
Automatic generation of symmetry-breaking

constraints

Leo Liberti

LIX, École Polytechnique, F-91128 Palaiseau, France

liberti@lix.polytechnique.fr

Abstract. Solution symmetries in integer linear programs often yield
long Branch-and-Bound based solution processes. We propose a method
for finding elements of the permutation group of solution symmetries,
and two different types of symmetry-breaking constraints to eliminate
these symmetries at the modelling level. We discuss some preliminary
computational results.

1 Introduction

We consider a Mixed Integer Linear Program (MILP) in the following form:

min c⊤x
Ax ≤ b
x ∈ [xL, xU]

∀i ∈ Z xi ∈ Z.















(1)

where c, x, xL, xU ∈ R
n, b ∈ R

m, A is a real m × n matrix and Z ⊆ {1, . . . , n}.
Throughout the paper, elements of groups are represented by means of permu-
tations of either the column or the row space; permutations on the row space are
denoted by left multiplication, and permutations on the column space by right
multiplication. Because a solution x of (1) has as many elements as the columns
of A, a permutation π on x is likened to a permutation of the column space, and
hence denoted by right multiplication xπ.

Problems (1) having many symmetries are known to be very difficult to
solve to global optimality with Branch-and-Bound (BB) techniques. These con-
verge slowly in presence of symmetries because many leaf nodes in the BB tree
may contain (symmetric) global optima: hence, no node in the paths leading
from the root to these leaf nodes can ever be pruned. Despite the practical
difficulties given by solution symmetries, group-theoretical methods in math-
ematical programming did not have an impressively wide diffusion over the
years, and may be classified in three broad categories: (a) the abelian group
approach proposed by Gomory to writing integer feasibility conditions for x; (b)
symmetry-breaking techniques for specific problems, whose symmetry group can
be computed in advance; (c) general-purpose symmetry group computations and
symmetry-breaking techniques implemented via branching strategies and local
cuts in a typical BB solution algorithm.

2 Leo Liberti

Category (a) was established by R. Gomory [7]: given a basis B of the con-
straint matrix A, it considers the (abelian) group G = Z

n/〈col(B)〉, where Z
n

is the additive group of integer n-sequences and 〈col(B)〉 is the additive group
generated by the columns of the (nonsingular) matrix B. We consider the natu-
ral group homomorphism ϕ : Z

n → G with kerϕ = 〈col(B)〉: letting (xB , xN) be
a basic/nonbasic partition of the decision variables, we apply ϕ to the standard
form constraints BxB + NxN = b to obtain ϕ(BxB) + ϕ(NxN) = ϕ(b). Since
ϕ(BxB) = 0 if and only if xB ∈ Z

n, setting ϕ(NxN) = ϕ(b) is a necessary and
sufficient condition for xB to be integer feasible. Gomory’s seminal paper gave
rise to further research, among which [22, 1]

Category (b) is possibly the richest in terms of number of published pa-
pers. Many types of combinatorial problems exhibit a certain amount of sym-
metry. Symmetries are usually broken by means of specific branching techniques
(e.g. [16]), appropriate global cuts (e.g. [21]) or special formulations [11, 2] based
on the problem structure. The main limitation of the methods in this category
is that they are difficult to generalize and/or to be rendered automatic.

Category (c) contains two main research streams. The first was established
by F. Margot in the early 2000s [14, 15], and is applicable to problems in general
form (1) where xL = 0, xU = 1, i.e. Binary Linear Programs (BLPs). Margot
defines the symmetry group of a BLP as:

{π ∈ Sn | c⊤π = c⊤ ∧ ∃σ ∈ Sn (σb = b ∧ σAπ = A)}, (2)

or, in other words, all relabellings of problem variables for which the objec-
tive function and constraints are the same. The symmetry group (2) is used to
derive effective BB pruning strategies by means of isomorphism pruning and
isomorphism cuts local to some selected BB tree nodes (Margot extended his
work to general integer variables in [17]). Stronger results of the same type can
be obtained for covering and packing problems [20], for these have an objec-
tive function vector c = (1, . . . , 1) and a RHS vector b = (1, . . . , 1) fixed by all
elements of Sn and Sm respectively, and their constraint matrix is 0-1.

