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Abstract

Motivation: The structure of proteins is organized in a hierarchy among which the secondary structure
elements, α-helix, β-strand and loop, are the basic bricks. The determination of secondary structure
elements usually requires the knowledge of the whole structure. Nevertheless, in numerous experimental
circumstances, the protein structure is partially known. The detection of secondary structures from these
partial structures is hampered by the lack of information about connecting residues along the primary
sequence.
Results: We introduce a new methodology to estimate the secondary structure elements from the values
of local distances and angles between the protein atoms. Our method uses a convolutional message
passing neural network, named Sequoia, which allows the automatic prediction of secondary structure
elements from the values of local distances and angles between the protein atoms. This neural network
takes as input the topology of the given protein graph, where the vertices are protein residues, and the
edges are weighted by values of distances and pseudo-dihedral angles generalizing the backbone angles
φ and ψ. Any pair of residues, independently of its covalent bonds along the primary sequence of the
protein, is tagged with this distance and angle information. Sequoia permits the automatic detection of the
secondary structure elements, with an F1-score larger than 80% for most of the cases, when α helices
and β strands are predicted. In contrast to the approaches classically used in structural biology, such
as DSSP, Sequoia is able to capture the variations of geometry at the interface of adjacent secondary
structure element. Due to its general modeling frame, Sequoia is able to handle graphs containing only
Cα atoms, which is particularly useful on low resolution structural input.
Availability and implementation: Sequoia source code can be found at
https://github.com/Khalife/Sequoia with additional documentation.
Contact: khalife@lix.polytechnique.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

0. Answers to reviewers and corresponding
sections (To be removed for final version)
We would like to thank the reviewers for their comments. We gave detailed
answers and where they are treated in the manuscript, in a second pdf
attached to the main submission. The new or modified sentences of the
manuscript are written in magenta.

1 Introduction
Since three decades, the development of structural biology has been driven
by the intention to relate the function of molecular objects to the physico-
chemical rules at the atomic level. In that frame, tools for the geometric
analysis of the protein graph, consisting of atoms and residues, are essential.
The protein structure is historically described as a hierarchy of molecular
objects: (i) the individual protein residue; (ii) the secondary structure
elements (α helices, β strands and loops), which are formed by stretches
of residues covalently connected according to the sequence order; (iii) the
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combination of secondary structure elements, such as the parallel or anti-
parallel β sheets formed from associations of β strands through hydrogen
bonds; (iv) the tertiary structural motifs (El-Gebali et al., 2019; Andreeva
et al., 2020; Sillitoe et al., 2021), where the association of secondary
structure elements is most often stabilized through the formation of a
hydrophobic core between residue sidechains; (v) the quaternary structure,
where protein domains and/or individual proteins or biomolecules interact
to form larger molecular assemblies. The levels (iv) and (v) of the hierarchy
define the 3D structure of folded proteins or of assemblies of folded
proteins. It should be noted that this hierarchy is strongly based on a
description of proteins as polymers, formed of a succession of covalently
bonded amino-acids. ref1:label4 The sequence information coupled to
the secondary structure elements was also used for modeling the order-to-
disorder transition (Dan et al., 2010). Moreover, the succession of protein
residues along the primary sequence is often used as an input to classical
methods for secondary structure prediction (Kabsch and Sander, 1983;
Frishman and Argos, 1995), in particular to detect hydrogen bonds between
backbone atoms, and to characterize the α helices and β strands. To the
best of our knowledge, all of the current methods for the determination
of secondary structure from inter-atomic distances and angles also use
the amino acid sequence assignment. In the present work, we propose to
bypass the sequence information.

ref2:label2 Our work is motivated by the fact that within the primary
sequence of a protein, parts are often missing in the structure. For example,
disordered regions of proteins are not visible in electronic density maps
obtained using X-ray crystallography or electronic microscopy. Another
aspect of missing information is encountered in low resolution structures
obtained by X-ray crystallography or electronic microscopy where only
a partial number of protein atoms is present, such as, for example, the α
carbons.

During the last decade, the explosion of the fields of artificial
intelligence and machine learning has driven the consistent development
of methods coming from these fields and applied to biology problems.
Graph representations combined with deep learning methods or generative
models have proved to be relevant for several applications dealing with the
complex geometry of protein structures, such as protein-ligand interaction
(Lim et al., 2019) or protein design (Ingraham et al., 2021). In order
to harness their experimental performance, we propose a convolutional
message passing approach to integrate geometric features of proteins into a
convolutional graph neural network, which automatically detects the type
of secondary structure elements (α helices, β strands and loops) using
the distance and angle information between heavy backbone atoms as its
sole input. Specifically, we do not consider any input coming from the
existence of covalent bonds between successive residues along the primary
sequence. Consequently, the approach can be applied to structures that are
determined only partially. We also point out that this is a methodological
rather than biological study. Consequently, we aim at showing that our
proposed methodology works well in general, meaning we do not fine-tune
it for specific proteins.

