
Plenary Lecture

Measuring smart grids1

Leo Liberti∗

CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France,
liberti@lix.polytechnique.fr

Claudia D’Ambrosio
CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France,

dambrosio@lix.polytechnique.fr

Pierre-Louis Poirion
CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France,

poirion@lix.polytechnique.fr

Sonia Toubaline
CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France,

poirion@lix.polytechnique.fr

Abstract. The SO-grid project aims to develop a smart grid pilot for the French electricity
distribution network. Our workpackage is concerned with the efficient placement of measuring
devices on the network. We give an overview of our progress so far: combinatorial problems
and variants, complexity, inapproximability, polynomial cases, single- and bilevel mathemati-
cal programming formulations, row-generation algorithms, and generalization to a large class
of bilevel MILPs.

Introduction

The three defining properties of a smart grid are reliability, sustainability and value. Reli-
ability is the main motivation for making electrical grids smart: when it was still possible
to increase network capacity to make it reliable, electrical grids were not termed smart. As
soon as capacity increase became infeasible, we started noticing unstable behaviours, such as
large-scale blackouts due to a single point of failure, or to a short but high demand peak. The
only possible way out, when capacity is maximum, is to address the demand. By installing
an Advanced Metering Infrastructure (AMI), it became possible to define new policies based
on Demand Response (DR), mainly by predictive and prescriptive analytics based on the
continuing measurements of electrical quantities such as voltage and current. One of the
most important DR tools these analytics can help improve is pricing. In parallel, renewable
source of energies such and sun and wind power were integrated in the power grid, addressing
some sustainability issues. And finally, in capitalistic societies the private sector’s only motive
for investing into such a costly transformation of the power grid is increased value (another
feature which pricing can help leverage).

1This work was carried out as part of the SO-grid project (www.so-grid.com), co-funded by the French
agency for Environment and Energy Management (ADEME) and developed in collaboration between partici-
pating academic and industrial partners.

1

The type of analytics we discuss here is prescriptive, and concerns the optimal placement
of certain measuring devices on the electrical grid. Although we are not at liberty to disclose
the exact specification or nature of such devices, for the purposes and the intended audience
of this paper we shall assume such devices to be Phasor Measurement Units (PMU), which
measure the voltage at the node v of the grid they are installed at, as well as at a varying
number of nodes in its neighbouring set N(v) [7]. Ohm’s law applied to a link {u, v} ∈ E of
the grid (represented by a graph G = (V,E)),

Vv − Vu = R Iuv,

allows the measure of the current along the link if the voltage is known at the endpoints.
Moreover, by Kirchoff’s law,

∀v ∈ V
∑
{u,v}∈E

Iuv = 0,

it follows that, if Vv is known and, for all u in the neighbourhood N(v) except for at most
one (call it w), Vu is also known, then Vu is known for all u ∈ N(v), including w. It suffices
to exploit Kirchoff’s law to compute the current along the link {v, w}, and then Ohm’s law
to compute Vw.

We call observed the nodes with known voltage and the links with known currents. As
shown above, nodes and links can be observed directly (because of PMUs) or indirectly,
through the application of Ohm’s and Kirchoff’s laws. Since PMUs can be expensive, the
general problem we are concerned with is to find the placement of the smallest number of
PMUs which allows the grid to achieve the state of full observability, i.e. such that all nodes
and links of the grid are observed.

PMUs may have a limited number k of observation channels, meaning that if a PMU is
placed at v ∈ V , it measures the voltage at v and at up to k nodes in N(v). When k = 1,
a PMU installed at v can measure the voltage at v and at a single neighbour u. Since, by
Ohm’s law, the current on {u, v} is known, this situation is logically equivalent at placing
the PMU on the edge {u, v} and measuring the current. In the rest of this paper, we mostly
focus on PMUs with k = 1.

Observability

As mentioned above, the aim is to find the smallest P such that the set of observed nodes Ω
is equal to V . If we use PMUs with k = 1, by Ohm’s law we have:

R1 ∀{u, v} ∈ P (u, v ∈ Ω).