The second was established by V. Kaibel and M. Pfetsch in 2007 [9]. Symme-
tries in the column space (i.e. permutations of decision variables) of binary ILPs
having 0-1 constraint matrices are shown to affect the quality of the linear pro-
gramming bound. Limited only to permutations in cyclic and symmetric group,
complete descriptions of orbitopes are provided by means of linear inequalities.
Let x′ be a point in {0, 1}n (the solution space), with n = pq, so that we can
arrange the components of x′ in a matrix C. Given a group G and π ∈ G, for all
0-1 p × q matrices C let Cπ be the matrix obtained by permuting the columns
of C according to π. Let G · C be the orbit of C under the action of all π ∈ G,
G · C be the lexicographically maximal matrix in G · C (ordering matrices by
rows first) and Mmax

pq (G) be the set of all G · C. Then the full orbitope associ-
ated with G is conv(Mmax

pq (G)). Inspired by the work on orbitopes, E. Friedman
very recently proposed a similar but extended approach leading to fundamental

domains [5]: given a feasible polytope X ⊆ [0, 1]n with integral extreme points
and a group G acting as an affine transformation on X (i.e. for all π ∈ G there

Automatic generation of symmetry-breaking constraints 3

is a matrix A ∈ GL(n) and an n-vector d such that πx = Ax+ d for all x ∈ X),
a fundamental domain is a subset F ⊂ X such that GF = X.

The Constraint Programming (CP) community is also concerned with sym-
metries and some of the results in the CP literature can be extended to mathe-
matical programming (see [3] for a good introduction).

The present work belongs to category (c): it proposes general-purpose meth-
ods for identifying (some) solution symmetries and restrict the feasible region
so that it does not contain all representatives per equivalence class. This paper
contributes two ideas: (i) breaking the same type of symmetries described in
[16, 14, 15, 17] at the modelling instead of the algorithmic level (whereas Margot
proposes symmetry breaking methods local to each node of the BB tree, we dis-
cuss global symmetry breaking constraints which can be added to the original
formulation); and (ii) computing symmetries automatically instead of assuming
them as given. In Section 2 we propose symmetry breaking constraints derived
from cycles; Section 3 describes a mathematical program whose solution encodes
a permutation of the symmetry group; in Section 4 we discuss some practical
strategies for exploiting the proposed symmetry breaking constraints and some
preliminary computational results.

1.1 Notation

For a group G ≤ Sn and a set X of row vectors, XG = {xg | x ∈ X ∧ g ∈ G};
if Y is a set of column vectors, GY = {gy | y ∈ Y ∧ g ∈ G}. If X = {x}, we
denote XG by xG (and similarly for Y). For a mathematical program P we let
F(P) be the feasible region of P and G(P) be the set of (global) optima of P .
For x ∈ R

n, we let ran(x) = {a ∈ R | ∃j ≤ n (xj = a)} be the range of x. All
groups considered in this paper are finite.

2 Theoretical results

2.1 Efficiency of symmetry breaking constraints

We let Sn be the symmetric group of order n ∈ N. For a set X ⊆ R
n, a group

G ≤ Sn and x, y ∈ X, we define an equivalence relation x ∼G y ⇔ ∃π ∈ G (xπ =
y). The relation ∼G partitions X into a set E(G,X) of equivalence classes (each
of finite cardinality) such that X =

⋃

Y ∈E(G,X) Y (the cardinality of E(G,X)

itself need not be finite or even countable).