The approach proposed here, named Sequoia, is computationally tested
on protein structures determined using X-ray crystallography or NMR.
We evaluate the effect of noise level in the input data, as well as the
prediction efficiency of Sequoia for various secondary structure elements
and protein graphs. On all atom protein structures, Sequoia predicts α
helices and β strands with F1 scores respectively mostly better than 95%
and 90% and the joint prediction of α helices and β strands displays a F1
score mostly larger than 80%. One should notice that this comparison is
calculated with respect to the results with DSSP (Kabsch and Sander, 1983;
Frishman and Argos, 1995). Sequoia also displays robustness with respect
to noisy inputs and missing residues in the graph, as well as for sparse Cα
graphs. Interestingly, most of our prediction errors is observed for residues
located at the extremities of secondary structure elements. Indeed, these

residues undergo continuous geometrical transformations, which makes
them difficult to predict in the classical discontinuous description from
(Kabsch and Sander, 1983; Frishman and Argos, 1995).

The rest of this paper is organized as follows. Section 2 presents the
protein descriptors, their robustness to noisy measurements, and the Sequoia
architecture, along with a simple but solid baseline named FOS. Section 3
describes the results. Discussions and conclusions are given in Section 4.

2 Methodology

2.1 Graph description

We consider a natural geometric representation of molecules with n atoms
in terms of an n× 3 realization matrix where the i-th row is a vector in R3

corresponding to the Euclidean position of the i-th atom of the molecule,
for i ≤ n. This representation corresponds to the steady state of the protein,
enforcing a molecular rigidity assumption (Luisi, 1977). For the Sequoia
prediction purposes, we represent such structure by means of a simple,
undirected, edge-weighted graph G = (V,E, d), where V is the set of
atoms, andE is the set of atom pairs {i, j} with known distance value dij .
A graph is a very relevant model for describing protein structure and has
been widely used (Huan et al., 2004; Mason and Verwoerd, 2007; Krishnan
et al., 2008; Di Paola and Giuliani, 2015; Fout et al., 2017; Heal et al.,
2018).

Two different networks will be considered: one full network with all
heavy backbone atoms and one simplified network containing only the
Carbons α. In the full network, the heavy atoms are grouped into to subsets
corresponding to protein residues, in a way similar to the definition of spin
systems in NMR (Lian and Roberts, 2011).

The graph of residues will be defined by two methods:

• A: a k-nearest neighbors graph Gk = (V,A), where V is the set of
all residues in the protein and (r1, r2) ∈ A if and only if r2 is one of
the k nearest neighbors of r1;

• B: a threshold based graph G′τ = (V,E), where V is the set of all
residues in the protein and {r1, r2} ∈ E if and only if the measured
distance between r1 and r2 is lower than the threshold τ .

Both of these constructions require the notion of distance between two
residues. In the following, we define the distance between two residues as
the minimum distance between the respective atoms composing them.

Note that the method B is formally undirected - which may not be the
case forA, and the threshold τ can be set to a value corresponding to the
physical requirements of structural biology. Our experiments revealed that
both methods lead to very similar results when k = 2 inA and τ = 3Å in
B, and decided to use methodA to build the graph of the protein structure.

In addition to distance information, angle information between heavy
backbone atoms will be added to the edges of the protein graph. The
selected angles will be a generalization of the backbone dihedral angles φ
and ψ, described below. This generalization will permit the computation of
these angles for any pairs of protein residues, covalently bonded or not. In
that way, no information on primary sequence connectivity of the protein
is present in the graph input of the neural network.

2.2 Protein descriptors and neural network inputs

The backbone dihedral angles φ and ψ are classically defined between the
atoms belonging to successive residues r − 1, r and r + 1 in the protein
primary sequence:

• the carbon atom of the carbonyl group from residue r− 1, the nitrogen
atom, the carbon-α atom, and the carbon atom of the carbonyl group
from residue r
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• the nitrogen atom, the carbon-α atom and the carbon atom of the
carbonyl group from residue r, and the nitrogen atom from residue
r + 1.

In the present work, this definition will be generalized to any couple of
residues being closer in the space than the threshold τ .

Using the atomic coordinates determining the protein structures, it is
straightforward to determine the dihedral angles. However, in the case when
only the distances between atoms are known, it can be shown that using
poly-spherical coordinates (Porogelov, 1987), or alternatively a Clifford
algebraic formulation (Lavor et al., 2015), the cosine of the dihedral angles
cosω can be computed using only distances between atoms.

If ω represents the dihedral angle between two planes defined by four
atoms {i − 3, i − 2, i − 1, i}, where the first plane is defined by i − 3,
i− 2, i− 1, and the second by i− 2, i− 1, i, the cosine law for trihedron
(Figure S1 and (Lavor et al., 2015)) can be written in the following way:

cos γ = cosα cosβ + sinα sinβ cosω (1)

where α, β and γ are angles between vectors made by the pairs of atoms
in the following sense. If xk is the 3D-positional vector of atom k, then
α is the angle between vectors (xi−3 − xi−2) and (xi−1 − xi−2). β is
the angle between (xi−1 − xi− 2) and (xi − xi−2), and γ the angle
between (xi−3 − xi−2) and (xi − xi−2). This is displayed in Figure S1.

