
A positive perspective on term representation

Jui-Hsuan (Ray) Wu and Dale Miller

Inria Saclay & LIX, Institut Polytechnique de Paris

Proofs and Algorithms seminar, Inria Saclay / LIX

27 June 2022

J.-H. Wu and D. Miller A positive perspective on term representation 1 / 24



Outline

Introduction

Focusing and synthetic inference rules

Proofs as terms

J.-H. Wu and D. Miller A positive perspective on term representation 2 / 24



Terms

• Terms (or expressions) exist in several different settings.

• There are different formats for terms:
(1 + 2) + (1 + (1 + 2))
let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y
let x = 1 + 2 in let y = 1 + x in x + y

• (Labelled) Trees? Directed acyclic graphs (DAGs)?

• What to do with terms? Equality, substitution, evaluation, etc.
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Proof theory for term representations

• A framework for describing (unifying) different term representations.

• What is a canonical term? What is substitution?

• Why proof theory?

B Highly principled and mathematically sound means for
describing syntactic structures.

B Proofs-as-terms, but not proofs-as-programs!

• Sequent calculus: too little structure, too much non-essential
information.

• Focused proof system LJF : large-scale rules, flexibility of
polarization.
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Focusing

• Introduced by Andreoli (1992) to reduce non-determinism in proof
search for linear logic.

•

invertible rules ↔ non-invertible rules
non-essential information ↔ essential information

don’t care ↔ don’t know
negative phase ↔ positive phase

• Applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc.

• LJF and LKF by Liang and Miller (2009).

• Large-scale rules (not phases!): synthetic inference rules and bipoles.
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Two phases: an example in LL

ax
` A⊥, A

ax
` B, B⊥

⊗
` A⊥, B⊥, A⊗ B

⊕1
` A⊥, B⊥ ⊕ (C⊥ ⊗ D⊥), A⊗ B

ax
` A⊥, A

ax
` C , C⊥

ax
` D⊥, D

⊗
` C , D, C⊥ ⊗ D⊥

⊕2
` C , D, B⊥ ⊕ (C⊥ ⊗ D⊥)

�

` C � D, B⊥ ⊕ (C⊥ ⊗ D⊥)
⊗

` A⊥, B⊥ ⊕ (C⊥ ⊗ D⊥), A⊗ (C � D)
&

` A⊥, B⊥ ⊕ (C⊥ ⊗ D⊥), (A⊗ B) & (A⊗ (C � D))
�

` A⊥ � (B⊥ ⊕ (C⊥ ⊗ D⊥)), (A⊗ B) & (A⊗ (C � D))
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The LJF system with only implication

• Formulas are built using atomic formulas and implications.

• We work with polarized formulas.
• Implications are negative.
• Atomic formulas are either positive or negative.

(forward-chaining / backchaining)
• A polarized theory is a theory together with an atomic bias

assignment.
• Different polarizations do not affect provability in LJF , but give

different forms of proofs.
B If a sequent is provable in LJF for some polarization, then it is

provable for all such polarizations.
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LJF sequents and border sequents

Two kinds of sequents:
• ⇑-sequents, used with invertible rules

Γ⇑ Θ ` ∆ ⇑∆′

• ⇓-sequents, used to specify the formula under focus

Γ⇓ B ` ∆′ left focus

Γ ` B ⇓ right focus
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LJF sequents and border sequents

Two kinds of sequents:
• ⇑-sequents, used with invertible rules

Γ⇑ Θ ` ∆ ⇑∆′

• ⇓-sequents, used to specify the formula under focus

Γ⇓ B ` ∆′ left focus

Γ ` B ⇓ right focus

Border sequents:
Γ⇑ · ` · ⇑∆{ Γ ` ∆

B Inference rules are collected into large-scale rules (synthectic
inference rules) by looking at border sequents in a proof.
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The LJF system with only implication