Moreover, by Kirchoff’s law (as above) we also have:

R2 ∀v ∈ V (v ∈ Ω ∧ |N(v) r Ω| ≤ 1→ N(v) ⊆ Ω).

Rules R1 and R2 are known as observability rules, and yield an iterative procedure to achieve
full observability of the grid: from a given P , one applies R1 first (to all links in P) and R2 for
as many times as possible. If Ω = V , P is a feasible placement, and otherwise it is infeasible.

2

Combinatorial problems

All problem variants aim at minimizing |P | in order to achieve Ω = V . The name of the
problem and its exact definition depends on k. For unlimited k, the problem is known as
Power Dominating Set (PDS) [1, 2]. For bounded k, the problem is known as k-PMU
placement problem. The 1-PMU problem is also known as Power Edge Set (PES), and the
0-PMU problem is also known as Power Vertex Set (PVS). While PDS, k-PMU and PES
can all be applied to the setting of electrical grids, the PVS has an application to influence
spreading in social networks [5]. For all variants but the PES, P ⊆ V , whereas for PES (which
is the case we shall consider) we have k = 1 and consequently P ⊆ E, as discussed above.

The PDS is known to be NP-complete on bipartite graphs, planar bipartite graphs and
cographs, and polynomial on trees, meshes, block graphs and bounded treewidth graphs. An
O(
√
n) approximation algorithm is known for the PDS (where n = |V |), but it is hard to

approximate it to within a factor 2log1−ε n.

Hardness and inapproximability

We show that PES is NP-hard by reduction from the Vertex Cover problem on 3-regular
graphs (3VC). We transform a given graph instance G′ of 3VC into a graph G′′ where each
vertex v of G′ is mapped to a 10-vertex gadget in G′′: the hardness proof is long but elemen-
tary. A similar proof shows hardness of approximation to within a factor 1.12 − ε for any
ε > 0 (we can also prove NP-hardness for the PVS). Moreover, we show that the PES is
polynomial on trees (by reduction to Path Cover on trees) and meshes.

An iteration-indexed Mathematical Program

Our first test towards solving PES instances was to model the iterative observability proce-
dure mentioned above within a Mixed-Integer Linear Program (MILP) using binary indicator
variables:

• suv = 1 iff {u, v} ∈ P

• ωvt = 1 if v ∈ V enters the set Ω during iteration t of the observability procedure.

Note that ωvt are iteration-indexed variables, and considerably increase the problem size.
The objective function

∑
{u,v}∈E

suv minimizes |P |, and one of the constraints requires that

Ω = V at the last iteration Tmax (which is O(n)). The constraints implement R1 and R2
in a straightforward way. This formulation turned out to be computationally unsatisfactory
using CPLEX 12.6 on graphs with up to 30 nodes.

Fixed point reformulation

Although PES observability is naturally modelled by an iterative procedure, it is nonetheless
of a monotonic nature. A node is either observed or not; once in Ω, no node can exit the
set during the iteration procedure. This idea led us to describe the observability iteration

3

applied to a vertex v ∈ V by means of the following function of ω, parametrized on s (the
indicator vector of the PMU placement):

θsv(ω) = max

(∑
u∈N(v)

suv, max
u∈N(v)

{
ωu +

∑
w∈N(u)
w 6=v

ωw − (|N(u)| − 1)

})
. (1)

Note that in Eq. (1) ω is independent of the iteration index t: essentially, it describes the
evolution of ω at a given iteration: if ω is the indicator vector of Ω before the iteration
takes place, θs(ω) = (θsv(ω) | v ∈ V) is the indicator vector of Ω after the iteration. By
monotonicity, we can express the end of the iteration procedure by means of a convergence
to a fixed point: ω = θs(ω).

The iteration-indexed MILP can now be re-written as the following nonlinear problem
(where m = |E|):

min
s∈{0,1}m
ω∈{0,1}n

∑
{u,v}∈E

suv∑
v∈V

ωv = n

θs(ω) = ω,

 (2)

which has fewer decision variables than the MILP described above since there are no iteration
indexed variables. Note that the first constraint expresses Ω = V , and the nonlinearity arises
because of the function θs defined in Eq. (1).