2.1 Definition

A linear constraint dx ≤ d0 with (d, d0) ∈ R
n+1 is symmetry breaking with

respect to G and X if for all Y ∈ E(G,X) there are x̄ 6= ȳ ∈ Y s.t. dx̄ ≤ d0

and dȳ > d0. The constraint is symmetry breaking of order ℓ if there is at least
one equivalence class Y ∈ E(G,X) in which there are exactly ℓ − 1 points y
s.t. dȳ > d0. The constraint is maximally symmetry breaking if there is at least
one equivalence class Y ∈ E(G,X) for which it is symmetry breaking of order
|Y |.

4 Leo Liberti

Defn. 2.1 can easily be extended to systems of constraints. Supposing X ⊆ Z
n,

symmetry breaking constraints are not in general valid cuts for any linear poly-
hedron containing X, because they may also cut off some integral points. How-
ever, they guarantee feasibility of at least one integral point per equivalence
class. Adding appropriate symmetry breaking constraints to P results in a re-
formulation of the narrowing type [13], i.e. a reformulation Q of P with a map
ψ : F(Q) → F(P) such that ψ(G(Q)) ⊆ G(P) [12]. Notice that symmetry break-
ing constraints of order ℓ ≤ 1 do not break any symmetry at all, as they do not
separate any point in any equivalence class of E(G,X).

2.2 Symmetry groups associated to a MILP

We consider symmetries that leave various properties of P invariant.

2.2 Definition

The set
G∗ = {π ∈ Sn | ∀x ∈ G(P) (xπ ∈ G(P))} (3)

of automorphisms of G(P) is called the solution symmetry group of P . The set

G̃ = {π ∈ Sn | ∀x ∈ F(P) (xπ ∈ F(P))} (4)

of automorphisms of F(P) is called the feasible symmetry group of P

It is easy to show that G̃,G∗ are both subgroups of Sn, and that G∗ ≤ G̃. Next,
we extend (2) to formulation (1).

2.3 Definition

The set

GP = {π ∈ Sn | ∀a ∈ {c, xL, xU}

(a⊤π = a⊤) ∧ Zπ = Z ∧ ∃σ ∈ Sn (σb = b ∧ σAπ = A)} (5)

of permutations that fix the problem formulation is called the problem symmetry

group of P .

It is equally easy to show that GP is a subgroup of Sn. The following useful
result states that problem symmetries are solution symmetries.

2.4 Proposition

GP ≤ G∗.

2.3 Symmetry breaking constraints from disjoint cycles

Let R be the relaxation of P obtained by removing the constraints Ax ≤ b, X̄ =
F(R) and X∗ = G(R). Let σ = (σ1, . . . , σk) be a cycle of length 1 < k ≤ n in Sn.
For any x ∈ R

n, let x[σ] = (xσ1
, . . . , xσk

), and assume that x[σ] are constrained
to be integer. Let Ḡ ≤ Sn be the group of all permutation automorphisms of X̄.

Automatic generation of symmetry-breaking constraints 5

If σ ∈ Ḡ, for all x ∈ X̄ and j ≤ k we have xL
σ1

≤ x[σ]j ≤ xU
σ1

, i.e. there is a
unique number of values χ that all variables in x[σ] can take. We let χ̄ be the
row vector whose j-th component is χk−j for all j ≤ k. Consider the following
constraints, often cited in the literature for symmetry breaking purposes [21, 10]:

∀1 ≤ h ≤ k − 1 χ̄(x[σ] − xL[σ]) ≤ χ̄(x[σ] − xL[σ])σh (6)

⇒
k

∑

j=1

χk−j(xσj
− xL

σj
) ≤

k
∑

j=1

χk−j(xσh(σj) − xL
σh(σj)

)).

2.5 Proposition

Let σ = (σ1, . . . , σk) be a cycle of length k ≤ n in Ḡ. Then constraints (6) are
maximally symmetry breaking w.r.t. 〈σ〉, X̄.

The practical trouble with (6) is their well-known poor scaling, as the values of
the coefficients are of different orders of magnitude.