Using relation between cos and sin:

cosω =
cos γ − cosα cosβ

√
1− cos2 α

√
1− cos2 β

(2)

Furthermore, using the planar cosine law, cosα, cosβ and cos γ are given
by:

cos

αβ
γ

 =

f(di−1,i−2, di−2,i−3, di−3,i−1)

f(di−1,i−2, di−2,i, di−1,i)

f(di−3,i−2, di−2,i, di−3,i)

 (3)

where di,j is the distance between atom i and j, and:

f(x, y, z) =
−z2 + x2 + y2

2xy
(4)

Using Equations 3, and 4, Eq. (2) can be reformulated as:

cosω =
2d2i−2,i−1∆i − (di−3,i−2,i−1)(di−2,i−1,i)

Γi
√

4d2i−2,i−1d
2
i−2,i−3 − (d2i−2,i−1,i)

(5)

with:

di−3,i−2,i−1 = d2i−3,i−2 + d2i−2,i−1 − d2i−3,i−1

di−2,i−1,i = d2i−2,i−1 + d2i−2,i − d2i−1,i

∆i = d2i−3,i−2 + d2i−2,i − d2i−3,i

Γi =
√

4d2i−1,i−2d
2
i−2,i − (d2i−3,i−2,i−1)

Eq. 5 allows the calculation of backbone angles φ and ψ depending
on the set of considered atoms i− 3, i− 2, i− 1 and i− 2, i− 1, i, as
recalled at the beginning of the subsection. Thus, using this Equation, we
generalize the notion of φ and ψ angles to any pair of residues k and l
in the protein, by considering the relevant atoms in the residues. Then
if residue k and l are connected in the graph, the edge features xkl are
defined as xkl = (dkl, cosφkl, cosψkl) from the distance dkl between
the two residues, and the cosines of the pseudo-dihedral anglesφkl andψkl.
ref1:label5 The equations described above are used in the definition of the

interval Branch-and-Prune (iBP) algorithm for listing protein conformations
consistent with distance data (Lavor et al., 2012; Liberti et al., 2014).

In addition to a graph containing all backbone atoms, we also tested
the prediction of secondary structure on a simplified graph containing only
Cα atoms. In that case, the edge between Cα atoms of residues a and b
is labeled by xab = (dab, cos Φab), dab being the distance between Cα
atoms and one pseudo dihedral angle Φab being defined using the equation
5 where atoms i-1 and i-2 are the atoms Cα of residues a and b, the atoms
i and i-3 being two different atoms Cα the closest respectively of atoms
i-1 and i-2.

2.3 Testing the noise robustness of dihedral angle
computation

In practice, imprecision on distance measurements may lead to greater
errors in the dihedral angle estimates. Indeed, the imprecision will lead
to numerical errors on cosω as the cosine law for trihedron (Eq. 1) is no
more valid. The relationship between the inter-atomic distances and the
dihedral angle ω (Eq. 5) can be reformulated as a functional relationship:
cosω = g(D) where D is the matrix containing all distances between the
atoms i, i− 1, i− 2, i− 3. An estimation of noisy dihedral angles can be
obtained with the following equation:

(cosω)ε = g(proj(D + ε))

where ε is a (4,4) symmetric matrix verifying: ∀i, εi,i = 0, ∀i <
j, εi,j ∼ N (0, η1), and proj is the projection operator onto the cone
of symmetric positive semidefinite (PSD) matrices. The proj operator
avoids to consider matrices representing non-Euclidean 3D objects, in
which case, the denominator of the right hand side in Equation 5 could be
zero.

Algorithm 1 proj operator onto the cone of symmetric positive semidefinite
(PSD) matrices
1: Input D: Symmetric matrix
2: Output Dproj: Projected matrix onto the cone of symmetric PSD matrices
3: G = − 1

2JDJ , where J = In − 1
n11> (n: number of atoms) , with

G = PDP−1, P real matrix such that PP−1 = In

4: D+ diagonal matrix such that D+(i, i) = max(0, Di,i)

5: E = PD+P−1

6: Dproj = 1diag(E)T − 2E + diag(E)1>

7: Return Dproj

To transform the matrix D to a matrix corresponding to a Euclidean
3D molecular object, the proj operator takes as input a symmetric matrix
D, and returns its projection Dproj onto the cone of symmetric positive
semidefinite (PSD) matrices. This projection is obtained using the procedure
described in Algorithm 1 (see (Dokmanic et al., 2015) for details about
this transformation).

In order to estimate the impact of noise addition, we conducted
experiments on the φ angles of the first 25 residues of a protein (PDB entry:
1M22) extracted from Dataset A (presented in Sect. 2.7.3). Results obtained
for a thousand Monte-Carlo simulations are depicted in Figure S2A for
noise levels η1 ∈ {0.05, 0.1} Å. We conclude that noisy distances will
impact significantly dihedral angles when the imprecision is greater than
0.05Å.

Eq. (2), formulated as cosω = h(α, β, γ), shows that the dihedral
angle ω can be computed only based on angles α, β, γ. If these angles
were to be computed with another method than distances, the impact on
the dihedral angles might be reduced. In order to evaluate the robustness
of our features to the imprecision on angles α, β and γ (Figure S1), we
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conducted a similar experimental analysis:

cosω = h((α, β, γ) + ε)

where ε ∈ R3 ∼ N (0, η2 × 1), with N being the normal distribution,
0 = (0, 0, 0), 1 = (1, 1, 1), and η2 being the relative amplitude of the
noise on the cosines. Similarly to the evaluation of noise effect on distances,
we considered a thousand Monte-Carlo simulations. The results are depicted
in Figure S2B for noise levels η2 ∈ {0.05, 0.1}. They show that adding
noise to angles α, β and γ has less impact to dihedral angles ω than adding
noise to the distances between atoms i, i− 1, i− 2, i− 3. Following the
results of these numerical experiments, the robustness to noise of Sequoia
will be tested in the following by adding noise to cosω. The error induced
on ω by adding noise on cosω was also estimated using Monte Carlo
simulations (Figure S2C). Depending on the regions of ω values and on
the noise level η2, the error was comprised between 3 and 14◦.