Next, we remark that the fixed point condition on θs expresses, by means of the ω variables,
the smallest set of vertices obeying rules R1 (encoded in the left term of the outer maximum
in Eq. (1)) and R2 (encoded in the right term of the outer maximum in Eq. (1)). As such,
it can be written as the following MILP, where the variables s are now to be considered as
problem parameters:

min
ω∈{0,1}n

∑
v∈V

ωv

∀{u, v} ∈ E ωv ≥ suv
∀v ∈ V, u ∈ N(v) ωv ≥ ωu +

∑
w∈N(u)
w 6=v

ωw − (|N(u)| − 1).

 (3)

Finally, we replace the fixed point condition in Eq. (2) by the MILP in Eq. (3) to obtain
the following bilevel MILP (BMILP):

min
s∈{0,1}m

∑
{u,v}∈E

suv

f(s) = n

f(s) =

min

ω∈{0,1}n

∑
v∈V

ωv

∀{u, v} ∈ E ωv ≥ suv
∀v ∈ V, u ∈ N(v) ωv ≥ ωu +

∑
w∈N(u)
w 6=v

ωw − (|N(u)| − 1).

(4)

Single-level reformulation

In general, BMILPs are practically even harder to solve than MILPs, so Eq. (4), by itself,
is not much of a gain. On the other hand, we can prove, by induction on the steps of the

4

observability iteration procedure, that the integrality constraints in the lower-level problem
can be relaxed to ω ≥ 0 without changing the optimal solution. This implies that the lower-
level problem can be replaced by the KKT conditions [4] of its continuous relaxation to the
nonnegative orthant, yielding the following single-level MINLP:

min
s∈{0,1}m
λ,µ≥0

∑
{u,v}∈E

suv∑
{u,v}∈E

(suvµuv + (1− |N(u)|)λuv) ≥ n

∀u ∈ V
∑

v∈N(u)

(µuv + λuv − λvu −
∑

w∈N(u)
w 6=v

λwv) ≤ 1,

(5)

where µ, λ are dual variables of the relaxed lower-level problem. We can also prove that the
variables µ are bounded above (though the bound M is exponentially large), so the bilinear
products suvµuv appearing in Eq. (5) can be linearized exactly using Fortet’s reformulation:
each product is then replaced by an additional variable puv. Finally, this yields the following
single-level MILP:

min
s∈{0,1}m
λ,µ∈[0,M]

∑
{u,v}∈E

suv∑
{u,v}∈E

(puv + (1− |N(u)|)λuv) ≥ n

∀u ∈ V
∑

v∈N(u)

(µuv + λuv − λvu −
∑

w∈N(u)
w 6=v

λwv) ≤ 1

∀{u, v} ∈ E puv ≤ Msuv
∀{u, v} ∈ E puv ≤ µuv
∀{u, v} ∈ E puv ≥ µuv −M(1− suv).

(6)

Eq. (6) yields computational improvements of around 1-2 orders of magnitude w.r.t. the
iteration-indexed MILP. Its weakest point is that the lower-level problem Eq. (3) cannot
easily be changed, lest we should lose its integrality property, which is key to reformulating
the bilevel problem to a single level one. The SO-grid application, however, requires us to
impose some robustness constraints Υω ≤ ξ to the lower level problem. This means we can
no longer reformulate Eq. (4) to Eq. (5); and, ultimately, that we need a different solution
approach.

Solving the bilevel problem directly

It is well known that every subset S of vertices of the hypercube (in any dimension) can
be described linearly, i.e. the convex hull of the vertices in S does not contain any other
hypercube vertex aside from those in S. We apply this fact to the feasible region

F = {s ∈ {0, 1}m | f(s) = n}

of the bilevel problem Eq. (4), obtaining the single level problem:

min
{ ∑
{u,v}∈E

suv | s ∈ conv(F) ∩ {0, 1}m
}
.