Next, we consider some well-scaled (though less effective) symmetry breaking
constraints.

2.6 Proposition

Let σ = (σ1, . . . , σk) be a cycle of length k ≤ n in Ḡ. For all x ∈ X̄ with
|ran(x[σ])| = ℓ,

∀2 ≤ j ≤ k xσ1
≤ xσj

(7)

are symmetry breaking constraints of order ℓ.

Notice that if ℓ = k, then by Prop. 2.6 (7) are symmetry-breaking constraints
of order k; furthermore, if ℓ = k the vector x ∈ R

n having distinct components
x[σ] gives rise to an equivalence class x〈σ〉 of cardinality k, so (7) are maximally
symmetry breaking. If ℓ = 1 then (7) do not break any symmetry (remark after
Defn. 2.1) but then again if ℓ = 1 it means that x[σ] = (a, . . . , a) for some a ∈ R,
so |x〈σ〉| = 1, which means there are no symmetric solutions complicating the
solution process. The most likely case is that x[σ] ∈ {0, 1}k and ℓ = 2: this is
unfortunate as this situation provides the weakest case of Prop. 2.6. We stress,
however, that symmetry breaking constraint of order ℓ will cut away at least

(not exactly) ℓ− 1 symmetric solutions.

2.7 Example

Let x = (0, 1, 1, 1), and σ = (1, 2, 3, 4). Then x〈σ〉 = {(0, 1, 1, 1), (1, 0, 1, 1),
(1, 1, 0, 1), (1, 1, 1, 0)}. Since |ran(x)| = |{0, 1}| = 2, constraints (7) are symmetry
breaking of order 2. However, exactly 3 elements of x〈σ〉 are cut off by (7) (i.e. all
elements of x〈σ〉r {x}). Taking x = (0, 0, 0, 1), on the other hand, results in (7)
only cutting off xσ = (1, 0, 0, 0) according to Prop. 2.6.

The main insight given by Example 2.7 is that if we make the assumption that
optimal solutions of binary problems will contain on average as many 0s as 1s
on components indexed by σ, we can expect (7) to cut away ⌊k/2⌋ symmetric

6 Leo Liberti

solutions even though ℓ = 2. Another insight is that if we suspect optimal solu-
tions to have a large number of components attaining small values of the range,
we might want to change the ≤ relation in (7) to a ≥ relation to increase the
number of cut-off symmetric solutions (modifying the inequality relation in (7)
to xσ1

≥ xσj
only requires a trivial change to the proof).

3 Finding symmetries

Let

ĜP = {(σ, π) ∈ Sm × Sn | ∀a ∈ {c, xL, xU}

(a⊤π = a⊤) ∧ Zπ = Z ∧ (σb = b ∧ σAπ = A)}. (8)

It is easy to see that the projection of ĜP on the second component Sn is equal to
GP . For q ∈ N, Let ϑ : Sq → GL(q) be the regular (faithful) permutation matrix
representation of elements of Sq, i.e. for π ∈ Sq, ϑ(π) is a doubly stochastic
invertible matrix with entries in {0, 1}, such that for any row vector v ∈ R

n,
vπ = vθ(π). We can then write the condition of (8) in terms of products of
vectors and matrices.

We consider decision variables: σih, the (i, h)-th element of the matrix ϑ(σ)
for all i, h ≤ m,σ ∈ Sm; and πjk, the (j, k)-th element of the matrix ϑ(π) for
all j, k ≤ n, π ∈ Sn. Let z ∈ {0, 1}n be the indicator vector of Z, such that
zj = 1 ⇔ j ∈ Z, and let Γ (P) be the set of binary values of σ, π defined by the
following constraints:

∀j ≤ n
∑

k≤n

xL
k πjk = xL

j ∧
∑

k≤n

xU
k πjk = xU

j (9)