2.4 Simple baseline with first order statistics

A first order statistics (FOS), considered as the baseline for the prediction
of secondary structure, was defined for comparison purposes with Sequoia.
For a fair comparison (Section 2.5), the baseline will also be sequence
agnostic. FOS considers the neighborhood of a residue in the graph and
compute the average and variances of the cosine of the dihedral angles φ
and ψ in this neighborhood. The average and variances are then used as
features for supervised classification as further explained in Section 2.6.

The idea of this baseline is based on the following remark. Along each β
strand element, the protein backbone extends locally in a straight direction
whereas along α helices, the backbone displays locally a spiral. These very
different local geometries should have an impact on the moving average of
cosine of dihedral angles φ and ψ, which leads to the FOS definition.

2.5 Sequoia: a Message Passing Neural (MPN) network

One of the advantages of modeling the protein as a graph of residues is to
harness the experimental performance of graph neural networks (GNNs).
For the sake of generality, we adopt the formulation of message passing
(Gilmer et al., 2017) which describes the core idea of GNNs. In the
following, the variable t represents a time increment of the parameters of
the model, and htv the hidden variable state of node v at time t. The initial
hidden states of the model h0v are set to the features considered, which
in the frame of this article are the cosines of the pseudo dihedral angles
between residues. During the message passing phase, the hidden states
htv of each each node in the graph are updated based on messages mtv
according to

mt+1
v =

∑
w∈N(v)

Mt(h
t
v , h

t
w, e

w
v )ht+1

v = Ut(h
t
v ,m

t+1
v ) (6)

where Mt is a message function and Ut a vertex update function. After T
iterations, the final output of the node is computed with a readout function
R:

yv = R(hTv∈G)

The choice of the family ofMt andUt andR lead to the design of the graph
neural network, as explored in several references for various applications
(e.g. Convolutional Network (Duvenaud et al., 2015), Gated Graph Neural
Network (Li et al., 2016) or Molecular Graph Convolutions (Kearnes et al.,
2016)). The learning of the parameters is then performed using standard
back-propagation, interpreting the parameter t as the index of the neural
network layer. The choice of functions Mt, Ut and R for our experiments
is described in Section 2.7.2.

2.6 Secondary structure prediction with node classification

Based on our formulation, the attribution of a secondary structure to a
residue can naturally be formulated as a node classification problem. If y
represents the label variable, then we consider three situations:

• α-None: attribution to an α helix element. y ∈ {0, 1}.
• β-None: attribution to a β strand element. y ∈ {0, 1}.
• α − β−None: attribution to an α helix, to a β-strand, or to other.
y ∈ {0, 1, 2}

• All: attribution to all secondary structure elements defined in DSSP
(Kabsch and Sander, 1983), leading to 8 classes: y ∈ {0, ..., 7}.

On the one hand, the FOS method translates into a simple classification
problem that we approach with standard supervised learning methods.
On the other hand, the MPN method leads to the training of a message
passing neural network. The details of the classifier used for FOS and MPN
architecture are described below. ref1:label3 The training on the Datasets A
and B has been organized in the following way: 70% of randomly chosen
proteins from Dataset A were used for training and the remaining part for
testing. The proteins from Dataset B were only used for testing.

2.7 Practical implementation

2.7.1 FOS
As detailed in Section 2.4, the first order statistics (FOS) formulation leads
to a simple classification problem with features belonging to R3 . We used
a k-nearest neighbors as the classifier for our baseline.

2.7.2 MPN
The design of our message passing neural network (MPN) is based on the
continuous kernel-based convolutional operator from (Gilmer et al., 2017),
also known as the edge-conditioned convolution from (Simonovsky and
Komodakis, 2017). Our implementation is based on the two high-level
APIs pytorch (Paszke et al., 2017) and pytorch-geometric (Fey and Lenssen,
2019).

We used a two layer kernel-based convolutional, where two message
passing schemes are performed sequentially on the hidden states. In our
case, for each of the two layers, the message function Mt and the vertex
update function Ut are defined as:

Mt(h
t
v , h

t
w, e

w
v ) = htw .N (ewv )

Ut(h
t
v ,m

t+1
v ) = Θ . htv +mt+1

v

where N is a 4 layer linear perceptron with Rectifier Linear Unit
(ReLU) activations between each layer and Θ is a linear operator. Finally,
the readout function R is a softmax function composed with a two-layers
linear perceptron to output after the two main layers a predicted label yv
for each v.

Our initial formulation leads to one dimensional discrete node feature
corresponding to the type of amino acid residue for the node and the edge
features defined above as xkl and xab and containing distances and cosines
of pseudo-dihedral angles. However, we noticed a gain in performance by
aggregating edge features in the neighborhood of a node into its features.
This behavior is somehow similar to the experiments led in (Gilmer et al.,
2017) where edge features constructed from the node features were added
to the graph. In our case the transformation goes from edges to nodes. We
conjecture it to be a consequence of data augmentation (Chen et al., 2020).

