Hp

α, Cp, Op, Op+1, Hf},

EPB = E12...p ∪
⋃

i≤p

Ei
T ,

and finally define the protein backbone graph to be GPB = (VPB, EPB), shown in Fig. 3. It is easy to verify

H0

G1

H1

N1

H1
α

C1
α C1

G2

H2

N2

H2
α

C2
α C2

Gp

Hp

Np

Hp
α

Cp
α Cp

Op+1

Op

Hf

Figure 3: The protein backbone graph GPB. Thick edges correspond to covalent bonds in EPB.

that natural orders of the vertices of the graph GPB (see Fig. 3), for example, {H0, H1, N1, C1
α, H1

α, C1,
. . . , Hi, N i, Ci

α, Hi
α, Ci, . . . , Hp, Np, Cp

α, Hp
α, Cp, Op, Op+1, Hf}, are not re-orders. For this reason,

we introduce a hand-crafted vertex order in the next section, which is a re-order.

3.3 A hand-crafted vertex order

The protein backbone graph GPB has a similar repetitive structure given by the amino acids which
compose it. Therefore, once a possible vertex order is identified for the generic amino acid, the same
order can be duplicated for all the others. The only exception is given by the first and the last amino
acids, that contain additional some atoms, because they are bound to only another amino acid.

Let us start then by assigning the following order to the atoms of the first amino acid of GPB, as
shown in Fig. 4:

r1
PB

= {N1, H1, H0, C1
α, N1, H1

α, C1
α, C1}.
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One of the hydrogens bound to N1 (in general, there is only one hydrogen) is indicated by the symbol

Figure 4: The order r1
PB

.

H0. The carbon C1
α and the nitrogen N1 appear twice in the sequence. The other carbon of the first

amino acid, the atom C1, is considered, in this case, only once. Let us now assign the following order to
the atoms of the second amino acid, as shown in Fig. 5:

r2
PB = {N2, C2

α, H2, N2, C2
α, H2

α, C2, C2
α}.

This sequence of atoms is used for building a bridge between the first amino acid and the third one,

Figure 5: The order r2
PB

.

from which a generic order will be considered. In fact, the order defined on the second amino acid is
quite similar to the generic one. Atoms are considered more than once, and, in particular, the carbon
C2

α appears in the sequence 3 times. This is the vertex order for the generic amino acid (from the third
to last but one), as shown in Fig. 6:

ri
PB = {N i, Ci−1, Ci

α, Hi, N i, Ci
α, Hi

α, Ci, Ci
α}.

The nitrogen N i is considered twice, the carbon Ci
α is considered 3 times, and the carbon Ci−1 belonging

to the previous amino acid is repeated among the atoms of the amino acid i. Note that hydrogen atoms
are never duplicated, because the number of distances regarding these atoms in E′ or E′′ is quite limited:
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Figure 6: The generic order ri
PB

.

most of the distances regarding hydrogens belong to F . When the last amino acid is considered, we need
to take into account that there are some atoms more in the final part of the amino acid. Therefore, the
vertex order that we define for the last amino acid, as shown in Fig. 7, is:

r
p
PB

= {Np, Cp−1, Cp
α, Hp, Np, Cp

α, Hp
α, Cp, Cp

α, Op, Cp, Op+1}.

Note that this is the only case in which oxygen atoms appear. The last atom in r
p
PB

is the oxygen Op+1,

Figure 7: The order r
p
PB

.

to which we assigned the superscript p + 1 in order to distinguish it from the other oxygen Op, even
though there is no amino acid p + 1. We suppose that the set of atoms COO− ends the sequence, that
is, the hydrogen H of the group COOH is lost and this makes the last part of the sequence negatively
charged. Equivalently, we could have considered the set of atoms NH+

3 at the beginning of the sequence
(see Fig. 4) instead of group NH2. To this aim, a third hydrogen H could be considered in r1

PB
.