5

Since we do not know a polyhedral description of F , we look for a polyhedron P having the
same intersection with the hypercube as F , and aim at solving:

min
{ ∑
{u,v}∈E

suv | s ∈ P ∩ {0, 1}m
}

(7)

using a row generation algorithm [3, 6].

Inequalities for P
Here we write the set Ω(s) of observed nodes in function of the PMU placement encoded by
the indicator vector s. Suppose a placement s is given such that Ω(s) (V . To reach full
observability we must install a PMU onto an unobserved link, obtain a new s, run the ob-
servability iteration procedure, and repeat until Ω(s) = V . This yields a sequence (s0, . . . , sk)
with two properties:

1. Ω(sh) (|V | for h < k and Ω(sk) = V

2. for h < k, sh+1 is minimally larger than sh, i.e.
∑

{u,v}∈E
(sh+1
uv − shuv) = 1.

Property 1 implies that s0, . . . , sk−1 are all infeasible placements for Eq. (4). Our polyhe-
dron P, which approximates the feasibile region F of Eq. (4), must therefore be defined by
inequalities which cut off all of these infeasible placements. Since we can obtain them all very
efficiently by repeatedly running observability iterations, we can simply adjoin no-good cuts
to P for each sh for h < k. To do this, for all h < k we define αh = sh xor 1 as the Boolean
complement of sh, so that αh sh = 0, which implies that:

αh s ≥ 1 (8)

separates sh from P, as desired.
The reason why this idea works well in practice is that, by Property 2, we can prove that

αk−1s ≥ 1 dominates all other no-good cuts Eq. (8) for h < k − 1. We can intuitively see
why this holds by asking when the inequality Eq. (8) is tightest whilst still being valid. This
occurs when the LHS is (nontrivially) as small as possible, i.e. when as many as possible of
the components of αh are zeros, which, by definition of Boolean complement, means that
as many as possible of the components of sh must be ones. Note that the algorithm which
generates the placements sh is:

1. iterate observability using R1, R2 from sh

2. if Ω(s) (V , pick {u, v} 6∈ P such that installing a PMU on {u, v} yields a larger |Ω(s)|,
set shuv = 1, increase h and repeat from Step 1.

Hence, by Property 2, the iteration index h corresponding to the infeasible placement with
as many ones as possible is the last before termination, namely h = k − 1.

A row generation algorithm

Note that the no-good cuts of Eq. (8) are defined by means of PMU placements s̄ that are
infeasible (Property 1 above) and ≤-maximally dominant (Property 2 above). Let F̄ be the

6

set {0, 1}m r F of placements that are infeasible w.r.t. the constraint f(s) = n, F̄max the set
of ≤-maximal elements of F̄ , and ζ(s̄) = {e ∈ E | s̄e = 0} be the set of component indices
where s̄ is zero. We define:

P =
{
s ∈ [0, 1]m | ∀s̄ ∈ F̄max

∑
e∈ζ(s̄)

se ≥ 1
}
.

The row generation algorithm we employ dynamically generates facets of P using the com-
binatorial algorithm described above in order to find maximally infeasible placements sk−1,
and then solves the PMU minimization subproblem defined on P` ∩ {0, 1}m, where P` is the
MILP relaxation of P consisting of all the cuts (Eq. (8)) found up to the `-th iteration. This
algorithm terminates when the cut generation procedure is unable to find a new cut. The
current placement s is then optimum because of the minimization direction of the subprob-
lems. Note that every iteration requires the solution of a MILP, which, in practice, we can
solve fairly efficiently using CPLEX 12.6.

Compared to solving the two MILPs described above with CPLEX, this row generation
approach is the only one which is able to solve the PES over the medium scale networks
required by the SO-grid project (up to around 120 nodes and 180 links).