2.7.3 Datasets of protein structures
Dataset A: Dataset A is composed of 3621 protein X-ray crystallographic
structures downloaded from the server PISCES (Wang and Dunbrack,
2003). These structures correspond to a set of Protein Data Bank (PDB)
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(Berman et al., 2000) entries for which structures have been determined at a
resolution better than 1.6 Å, and with R factors better than 0.25. The set of
PDB entries and protein chains present in dataset A has been chosen (Wang
and Dunbrack, 2003) in order that the percentage of sequence identity
between any pair of chains is smaller than 20%, to avoid statistical bias on
the protein sequences.

Dataset B: Dataset B is composed of 226 protein structures obtained by
processing the database of NMR chemical shifts used for the training of the
neural network TALOS-N (Shen and Bax, 2015). For 226 proteins of this
database, a structure was determined by NMR. We decided to pick up the
first conformer of these NMR structures to build a NMR structure database.
The list of proteins and chains used in Datasets A and B are available in
the Supplementary Material.

2.7.4 Validation of Sequoia results
The secondary structures predictions obtained using Sequoia were compared
to the output of DSSP (Kabsch and Sander, 1983), a classical software for
the determination of secondary structures. Training samples corresponds
to 50% of the samples in Dataset A and the validation samples to other
25% of Dataset A. Finally Test A correspond the 25% remaining samples
of Dataset A, and Test B corresponds to the whole Dataset B.

2.7.5 Evaluation metrics
To evaluate the performance of Sequoia and compare it to our baseline, we
use the F1-score, which is the geometric mean between recall and precision.
Recall and precision extend to the multi-class case, and so does F1. In a
problem with d classes, let Pi be the ratio of samples correctly assigned to
the class i over the number of samples assigned to the class i. LetRi be the
ratio of samples correctly assigned to the class i over the true number of
samples within class i. Then recall, precision and F1-score are defined as

R =
1

d

n∑
i=1

Ri P =
1

d

d∑
i=1

Pi F1 =
2(R× P )

(R+ P )

2.8 Use of Sequoia on information coming from EM maps

Predictions were also realized in the context of low resolution structural
information, by analyzing positions of atoms Cα predicted from electronic
microscopy (EM) maps. To do so, we used the output of a deep-learning
approach, Deeptracer (Si et al., 2020; Pfab et al., 2021), which predict
positions of protein atoms from the image recorded from EM single particle
analysis. Several entries from the EMDB, which will be described below,
were used as inputs for the Web server of Deeptracer1 , and the early output
containing only atoms Cα was used to feed Sequoia.

3 Results
ref1:label4 The results obtained by Sequoia will be compared to a first order
statistics (FOS), defined as the average and variances of the cosine of the
dihedral angles φ and ψ in the neighborhood of a residue. The predictions
are run on two datasets of protein structures: the dataset A composed of
3621 protein X-ray crystallographic structures downloaded from the server
PISCES (Wang and Dunbrack, 2003) and the dataset B composed of 226
protein structures obtained by processing the database of NMR chemical
shifts used for the training of the neural network TALOS-N (Shen and Bax,
2015). Several classifications of secondary structure elements have been
predicted: α-Other assigning α helix elements, β-Other assigning β strand
elements, α-β-Other assigning α helix and β strand elements, and All

1 https://deeptracer.uw.edu/home

assigning all secondary structure elements defined in DSSP (Kabsch and
Sander, 1983).

3.1 Prediction of secondary structure elements

Several experiments have been conducted to investigate the efficiency
of Sequoia. First, the Sequoia results have been compared to the FOS
baseline in order to estimate the performance improvement brought by a
cutting-edge machine learning approach (Figure 1).

The results obtained for secondary structure assignment are reported in
Figure 1 for the noise-free tests, and for the noise level η2 ∈ {0.05, 0.1}.
The first order statistics (FOS) method, introduced in Section 2.4, provides
a solid baseline with prediction success rates (dashed lines) larger than
50% for graphs with all backbone atoms, in three cases: α-Other, β-Other,
α-β-Other. In the case of noise-free test the best F1-scores are obtained
using k = 20 in the nearest neighbors classifier, whereas for the test in
presence of noise, k = 60 is required in the classifier to obtain the best
F1-scores.

Interestingly, the message passing neural network Sequoia (Figure 1,
continuous lines) provides improvement with respect to FOS by a wide
margin (5% to more than 10%). The best improvement is obtained for
the classification α-β-Other (cyan curves). Furthermore, the improvement
increases with the addition of noise, which proves Sequoia is more robust.

The best prediction results are obtained in all cases for the classification
α - Other (Figure 1: green continuous curves). This is certainly due to the
very narrow interval of dihedral angles corresponding to the definition of
the α-helix, which makes the angles values more discriminant. Adding the
β-strand (black and cyan curves) induces a decrease of success rate as the
dihedral angles defining the β-strand sample larger value intervals. Finally
predicting a full classification requires to take into account the whole set
of dihedral values measured in the proteins, which sample much larger
intervals and display large heterogeneity in regions outside of α-helices
and β-strands. Consequently, the results obtained for predicting the eight
types of secondary structure described in DSSP (magenta curves) are, in
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Fig. 1. Sequoia and FOS predictions of secondary structure elements. The predictions (F1-
score) are displayed for all atoms (upper panels) and atoms Cα (lower panels), for Datasets
A (left panels) and B (right panels) and for Sequoia (continuous lines) and FOS (dashed
lines). The Datasets A and B are described in details at the end of Supplementary Material.
The F1-scores are plotted according to the noise level added to cosω (Section 2.3).

https://deeptracer.uw.edu/home
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all cases, behind from other predictions by 10 to 20%. This behavior is
expected as the power of a classification approach heavily depends on the
number of predicted classes.