Let us indicate by the symbol rPB the defined vertex order on the whole protein backbone GPB:

rPB =

p⋃

i=1

ri
PB

.

Fig. 8 shows the hand-crafted order for a small protein backbone containing 3 amino acids. It shows
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Figure 8: The hand-crafted re-order rPB.

the vertex order for the first amino acid, for the second one, and for the generic amino acid, with the
last three vertices concerning the last amino acid of the sequence. By comparing Fig. 3 and Fig. 8, we
can see that only edges of the kind {ri−3, ri} may correspond to discretizable intervals (in E′′). As a
consequence, we have the following lemma:

3.2 Lemma

The sequence rPB is a re-order for GPB.

Because of repeated atoms, many distances equal to 0 appear in the sequence rPB. If we consider
three consecutive vertices and suppose that two of these vertices refer to the same atom, then they will
be perfectly aligned and this will go against the Strict Triangular Inequalities assumption. In
fact, by definition of rPB it is easy to verify by inspection that this does not happen.

3.3 Lemma

The sequence rPB satisfies the Strict Triangular Inequalities assumption of the DMDGP.

Using these two lemmata, it is easy to prove the following.

3.4 Theorem

Any instance of the MDGP with interval data whose graph GPB is a protein backbone graph has a finite
number of incongruent embeddings.

We remark that vertices associated to edges in E′′ might lead to an impractically high number of
embeddings. For this reason, the number D of discrete values in intervals for edges in E′′ plays a very
important role. Setting D = 1 reduces the instance to an ordinary real-value weighted DMDGP. A
previous work [19] showed that the average of the known interval is usually not a sufficiently accurate
approximation of the actual distance. However, if D is too large, the number of embeddings could be
huge.

By Lemma 3.3, the distances equal to 0 are never related to {ri−2, ri} and {ri−1, ri}. However, we
can have distances equal to 0 associated to other pairs of vertices. Some of the distances related to the
edges {ri−3, ri} can be 0, which agree with the definition of a re-order. For example, let us consider the
duplicated atom C1

α, which is in position 7. The first copy of this atom is instead in position 4. When
discretizing at level 7, therefore, the distance between the two copies of C1

α is considered. The fact that
a distance equal to 0 is used in the discretization process implies that only one possible position for the
current atom is feasible. In this case, the distance equal to 0 is directly exploited for computing the
unique atomic position of the duplicated atom.
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Moreover, distances equal to 0 can also appear in correspondence with edges {ri, rj}, with j > i + 3.
For example, let us consider the second copy of the nitrogen N1 of the first amino acid. It is known that
its distance from the first copy of N1 is 0. The first copy appears in position 1 along the sequence, whereas
the second copy appears in position 5. Since that distance (equal to 0) is not used in the discretization
process, two positions for the atom can be computed, and one of the two can be pruned by employing
the distance equal to 0. However, since we know this is a duplicated atom, we can directly place this
atom in the same position as its previous copy.

When Cα atoms are considered, a property of the protein backbone can be exploited [27]. If the Cα

atom is not duplicated, the edge {ri−3, ri} is represented by an interval, and therefore multiple branching
should be required. However, the distance corresponding to {ri−3, ri} involves two carbon atoms Cα

of two successive amino acids, and hence there are restrictions for their relative configurations, because
the backbone atoms Cα, C, N , Cα are forced to be in the same plane by a peptide bond [27]. As a
consequence, only two torsion angles can be defined for this quadruplet of atoms, and then only two
possible positions can be computed for the considered Cα.

Finally, as in the DMDGP with real-weighted edges [10, 12], we need only concern ourselves with one
half of the (finite) solution space: there is a reflection symmetry around the plane defined by the first
three atoms of the sequence rPB which allow us to fix the position of the fourth atom.