∀j ≤ n
∑

k≤n

ckπjk = cj ∧
∑

k≤n

zkπjk = zk (10)

∀i ≤ m, j ≤ n
∑

h≤m

σihAhj =
∑

k≤n

Aikπkj (11)

∀i ≤ m
∑

h≤m

σihbh = bi (12)

∀j ≤ n
∑

k≤n

πkj = 1 ∧
∑

k≤n

πjk = 1 (13)

∀i ≤ m
∑

h≤m

σih = 1 ∧
∑

h≤m

σhi = 1 (14)

∀j, k ≤ n πkj ∈ {0, 1} (15)

∀i, h ≤ m σih ∈ {0, 1}. (16)

It is easy to show that Γ (P) = {(ϑ(σ), ϑ(π)) | (σ, π) ∈ ĜP }. In order to exclude
the identity from Γ (P), we also add the constraint:

∑

j≤n

πjj ≤ n− 1 (17)

Automatic generation of symmetry-breaking constraints 7

Since by Sect. 4 we look for long cycles, we arbitrarily choose an index j′ ≤ n
which is likely to belong to a long cycle in some permutation of GP (this choice
should be based on the block structure of A) and minimize the following objective
function, which ensures that we select a permutation moving j′:

minπj′j′ . (18)

We call the problem of minimizing (18) subject to (9)-(17) the Feasible Per-

mutation Program associated to P w.r.t. j′, denoted by FPP(P, j′).

3.1 Proposition

If FPP(P, j′) is infeasible, then GP = {e}.

Although solving the full FPP(P, j′) may be more CPU-intensive than solving
the original problem, various improvements based on the block structure of the
constraints in Γ (P) are possible. A promising one consists in solving relaxations
of the FPP where (11) only fix certain rows or blocks, and verifying later than
the solution is valid in the general problem. Computational experience shows
that although the linear relaxation of the FPP may be fractional, solutions to
the FPP are mostly found at the root node of the CPLEX [8] BB tree after cuts
addition.

4 Practical solution strategies

Our strategy for solving (1) consists in seeking permutations of GP having long
cycles in their disjoint cycle representation, and add symmetry breaking con-
straints (6) or (7). In this section we restrict the discussion to the well-scaled
constraints (7) but the same ideas can be (and were) applied to (6) too.

Ideally, we would like to be able to add symmetry-breaking constraints (7) for
all disjoint cycles in all generators of GP . This, however, may lead to infeasibility,
as Example 4.1 shows.

4.1 Example

Suppose G(P) = {(0, 1, 1, 0), (1, 0, 0, 1)} and GP = {e, (1, 2)(3, 4)}. Then both
(6) and (7) would imply x1 ≤ x2 and x3 ≤ x4, which are satisfied by no point
in G(P).

The trouble arises because for a cycle σ, constraints (7) arbitrarily decide that
xσ1

is the component of x[σ] having minimum value. At the modelling level, this
is similar to the main drawback of the algorithm proposed in [14]: “the branching
variable cannot be chosen freely, but always has to be the non-fixed variable with
smallest index” ([15], p. 3-4). However, since at the modelling level there is no
knowledge of what variables are fixed, (7) can only be imposed for one single
cycle. A promising strategy is that of selecting the longest cycle σ from the set
of all disjoint cycles in all permutations of GP . In general, we can change the
arbitrary choice of minimum component for any i ≤ |σ| (the cycle length), and
we denote BreakSymm2(P, i) the reformulated problem P with (7) adapted

8 Leo Liberti

to σ and i as added constraints. It is easy to show that BreakSymm2(P, i) is
a valid narrowing for all cycles σ and i ≤ |σ|, albeit one that is still subject
to an arbitrary choice. We circumvent this by introducing continuous variables
yσ

i ≥ 0 whose value is exactly 0 only if xσi
is the minimum element of σ, and

reformulating (7) as follows:

∀i, j ≤ |σ|, j 6= i xσi
− xσj

≤ yσ
i (19)