The statistical approaches FOS and Sequoia display different behaviors
on data-sets A and B displayed respectively on right and left panels of
Figure 1. For the classification α-Other (green curves), the success rates
are better for NMR (B) than for X-ray (A) data-sets. ref2:label6 This
difference might come from α structures more regular than other secondary
structure elements in NMR structures. Indeed, in NMR studies, the proton
nuclei present in β strand regions are more difficult to assign than for other
secondary structure elements.

For other classifications, the results are inverted as the success rates are
better for X-ray (A) than for NMR (B) structures, specially in the presence
of noise η2. The difference even goes up to 6% for classification All. The
smaller success observed in the case of NMR solution structures is not
surprising as the larger flexibility in solution which reduces the precision
of these structures and consequently hampers the learning procedure. In
addition, as described in Section 2.7.4, the Dataset B is only used for testing
purpose and not for training.

When only Cα atoms were included, the prediction of secondary
structures (Figure 1, lower panels) displays features similar to those
observed when all atoms were included in the graph. In case where no
noise was added to the angle/distance information, the F1-scores were the
most decreased, but the decrease was bigger for FOS than for Sequoia.
Overall, the prediction of α helix alone (green curves) keeps quite similar
scores than in the case of all backbone heavy atoms were considered. There
is a marked decrease of the success as soon as more than one type of
secondary structure is considered. The Cα networks seems thus to have
less discriminating features between different secondary structures than the
all network of heavy backbone atoms. When the Datasets A (left panels)
and B (right panels) are compared, the improvement for α-Other (green
curves) in the Dataset B is similar that the one observed for all atoms. For
the classification All, the proteins of Dataset B display significantly worse
results than those of Dataset A.

3.2 Effect of degraded input

ref2:label5 Figure S3 display the Sequoia results in the case of degraded
input. Two cases were investigated: (i) the ablation of various percentages
of atoms (left panels) and (ii) the number of considered neighbors in the
graph (right panels). The rational for exploring these aspects is the presence
of noise in all experimental techniques of structural biology. The reason for
analyzing the aspect (ii) is rather the numerous protein structures for which
regions are not visible due to various experimental problems described in
the introduction.

The effect of degraded input was investigated by reducing randomly the
number of residues in the graph (left panels) or by increasing the number
of connected neighbors described by the hyperparameter k (right panels)
introduced in Section 2.1. In the graph including all backbone heavy atoms,
several percentages of residues ablation from the graph network were
considered (Figure S3, upper left panel). It is remarkable that the prediction
by Sequoia is reduced from less than 10% for all ablation levels smaller
than 20%. For larger ablation levels, the success rate decreases strongly
but, for the prediction of α or β elements, is mostly reduced of about 20%
for an ablation level of 50%. The two Datasets A and B (continuous and
dashed lines) displays similar resistance to ablation for all predictions.

The influence of the hyperparameter k, defining for each residue, the
number of neighbor residues connected by an edge in the graph, was also
investigated (Figure S3, upper right panel). Hyperparameter values k in
the range 3-5 have been explored in addition to the value of k = 2 used in
the previous analyses (Figure 1). The predictions are more robust to the
increase of k than they were to the ablation of residues. Sequoia displays

improved success rates along the number of neighbors for all types of
investigated predictions. As the neighbor residues are added to the graph
basing only on a distance criterion, they are shared between residues close
in the primary sequence and other far apart in the primary sequence. The
increase of success rates observed when adding more neighbor residues,
gives an insight that the generalized definition of φ and ψ proposed in the
present work, is quite efficient to decipher between residues close and far
apart in the primary sequence. Indeed, the detection of secondary structure
elements favor the residues close in the primary sequence to the detriment
of the residues far apart in the primary sequence.

The effect of degraded input was also tested on the simplified network
containing only atoms Cα (Figure S3, bottom panels). Concerning the
random ablation of residues, the results on Cα graphs are quite similar
(Figure S3, bottom left panel) to the results obtained on the backbone
atom graph, with an overall reduction of scores of about 5% for ablation
percentages up to 20%. For ablation percentages larger than 20%, the α-
Other (green curves) prediction is much more affected than the predictions
β-Other (black curves) and α-β-Other (cyan curves) predictions which
display relatively flat variations according to the increase of ablation. This
might be related to the difference of geometry between an α helix and a
straight line corresponding to a β region. Indeed, in a helix defined by
points, the removal of points has a larger influence on the perception of the
geometric figure than in a straight line. The influence of the hyperparameter
k was also investigated (Figure S3, bottom right panel) for the graph
containing only atoms Cα. The observed trends were similar to those for
the graph including all backbone heavy atoms. Nevertheless, the increase
of F1 score is less marked and corresponds rather to a plateau of values.
ref2:label1 In addition, the efficiency of Sequoia was tested on the Dataset
A’, extracted from the server PISCES (Wang and Dunbrack, 2003) with
structures determined at a resolution between 3 and 5 Å, and with R factors
worse than 0.25. The F1 scores obtained by Sequoia on this Dataset (Table
S1A) are quite close from the one obtained on the Dataset A.