Generalization to arbitrary bilevel MILPs

It turns out that the algorithmic framework described above is generalizable to a large class
of bilevel MILPs for which practically viable solution methods do not appear to have been
found yet:

min
x∈{0,1}n

χx

Ax ≥ b
f(x) ≥ c− γx

f(x) =

{
min
y∈Y

β(x)y

y ∈ Θ(x),

(9)

where χ, γ ∈ Qn, A ∈ Qmn, b ∈ Qm, c ∈ Q, β : Qn → Qq, Θ(x) is a polyhedron in Rq for all
x ∈ Rn, and Y is a mixed-integer set in Rq. Note that the bilevel formulation Eq. (4) of the
PES is the special case of Eq. (9) given by A = 0, b = 0, γ = 0, c = n, f(·) = |Ω(·)|, χ, β = 1,
and Θ(·) given by the θs function defined in Eq. (1).

Dominance assumptions

In order to simplify the presentation, we make two assumptions, which we shall show how to
relax later on:

1. γ ≥ 0

2. ∀x′ ≤ x′′ satisfying Ax ≥ b, we have Θ(x′) ⊇ Θ(x′′).

Note that these two assumptions are satisfied by the bilevel formulation Eq. (4) of PES: γ = 0
and, for a PMU placement s′′ dominating a given placement s′, the R1 constraints ωv ≥ suv
ensure that the feasible region of the lower level problem in Eq. (3) becomes smaller.

7

Mutatis mutandis2, the method outlined above for the PES formulation goes through
essentially unchanged, with

F = {x ∈ {0, 1}n | Ax ≥ b ∧ f(x) ≥ c− γx}
F̄ = {x ∈ {0, 1}n | Ax ≥ b ∧ f(x) < c− γx},

aside from the cut generation step, since the one discussed above is based on the structure of
the PES problem. Next, we outline the generalization of the cut generation subproblem.

The generalized cut generation subproblem

Recall the cut generation step in the PES setting: we start from an infeasible placement
s, compute the observed nodes, then add one PMU to s and repeat until all nodes are
observed; we then take the maximal infeasible placement sk−1 at the last iteration, before
full observability is achieved, and separate it with a no-good cut. In the generalized setting
we lack the combinatorial relationship between ω and s given by Ω(s) and defined using the
propagation rules R1 and R2. However, given an infeasible solution x′ of the upper level
problem, we can find the set X∗ of all x that ≤-minimally dominate x′, replace x′ by all of
the elements of X∗ (in turn) that are also in F̄ , stopping when X∗ ⊆ F . When this happens,
x′ is in F̄max (i.e. ≤-maximally infeasible), and can be used to generate a facet of P similar
to Eq. (8): if α′ is the complement of x′ in {0, 1}n, the cut is α′ x ≥ 1.

Given x′ ∈ F̄ , we compute X∗ by finding all solutions to the following cut generation
MILPs (for all j ≤ n):

CGj =

min

x∈{0,1}n

∑
i≤n

xi

Ax ≥ b
x ≥ x′ (†)
xj ≥ 1, (‡)

(10)

where (†) enforces nonstrict domination w.r.t. x′, with strictness on at least one coordinate
direction ej being enforced by (‡) and the objective function.

Relaxing the dominance assumptions

The first dominance assumption γ ≥ 0 is mostly a technical detail which we shall not discuss
here; its relaxation follows because of the new methods employed to deal with the second
assumption, which intuitively states that, given x′ ∈ F̄ , in the direction of the negative
orthant pointed at x′ we can never find a feasible solution. We can relax this assumption by
simply replacing the negative orthant with an infeasible cone pointed at x′. For this purpose,
we write Θ(x) explicitly as:

Θ(x) = {y ∈ Rq | By ≥ d+ Cx}

for appropriately sized B, d,C, and define a (C, γ)-dominance by means of a cone C(x′) =
{x ∈ Rn | Cx ≤ Cx′ ∧ γx ≤ γx′} pointed at x′, which allows us to state:

x ≤C x′ ⇔ x ∈ C(x′).
2The Italian translation avendo cambiato le mutande is a courtesy of a few friends from high school — those

very same friends who created the eternal motto of our high school banners, namely schola mutanda est.