4 The interval Branch-and-Prune (iBP)

Algorithm 1, called interval BP (iBP) is an extension of the classic BP algorithm, previously proposed in
[16], that addresses interval data in the sense explained above. It is the first exact algorithm for discrete
MDGPs which consider interval data. The input arguments of Alg. 1 are: the index i of the re-order
whose image rj indexes the atom currently being placed, the re-order r, the edge weight function d and
the integer D.

Algorithm 1 The iBP algorithm.

1: iBP(j, r, d, D)
2: if (rj is a duplicated atom) then

3: copy coordinates of previous copy of rj in x1
rj

4: iBP(j + 1, r, d, D);
5: else

6: if (d(rj − 3, rj) is exact) then

7: b = 2;
8: else

9: b = 2D;
10: end if

11: for k ∈ {1, . . . , b} do

12: compute the k-th atomic position xk
rj

for the rj -th atom;

13: check the feasibility of position xk
rj

using edges in F ;

14: if (xk
rj

is feasible) then

15: if (j = |r|) then

16: a solution x is found, print it;
17: else

18: iBP(j + 1, r, d, D);
19: end if

20: end if

21: end for

22: end if

The correctness of the algorithm follows because at Step 11 it tests all possible positions for atom ri
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for feasibility. The algorithm terminates when j reaches |r| if the instance is YES or before (when no
xk

ri
is feasible at a given recursion level) if the instance is NO. The recursive calls of the iBP algorithm

generate a search tree structure: each node has a number of subnodes equal to b. Leaf nodes at level |r|
correspond to embeddings.

4.1 A detailed test instance

We consider in this section a very simple instance with the same atoms and edges in E′, E′′ as in Fig. 8.
The distance function d is constructed as follows. Given four numbers d̄1, d̄2, l3, u3 such that 2d̄1 > d̄2

and l3 < u3, the distance between every pair {u, v} of bound atoms is duv = d̄1; the distance between
every pair {u, v} of atoms two covalent bonds apart is duv = d̄2. The distance function d maps every
pair {u, v} of atoms three covalent bonds apart to a discrete set of D values in the interval [l3, u3]. As is,
the obtained instance has no edges in F that can be used for pruning, so the iBP yields a full tree. We
randomly choose a leaf node at level |r| and consider the corresponding embedding: from this embedding
we derive all new distances (we let F be the set of corresponding edges) and discard those that exceed
5Å. To each of the remaining edges {u, v} ∈ F we assign a distance interval [duv − ε, duv + ε]. Fig. 9
shows the generated test instance.

Figure 9: The test instance.

Fig. 10 shows the tree structure related to this instance. The positions of the first three atoms can
be obtained using the known information on the distances in E′. The branching starts at level 4, in
correspondence with the atom C1

α. Due to the symmetry property of the DMDGP, we can discard one
of the branches at level 4, and concentrate our researchers only on one of them. At level 5 we have
the first duplicated atom, the nitrogen N1 which already appeared at level 1. Therefore, we have no
branching, because the new copy of N1 can only be placed in the same position of its previous copy. The
first hydrogen in the vertex order on which we need to branch appears at level 6. This is the hydrogen
H1

α. Since the distance between this atom and the previous H1 is an interval, we need to discretize the
interval and take from it D exact distances. As a consequence, 2D branches are added at level 6 on the
binary tree. At level 7, we find another duplicated atom, and therefore, there is no branching. After this
atom, we have a sequence of 3 atoms that are neither duplicated nor hydrogens: depending on the fact
that an interval needs to be discretized or not, only two or 2D branches are added to the tree. The first
hydrogen of the second amino acid is at level 11. Since the distance between C1 and H2 is in E′, we have
only two branches. The other cases are similar to the previous ones.
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Figure 10: Part of the tree of the test instance.
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Table 1 provides the number of branches on each layer of the tree in Fig. 10. We consider here the
generated instance in Fig. 9, where ε = 0.3 and D = 6. In particular, the last but first column of Table

layer atom amino acid duplicated? branches w/out pruning branches with pruning
1 N 1 no 1 1
2 H 1 no 1 1
3 H 1 no 1 1
4 Cα 1 no 2 2
5 N 1 yes 2 2
6 Hα 1 no 24 18