3.3 Sequoia and other approaches for determining
secondary structure

ref2:label3 The Sequoia results have been put in parallel with various
alternative approaches for secondary structure prediction.

The efficiency of Sequoia for the prediction of secondary structure
was compared to the software PSIPRED (Jones, 1999), which takes as
only input the protein sequence. PSIPRED 4.02 was run on the proteins
of Dataset A, and F1 scores of Sequoia have been calculated comparing
the Sequoia output to DSSP and PSIPRED outputs (Table S1B). The F1
scores obtained using PSIPRED outputs are smaller than the ones obtained
using DSSP: the difference is in the range 5-7 for the all atoms systems
and is 3 for the Cα systems. This proves that the the geometric input used
by Sequoia, although it does not contain sequence information, produces
information closer to DSSP output than to PSIPRED output.

The human proteins present in the database of AlphaFold models at
alphafold.ebi.ac.uk has been screened to get the entries containing
structures present in the dataset A. These AlphaFold models were
downloaded from the EBI database and the domain structures extracted.
These 312 domain models were processed by Sequoia and their F1 scores
with respect to DSSP were compared to the F1 score obtained on the
corresponding domains in the Dataset A. The F1 scores are similar (Table
S1C) to these previously obtained on dataset A whatever all atoms or only
the atoms Cα are considered.

The software STRIDE (Frishman and Argos, 1995) has been run on
proteins of Dataset A and the secondary structure elements extracted. The
Sequoia prediction have been then compared to the STRIDE prediction,
and similar results were obtained when using DSSP as comparison check
(Table S1D).

alphafold.ebi.ac.uk
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3.4 Positions of Sequoia erroneous predictions

The error cases in Sequoia prediction were examined for Dataset A in the
absence of noise (Figure S4, upper panel). For each erroneously predicted
residue, the distance of the residue to the extremity of the corresponding
secondary structure element was determined. For classifications α-Other
and β-Other, a large majority of the erroneous predictions (w = 2) were
located at the limits within the two first or the two last residues of a
secondary structure element, most of them being the first or the last residue
(w = 1). These erroneous predictions are the sign of different points of
view on the limits of secondary structure elements. DSSP handles a discrete
classification, whereas Sequoia is sensitive to the geometrical deformations
close to the limits which leads to to exclude the limit residues from the
detection of the element. If one would exclude the limit residues from the
initial definition of the secondary structure element, the success rates in
Figure 1 would increase for Sequoia from 94.4 up to about 97% for the
prediction α-Other.

The positions of the residues erroneously assigned to secondary structure
elements in a Cα graph (Figure S4, bottom panel), displays a quite striking
difference from the predictions realized in the graph including backbone
heavy atoms. Indeed, the erroneous β-Other predictions are in majority
located at the extremity of the β strands, but in a lesser extend that for
the graph built from backbone heavy atoms (Figure S4). At the contrary,
the erroneous α-Other predictions are more often located at the extremity
of the α helices than in the all-atom graph. This difference of behavior
between the graph of Carbons α and the all atom graph is related to the
differences in the geometry of an helix and a straight line mentioned above.

3.5 Examples of Sequoia use

Some examples of Sequoia predictions are given for three proteins
displaying only α helices, only β strands or both types of secondary
structures (Figure S5). The α helices and β strands are in good agreement
with the DSSP predictions. The missing residues in the prediction of
secondary structure elements are mostly located at the extremities of the
elements in agreement with the previous analyses of Figure S4.

The efficiency of Sequoia prediction was also tested on Cα positions
determined using Deeptracer (Si et al., 2020; Pfab et al., 2021) on three
EM maps obtained from the Electronic Microscopy Data Bank (EMDB) 2:
EMD-23927 (Hoq et al., 2021), EMD-30915 (Liu et al., 2021), EMD-30942
(to be published). These entries were chosen as they correspond to different
protein complexes (affinity captured human p97 hexamer, Salmonella
flagella MS-ring protein FliF 1-456, apo spike protein of SARS-CoV2).
They were obtained by single particle reconstruction and correspond to
medium resolution data, for which the determination of atomic positions
is not straightforward. The resolutions for the entries EMD-23927, EMD-
30915, EMD-30942 were respectively of: 4.22, 3.45 and 4.46 Å, and no
corresponding PDB entry has been described in EMDB for these data.

The EM maps were uploaded to the Deeptracer Web server 3 and
the deep-learning prediction of atoms positions was run using the default
parameters. The output containing only Cα atoms was downloaded and
given to the Sequoia prediction tool trained on the database of Cα graphs
with the classificationsα-Other andα-β-Other. The results of the prediction
are displayed in Figure 2. The predicted α helices and β strands are drawn
in cartoon whereas the residues predicted to belong to the classification
Other are drawn as spheres. Sequoia is able to catch quite a number of the
secondary structure elements expected in these structures.

ref1:label2 The backbone tracing results obtained by Deeptracer (Si
et al., 2020; Pfab et al., 2021) on the selected entries from the EMDB were

2 www.ebi.ac.uk/pdbe/emdb/
3 deeptracer.uw.edu/home

compared to the results produced by Sequoia, by calculating the number of
secondary structure elements detected and their average lengths (Table S2).
Sequoia detects larger number of elements with shorter lengths, which is
the sign of a larger fragmentation of the elements. This tendency is not
surprising as Deeptracer makes use of the vertex information provided by
EM maps and follows a step-by-step prediction path whereas Sequoia just
uses as input the sparse information coming from the Cα positions.