8

One complication introduced by this generalized dominance is that it prevents us from using
no-good cuts, since a no-good for a maximally infeasible solutions might fail to dominate no-
goods from lesser infeasible solutions; moreover, no-good cuts may be invalid in this setting.

For any x ∈ {0, 1}n, we define a distance ∆x′(x) from x to the infeasible cone C(x′):

∀x ∈ Rn ∆x′(x) =

min
e,f∈Rn+

1 (e+ f)

C(x− e+ f) ≤ Cx′

γ(x− e+ f) ≤ γx′,

which is obtained as the sum of slacks needed to make the above Linear Program (LP)
feasible, and replace the no-good cut of Eq. (8) by the nonlinear cut ∆x′(x) > 0. Since strict
inequalities are not allowed in MP, we need to solve an auxiliary MILP to find the maximum
scalar δx′ such that

∆x′(x) ≥ δx′ (11)

is a valid cut for x′. The cut in Eq. (11), however, is only nonlinear because ∆x′(x) is
computed via an LP. This LP can simply be replaced by its KKT conditions, which are a
nonlinear system of equations and inequalities in function of primal and dual variables. As
with the single-level reformulation Eq. (5), the nonlinearities are bilinear products between
binary and continuous variables, which can be linearized exactly. This ultimately yields
feasibility-only MILP which we shall refer to as RC(x′).

Since RC(x′) is feasibility only, it simply consists of new constraints and new variables,
which can be appended to any MP. We shall therefore take it as the output of the cut gen-
eration subproblem in this generalized setting without assumptions. Due to the introduction
of the dual variables at each iteration, the row generation algorithm now becomes a row-and-
column generation algorithm, where the block RC(x′) is added to the master problem at each
itereation.

The cut generation subproblem is somewhat complicated by the replacement of the neg-
ative orthant with the infeasible cone. More precisely, we can no longer define auxiliary
subproblems for each coordinate direction ej for j ≤ n as in CGj , since these span an orthant.
Instead, we heuristically find a few rays of a Hilbert basis H [8] of the intersection of the
negative of the infeasible cone with an appropriately chosen orthant, and define an equivalent
subproblem (not altogether dissimilar from CGj) for each ray in H, which, taken together,
replace the coordinate directions ej . Of course Hilbert bases can have exponential size, so we
use this tool heuristically: we shall not find facets of P, but simply cuts.

Incredibly, for all this heavy use of worst-case exponential time algorithms, the whole
scheme appears to be surprisingly efficient in practice. These techniques allow us to solve
bilevel MILPs with matrices in the order of 1 to 10 rows and 20 to 30 columns in a few
seconds to a few minutes of CPU time of a modern laptop.

References

[1] A. Aazami and M. Stilp. Approximation algorithms and hardness for domination with
propagation. In M. Charikar, K. Jansen, O. Reingold, and J. Rolim, editors, Approx-
imation, Randomization, and Combinatorial Optimization: Algorithms and Techniques,
volume 4627 of LNCS, pages 1–15, New York, 2007. Springer.

9

[2] D. Brueni and L. Heath. The PMU placement problem. SIAM Journal on Discrete
Mathematics, 162(1):744–761, 2005.

[3] B. Colson, P. Marcotte, and G. Savard. Bilevel programming: a survey. 4OR, 3:87–107,
2005.

[4] S. Dempe. Foundations of bilevel programming. Kluwer, Dordrecht, 2002.

[5] P. Domingos and M. Richardson. Mining the network value of customers. In F. Provost and
R. Srikant, editors, International Conference on Knowledge Discovery and Data Mining,
volume 7 of ACM-SIGKDD, pages 57–66, New York, 2001. ACM.

[6] A. Lodi, T. Ralphs, and G. Woeginger. Bilevel programming and the separation problem.
Mathematical Programming A, to appear.

[7] N. Manousakis, G. Korres, and P. Georgilakis. Taxonomy of PMU placement methodolo-
gies. IEEE Transactions on Power Systems, 27(2):1070–1077, 2012.

[8] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.

10