∑

i≤|σ|

yσ
i ≤ |σ| − 1. (20)

Constraints (19) express the fact that there may be indices i for which xσi
is

minimum in x[σ], and (20) say that there is at least one such i, thus yielding
a narrowing BreakSymm2(P) that is independent of of the choice of i. We
remark that an aggregated version of (19), when combined with (20), produces
a narrowing Q′ such that F(Q′) = F(BreakSymm2(P)):

∀i ≤ k (|σ| − 1)xσi
−

∑

j 6=i

xσj
≤ (|σ| − 1)yσ

i . (21)

Although in general aggregated constraints tend to produce slacker linear relax-
ations [19], we mention (21) here because in the tested instances they usually
improve CPU times.

Since (19)-(20) together simply express the fact that there is a minimum
component in each x[σ], and this sentence is true for each disjoint cycle and
each permutation in GP , it follows that (19)-(20) can be added to P for each
cycle σ appearing in the set of disjoint cycles over all permutations of GP ,
yielding a valid narrowing denoted by BreakSymm2All(P). This, however,
adds several variables and constraints to P , which implies that the size of the
solution set increases, and each linear relaxation costs more in terms of CPU
time; moreover, although BreakSymm2All(P) is a valid narrowing of P , the
relaxation of BreakSymm2All(P) need not be strictly tighter than that of P .

4.1 Computational experiments

The results we report should be treated as preliminary experiments rather than
full computational results. Although the whole software structure is in place
and the process of finding symmetries and then solutions of MILPs has been
made fully automatic (by means of several different software packages, some
developed on purpose and some off-the-shelf such as AMPL [4], CPLEX [8] and
GAP [6]), finding elements of GP automatically is still too costly in terms of
CPU time. Moreover, because of the small size of problems for which it was
possible to automatically compute symmetries, the addition of constraints and
variables and consequent higher cost at each BB node offset the advantages of
the narrowing as regards CPU time.

We employed the test set as described in Table 1. Instance is the instance
name, Source lists the instance library or citation where the instance appears,

Automatic generation of symmetry-breaking constraints 9

Integers and Constraints report the number of integer variables and constraints
respectively, Size lists the size of the instance in bytes, and Infeasible is 1 if the
instance is infeasible. Table 2 reports the results. Column Group contains the

Instance Source Integers Constraints Size Infeasible

enigma [18] 100 21 5616 0
jgt18 [11], p. 413 132 105 9399 1
oa66234 [17], Table 1 64 42 5176 0
oa67233 [17], Table 1 128 64 12153 0
oa76234 [17], Table 1 64 42 5176 0
ofsub9 [11], p. 413 203 92 13157 1
stein27 [18] 27 118 5789 0
sts27 [15], p. 17 27 117 5612 0

Table 1. Test set description.

subgroup of GP found automatically by repeatedly solving a version of the FPP
with random coefficients on the objective function (we call this the “randomized
FPP procedure”); the group descriptions are non-unique, as there are many pos-
sible semi-direct product types ⋉, see e.g. sts27 and stein27. Longest contains
the size of the longest cycle in the group generators, which is used to formulate
SymmBreak2(P). N is the number of nodes in the BB tree of the original prob-
lem P , and N ′ is the number of nodes in the BB tree of BreakSymm2(P). The
instances were solved by CPLEX 10.1 [8] on one core of a 32 bit Intel Core Duo
1.2GHz with 1.5GB RAM running Linux.

Instance Group Longest N N ′

enigma C2 2 3321 269

jgt18 C2 × S4 6 573 1300
oa66234 S3 2 0 0
oa67233 C2 × S4 6 6 0

oa76234 S3 2 0 0
ofsub9 C3 × S7 21 1111044 980485

stein27 ((C3 × C3 × C3) ⋉ PSL(3, 3)) ⋉ C2 24 1084 1843
sts27 ((C3 × C3 × C3) ⋉ PSL(3, 3)) ⋉ C2 26 1317 968

Table 2. Results of the computational experiments. The last column refers to
SymmBreak2(P). The group descriptions were computed by GAP [6].