4 Discussion
The main outcome of this work is to propose a method for predicting
the secondary structure elements of proteins using as input the distances
between atoms and not requiring the knowledge of residue succession in
protein sequence. To the best of our knowledge, this is the first time in
the literature that secondary structures are predicted in such a frame. We
showed above that this approach was made possible by a generalization of
dihedral backbone angles φ and ψ for (i) the case of couples of residues,
covalently bonded in the protein sequence or not, as well as for (ii) the case
of a Cα atoms graph.

The type of neural network used for the Sequoia prediction is also
an innovative aspect of the approach, as it is a message passing neural
network (MPN). Although MPN approaches have already been used in
the context of ligand docking (Fout et al., 2017; Zhu et al., 2020; Zhao
et al., 2021), this type of neural network is used here for the first time
in the context of protein structure prediction. In order to apply the MPN
approach, we have constructed a graph on the protein residues in which
the existence of an edge depends only on a threshold distance between the
residues vertices, and not on their involvement in a covalent bond and is
thus independent from the sequence information. This approach can exploit
an essential advantage of MPN methods when dealing with fragments of
protein structures, as it is the case if disordered regions of the protein are
not observed, or if one deals with medium-resolution EM maps.

Sequoia performs better than first order statistics (FOS), and is resistant
to noise. The classifications producing the best success rates are α-Other,
β-Other and α-β-Other, in agreement with the knowledge on the ranges
of dihedral angles in proteins. The three classifications α-Other, β-Other
and α-β-Other, obtained by Sequoia, are successful at percentages mostly
larger than 80% even for the less precise Dataset B formed with NMR
structures. Sequoia approach is also remarkably resistant to the ablation of
protein residues and to the variation of distance threshold between residues.

The examination of individual residue errors in Sequoia revealed that
most of these errors are located within the two first or last residues of the
considered secondary structure elements. The origin of such errors arises
from the choice of the method DSSP (Kabsch and Sander, 1983) as reference
for validating Sequoia. Indeed, DSSP implements a discrete classification
of residues among secondary structures in which the prediction jumps from
one to another value at the limits of secondary structure elements, without
continuous interpolation. Such discontinuity disagrees obviously with the
protein structure variations which occur continuously along the protein
backbone, as shown in the approach screwfit (Calligari and Kneller, 2012),
based on a modeling of the protein backbone in terms of a curve with
intrinsic torsion.

Sequoia represents also a step toward a coarse-grained perspective of
the interval Branch-and-Prune (iBP) approach (Lavor et al., 2012; Liberti
et al., 2014). Indeed, iBP, as well as Sequoia, is based on the use of
distances and angles (Worley et al., 2018) inputs, and was up-to-now, an
algorithm basing the protein structure determination on a tree building,
each tree level corresponding to atoms. With the help of Sequoia, it should
be now possible to consider the replacement of certain groups of atoms by
secondary structure elements. In that way, the tree will be simplified and
the combinatorial problems due to algorithm complexity reduced.

www.ebi.ac.uk/pdbe/emdb/
deeptracer.uw.edu/home
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EMD-23927

EMD-30915

EMD-30942

Fig. 2. Results of Sequoia on outputs of the Deeptracer Web site (Si et al., 2020)
deeptracer.uw.edu. The Sequoia prediction α-Other was run on EMD-23927 and EMD-
30915 whereas the Sequoia prediction α-β-Other was run on EMD-30942. In each panel,
the predicted α helices and β strands are drawn as cartoon, and other residues as grey
spheres, and is labeled by the corresponding entry in (Abbott et al., 2018). The detected
α helices are colored in magenta and the β strands in orange.The structure images were
produced using pymol (DeLano, 2002).

Sequoia displays results on a graph containing only atoms Cα, which
are similar than the results obtained considering all backbone heavy atoms.
Unsurprisingly, the reduced input information produces a decrease of the F1
scores. Nevertheless, Sequoia displays a reasonable robustness with respect
to the reduction of the information from the molecular graph. Similarly,
Sequoia shows constant success rates or even improvements when the

complexity of the graph is increased by increasing the number of neighbors
described by the hyperparameter k.

ref1:label1 As Sequoia is able to predict secondary structure elements
from the positions of atoms Cα, it could generate on the fly cartoon
representation of secondary structure. This would be of great help for the
3D visualization of low resolution structures.

ref1:label6 One can also notice that the prediction of secondary structure
elements by Sequoia permits to assign residues to the same element. This
provides the sequence succession information within such elements.

In cryo electronic microscopy (EM), the detection of secondary structure
elements in the medium resolution EM maps is a fundamental step for
connecting EM signal to structural information. The analysis of Cα graphs
performed here have some relationship to the EM maps as the Cα atoms
can be considered as a simplified description of the residue electronic
density or of the EM map voxel.
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