7 Cα 1 yes 24 18
8 C 1 no 48 36
9 N 2 no 576 360
10 Cα 2 no 1152 720
11 H 2 no 2304 10

12 N 2 yes 2304 10
13 Cα 2 yes 2304 10
14 Hα 2 no 27648 70

15 C 2 no 55296 140
16 Cα 2 yes 55296 140
17 N 3 no 663552 1400
18 C 2 yes 663552 1400
19 Cα 3 no 1327104 2800
20 H 3 no 2654208 4

21 N 3 yes 2654208 4
22 Cα 3 yes 2654208 4
23 Hα 3 no 31850496 9

24 C 3 no 63700992 18
25 Cα 3 yes 63700992 18
26 O 3 no 764411904 52
27 C 3 yes 764411904 52
28 O 3 no 1528823808 10

Table 1: The number of branches, step by step, of the discrete domain with and without pruning.

1 shows the number of branches of the full tree, where no pruning is applied. If ri is a duplicated atom
(Alg. 1, Step 4) just one subnode is created. If ri is not duplicated, then: (1) if b = 2 (Step 7) two
subnodes are created; (2) if b = 2D (Step 9), 2D subnodes are created. Without pruning, the full tree
has 1528823808 nodes at level 28. The last column shows the corresponding statistics when pruning is
applied. Notice that sometimes, for chemical reasons, pruning is carried out when a distance is too short
(less than 1Å).

5 Computational results

We show in this section some computational experiments on larger instances. All the experiments showed
in the paper have been performed on an Intel Core 2 CPU 6400 @ 2.13 GHz with 4GB RAM, running
Linux. The iBP algorithm (see Section 4) have been implemented in C programming language and
compiled by the GNU C++ compiler v.4.1.2 with the -O3 flag.

The procedure which has been employed for generating a set of instances is the same already detailed
in Section 4.1 for the generation of the small test instance. The only difference is that the order for
the generic amino acid (see Figure 6) is repeated as many times as needed, because the new instances



6 CONCLUSION 15

are composed by more than 3 amino acids. Naturally, these instances are not good representatives of
real protein backbones for the global shape they have, but they are still useful for the purposes of the
experiments. The paramenter ε is always set to 0.3 for all generated instances.

Table 2 shows the details of some experiments performed with the iBP algorithm. In this table, naa

naa n |E| LDE #Sol D time

10 91 676 3.03e-05 1 3 0.01

20 181 1398 1.45e-05 1 3 0.01

50 473 3587 4.47e-05 1 3 0.13

70 631 5038 2.79e-05 1 3 0.15

100 901 7223 2.22e-05 1 3 0.17

120 1081 8654 3.76e-05 1 6 0.99

Table 2: Some experiments with larger instances. Only one solution is required.

is the total number of amino acids, n is the total number (including the repetitions) of considered atoms
and |E| is the number of distances which are available (exact distances and intervals). We only require
one solution, and therefore #Sol is always 1. D is the minimum number of sample distances to be taken
from the intervals for obtaining at least one solution to the problem. Finally, the CPU time (in seconds)
is given for each experiment. These experiments show that the discretization with interval data can also
be applied to instances having a larger dimension.

6 Conclusion

This paper moves an important step towards bringing the very successful Branch-and-Prune algorithm
towards distance geometry problems with interval data. Previously, discrete search in distance geom-
etry was only possible with precise distances, a limitation which rules out the tackling of real protein
conformation problems based on NMR distances obtained experimentally. Although for the moment we
only limit our computational tests to artificially generated instances, we are already in touch with several
biochemistry research teams in order to obtain raw NMR data. Future works will be aimed at the efficient
solution of NMR instances by the presented technique.
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