Remarks on the experiments.

– Although the instance set is definitely still too small to draw significant
conclusions (work is ongoing to enlarge it), the encouraging result is that

10 Leo Liberti

there was an improvement on the only really difficult instance (ofsub9):
even more so as, it being infeasible, BB performance is poor because there are
many fewer prunings than with feasible ones (no upper bounding objective
function value is ever available).

– The extensions of Sect. 4 applied to (6) did not yield good results due to the
increased constraint matrix density and bad scaling.

– Using the straight version of (6) and (7) (with the arbitrary choice on the
chosen longest cycle orbit representative) sometimes decreases N ′ so that
even the CPU times are improved, depending on the arbitrary choice; in
such cases, (6) were better than (7) as expected.

– Instance stein27 is like sts27 but with an added cardinality constraint (sum
of all variables ≥ 13, a constraint which is inactive on all optimal solutions);
this (small) difference in problem formulation caused the randomized FPP
procedure to find different permutations (although leading to the same group
description, the exact group structure is different) and hence to different
performance.

– Sometimes long “easy” cycles are overlooked, such as in the case of oa66234
and oa76234: the group is S3, yet the cycle only has length 2. This happens
because we select disjoint cycles from the group generators instead of the
group elements themselves to avoid listing all permutations of a group. At
the moment we let GAP select the generators automatically, but an improved
implementation should take care of selecting generators having long cycles.

5 Conclusion and future work

We proposed an automatic way to compute permutations of the symmetry group
of a MILP in general form (1) and derived two types of global symmetry breaking
constraints designed to reduce the number of symmetric solutions. We exhibited
a few preliminary experimental results indicating a positive trend. Future work
will concentrate on: (i) reducing the computational effort taken to find permu-
tations by means of exploitation of the block structure of the MILP constraint
matrix; (ii) finding a method to reduce the influence of the arbitrary choice of
orbit representative in (6), (7) not based on adding variables to the problem;
(iii) extend the computational results to a more significant instance test set.

References

1. D. Bell. Constructive group relaxations for integer programs. SIAM Journal on

Applied Mathematics, 30(4):708–719, 1976.
2. M. Boulle. Compact mathematical formulation for graph partitioning. Optimiza-

tion and Engineering, 5:315–333, 2004.
3. D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, and B. Smith. Symmetry definitions

for constraint satisfaction problems. In P. van Beek, editor, CP, volume 3709 of
LNCS. Springer, Berlin, 2005.

4. R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

Automatic generation of symmetry-breaking constraints 11

5. E.J. Friedman. Fundamental domains for integer programs with symmetries. In
A. Dress, Y. Xu, and B. Zhu, editors, COCOA, volume 4616 of LNCS, pages 146–
153, Berlin, 2007. Springer.

6. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4.10,
2007.

7. R. Gomory. Some polyhedra related to combinatorial problems. Linear Algebra

and Its Applications, 2(4):451–558, 1969.
8. ILOG. ILOG CPLEX 10.1 User’s Manual. ILOG S.A., Gentilly, France, 2006.
9. V. Kaibel and M. Pfetsch. Packing and partitioning orbitopes. Mathematical

Programming, To appear.
10. J. Lee. All-different polytopes. Journal of Combinatorial Optimization, 6:335–352,

2002.
11. J. Lee and F. Margot. On a binary-encoded ILP coloring formulation. INFORMS

Journal on Computing, 19(3):406–415, 2007.
12. L. Liberti. Reformulation techniques in mathematical programming, November

2007. Thèse d’Habilitation à Diriger des Recherches.
13. L. Liberti. Reformulations in mathematical programming: Definitions. In R. Ar-

inghieri, R. Cordone, and G. Righini, editors, Proceedings of the 7th Cologne-

Twente Workshop on Graphs and Combinatorial Optimization, Crema, 2008. Uni-
versità Statale di Milano.

