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Abstract

We describe new heuristics for solving the problem of finding the fundamental cycle
bases of minimum cost in a simple, undirected, biconnected graph G. Since each
spanning tree of GG is associated to a fundamental cycle basis, edge swaps are it-
eratively performed on the current spanning tree so as to improve the cost of the
corresponding fundamental cycle basis. Furthermore, we establish graph-theoretical
structural results that allow an efficient implementation of our algorithms.

1 Introduction

Let G = (V, E) be a simple, undirected and biconnected graph with n nodes
and m edges, weighted by a non-negative cost function w : E — R*, which is
extended to sets of edges in the natural way (if F C E, w(F) = Y .cpw(e)).
A set of cycles in the graph is a cycle basis if it is a basis of the cycle vector
space. The cost of a set of cycles is the sum of the costs of all cycles in the
set. Given any spanning tree of G with edge set 7" C E, the edges in 1" are
called branches of the tree, and those in E\T are called the chords of G with
respect to 7. Any chord uniquely identifies a cycle consisting of the chord
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itself and the unique path in 7" connecting the two nodes incident on the
chord. These m — n + 1 cycles are called fundamental cycles and they form a
Fundamental Cycle Basis (FCB) of G with respect to 7. It was shown that
a cycle basis is fundamental if and only if each cycle in the basis contains
at least one edge which is not contained in any other cycle in the basis [9].
Finding the Minimum Fundamental Cycle Basis (MIN FCB) of a graph is
an N'P-hard problem [2]. Furthermore, it does not admit a polynomial-time
approximation scheme unless P = N'P; a (4+¢)-approximation algorithm was

found for complete graphs, and a 20(V/10gnloglosn)_a 1 roximation algorithm for
arbitrary graphs [7].

Interest in minimum FCBs arises in a variety of application fields, such as
electrical circuit testing [1], periodic timetable planning [6] and generating
minimal perfect hash functions [3].

2 [Edge-swapping local search and metaheuristics

Our local search for the MIN FCB problem is based on an iterative improve-
ment of a current spanning tree, obtained by performing edge swaps. We start
from an initial spanning tree grown by adding nodes to the tree in such a way
that short fundamental cycles are completed early in the process (based on
[8]). At each iteration, we identify the edge swap between branch and chord
that leads to the largest decrease in FCB cost. This edge-swapping operation
is inserted in a local search procedure.

Consider any given spanning tree 7" of G. For each branch e € T, the funda-
mental cut of G induced by e is the edge set 05 = {{u,v} € E | u € S§,v €
5S¢}, where S¢, S% is the node partition induced by the removal of e from
T. For any chord f € 6%, let m = (e, f) be the edge swap which consists in
removing e while adding f to 7'. Denote by 771" the resulting spanning tree.
Now for each such edge swap m we calculate the cost difference A, between
the FCB of T" and that of 77T". Let A,y be the largest such difference, and mp
be the correspoding edge swap. The local search iteratively identifies 7o, and
updates the current 7" with 7y, T" while 7,y is not the identity.

Applying an edge swap to a spanning tree may change the fundamental cy-
cles and cut structure considerably. Hence, efficient procedures are needed to
determine the cuts 4%, for all e € 7T, and to compute A, from the data at
the previous iteration, namely from 7', m and the cuts 45, for e € T'.

Some of the following structural properties are straightforward, others can be
proved by careful case enumeration.
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Fig. 4. Let g ¢ 6" and g € 6°. Then g € 7(6").

Efficient cut structure update:

e any edge swap m = (e, f) applied to a spanning tree T, where e € T and
f € 6%, changes a cut 6% if and only if f € §%;

e 0" can be determined by taking the symmetric difference 6% Ad% (see Fig-
ures 1-4 for a graphical sketch of the proof).

Efficient cycle structure update (notation: v2 is the unique fundamental
cycle of G w.r.t. the chord h):

e if h & 6%, then 4} is unchanged by 7;
o if h € 8%, then ", can be determined by taking the symmetric difference
VO
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Fig. 5. All edge weights are equal to 1 and the numbers indicated on the chords
correspond to the costs of the corresponding fundamental cycles. The cut on the
left has a difference between cheapest and most expensive cycle of 10 — 4 = 6; after
the edge swap the difference is 6 — 4 = 2.

It can be verified that the complexity of identifying the best edge swap mops
and applying it to T to obtain 7T is O(m?n?).

The implementation of the local search algorithm described above is compu-
tationally intensive. For large-scale problems, we would like to test the edge
swap only for a small subset of pairs e, f while minimizing the chances of
missing pairs which yield large cost decreases. A good strategy is to focus on
branches inducing fundamental cuts whose edges define fundamental cycles
with “unbalanced” costs, i.e., with a large difference between the cheapest
and the most expensive of those fundamental cycles. See Fig. 5 for a simple
example.

To try to escape from local minima, we have included the above edge-swap
move within two well-known metaheuristics: variable neighbourhood search
(VNS) [4] and tabu search (TS) [5]. We used a basic implementation of VNS.
Our implementation of the Tabu search, on the other hand, is a blend of classic
TS and VNS. If 7y, is the identity, an edge swap that worsens the FCB cost
is applied to the current solution and inserted in a tabu list. If all possible
edge swaps are tabu or a pre-determined number of successive non-improving
moves is exceeded, ¢ random edge swaps are applied to the current spanning
tree. The number ¢ increases until a pre-determined limit is reached, and is
then re-set to 1. The procedure runs until a given termination condition is
met.

3 Some computational results

We ran extensive tests over three classes of graphs.

(1) Square mesh graphs with unit edge costs. These are n x n square meshes
with nodes positioned at (p,q) where p,q € Z and 0 < p,q < n (n?
vertices and 2n(n — 1) edges). Because of the high degree of symmetry of
the graph topology and the uniform edge costs, these are considered hard
instances where previous constructive heuristics [2,3] performed badly,
with FCB costs being on average three times as large as those of the
solutions produced by our algorithms.



(2) Random simple Euclidean weighted graphs. The nodes are positioned ran-
domly on a 20 x 20 square centered at the origin. Each edge between pair
of nodes is randomly generated with probability p and cost equal to the
Euclidean distance between its adjacent nodes. Our solutions were on av-
erage 50% better than those obtained with previous constructive methods
[2,3]. For small instances (10-15 nodes) our local search actually found
the optimal solutions.

(3) Application to periodic timetabling. This application is described in [6].
Finding minimum FCBs of appropriate graphs leads to a more compact
MIP formulation of a certain type of Periodic Event Scheduling Problem
(PESP). We were able to find solutions between 5% to 20% better than
those found by C. Liebchen using a purpose-built modification of Deo’s
methods.
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