14. F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Program-

ming, 94:71–90, 2002.
15. F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming B,

98:3–21, 2003.
16. F. Margot. Small covering designs by branch-and-cut. Mathematical Programming

B, 94:207–220, 2003.
17. F. Margot. Symmetric ILP: coloring and small integers. Discrete Optimization,

4:40–62, 2007.
18. A. Martin, T. Achterberg, and T. Koch. MIPLIB 2003. A library of pure and

mixed-Integer programs.
19. G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley,

New York, 1988.
20. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. In M. Fis-

chetti and D.P. Williamson, editors, IPCO, volume 4513 of LNCS, pages 104–118,
Berlin, 2007. Springer.

21. H. Sherali and C. Smith. Improving discrete model representations via symmetry
considerations. Management Science, 47(10):1396–1407, 2001.

22. L. Wolsey. Group representation theory in integer programming. Technical Report
Op. Res. Center 41, MIT, 1969.

Appendix

– Proof of Prop. 2.4. Let π ∈ GP and suppose ∃x∗ ∈ G(P) (x∗π 6∈ G∗).
Then either x∗π is feasible in P but not optimal, or it is infeasible. In the
former case, c⊤(x∗π) =

∑

j≤n

cjx
∗
π(j) =

∑

π−1(j)≤n

cπ−1(j)x
∗
j = (π−1c⊤)x∗, so

necessarily cπ−1 6= c, which contradicts π ∈ GP . In the latter case, suppose
σAx∗π 6≤ σb for all σ ∈ Sm, then a computation on indices (similar to the
one above) implies ∀σ ∈ Sm (σAπx∗ 6≤ σb), which also contradicts π ∈ GP

12 Leo Liberti

(the other infeasibility cases x∗ 6∈ [xL, xU] or x∗j is fractional for some j ∈ Z
are similar).

– Proof of Prop. 2.5. The map ϕ(x[σ]) = χ̄(x[σ] − xL[σ]) is injective on
X ′ = [xL

σ1
, xU

σ1
]k by definition, as it makes x[σ] − xL[σ] the base-χ arith-

metic representation for ϕ(x[σ]). For all Y ∈ E(〈σ〉, X̄) we have Y ⊆ X ′, so
the injectivity of ϕ implies that there is a unique element x′ of Y such that
ϕ(x′) is minimum. Therefore the constraints

∀(y 6= x′) ∈ Y (ϕ(x) ≤ ϕ(y)) (22)

are only satisfied by x = x′. Furthermore, since Y = x〈σ〉 for any x ∈ Y ,
the quantification of (22) can be written as ∀1 ≤ h ≤ k − 1, with y in (22)
replaced by xσh. The result follows.

– Proof of Prop. 2.6. Let y′ ∈ Y = x〈σ〉 ∈ E(〈σ〉, X̄), h ∈ {1, . . . , k} such
that y′

σk−h(1) = min ran(y′), and y = y′σh. Then obviously y satisfies (7).

By definition of y and its range, for all h ∈ {2, . . . , ℓ} there is j(h) ≤ k such
that yσk−j(h)

> yσ1
, therefore yσj(h) does not satisfy (7). Notice that since

ℓ ≤ k, the map j can be chosen so that it is injective, yσj(h) are all distinct
for 2 ≤ h ≤ ℓ; hence, there are at least ℓ − 1 distinct elements of Y not
satisfying (7).

– Proof of Prop. 3.1. Notice that Γ (P) is never empty, because it always con-
tains (Im, In). Since for any (σ, π) ∈ ĜP such that π 6= e, (ϑ(σ), ϑ(π)) is
feasible in (17), F(FPP(P, j′)) = Γ (P) r {(Im, In)}, which implies the re-
sult.