Decide, Release, and Store Rules

N, Γ⇓ N ` A
N, Γ ` A Dl

Γ ` P ⇓
Γ ` P Dr

Γ⇑ P ` A
Γ⇓ P ` A Rl

Γ ` N ⇑
Γ ` N ⇓ Rr

Γ,C ⇑ Θ ` ∆′ ⇑∆
Γ⇑ Θ,C ` ∆′ ⇑∆ Sl

Γ⇑ Θ ` A
Γ⇑ Θ ` A ⇑ Sr

Initial Rules
A positive
A, Γ ` A ⇓ Ir

A negative
Γ⇓ A ` A Il

Introduction Rules for Implication

Γ ` B ⇓ Γ⇓ B′ ` A
Γ⇓ B ⊃ B′ ` A ⊃ L

Γ⇑ Θ,B ` B′ ⇑
Γ⇑ Θ ` B ⊃ B′ ⇑ ⊃ R

J.-H. Wu and D. Miller A positive perspective on term representation 9 / 24



Synthetic inference rules

Synthetic inference rule = large-scale rule = ⇓-phase + ⇑-phase

Definition
A left synthetic inference rule for B is an inference rule of the form

Γ1 ` A1 . . . Γn ` An

Γ ` A B

justified by a derivation (in LJF ) of the form

Γ1 ` A1 . . . Γn ` An
..... ⇑ phase
..... ⇓ phase

Γ⇓ B ` A
DlΓ ` A
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Bipoles

Bipoles:

A (left) bipole for a formula B is a (left) synthetic inference rule such that
only atomic formulas are stored in its corresponding derivation (in LJF ).

Order of a formula:
• ord(A) = 0 for A atomic.
• ord(B1 ⊃ B2) = max(ord(B1) + 1, ord(B2)).

Theorem
Let B be a negative polarized formula. If ord(B) ≤ 2, then the left
synthetic rule for B is a bipole.
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Axioms as rules

Definition
Let T be a finite polarized theory of order 2 or less, We define LJ〈T 〉 to
be the extension of LJ with the left synthetic inference rules for the
formulas in T . More precisely, for every left synthetic inference rule

B, Γ1 ` A1 . . . B, Γn ` An B
B, Γ ` A

with B ∈ T , the inference rule

Γ1 ` A1 . . . Γn ` An B
Γ ` A

is added to LJ〈T 〉.

J.-H. Wu and D. Miller A positive perspective on term representation 12 / 24



Axioms as rules

Definition
Let T be a finite polarized theory of order 2 or less, We define LJ〈T 〉 to
be the extension of LJ with the left synthetic inference rules for the
formulas in T . More precisely, for every left synthetic inference rule

B, Γ1 ` A1 . . . B, Γn ` An B
B, Γ ` A

with B ∈ T , the inference rule

Γ1 ` A1 . . . Γn ` An B
Γ ` A

is added to LJ〈T 〉.

Theorem
T , Γ ` B provable in LJ ⇔ Γ ` B provable in LJ〈T 〉.
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An example

Let T be the collection of formulas
D1 = a0 ⊃ a1, · · · ,Dn = a0 ⊃ · · · ⊃ an, · · · where ai are atomic.
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Backchaining and Forward-chaining

What are the proofs of a0 ` an?
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Backchaining and Forward-chaining

What are the proofs of a0 ` an?

When ai are all given the negative bias, we have:

Γ ` a0
Γ ` a1

Γ ` a0 Γ ` a1
Γ ` a2

· · ·
Γ ` a0 · · · Γ ` an−1

Γ ` an
· · ·

B a unique proof of exponential size
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Backchaining and Forward-chaining

What are the proofs of a0 ` an?

When ai are all given the negative bias, we have:

Γ ` a0
Γ ` a1

Γ ` a0 Γ ` a1
Γ ` a2

· · ·
Γ ` a0 · · · Γ ` an−1

Γ ` an
· · ·

B a unique proof of exponential size

When ai are all given the positive bias, we have:

Γ, a0, a1 ` A
Γ, a0 ` A

Γ, a0, a1, a2 ` A
Γ, a0, a1 ` A · · ·

Γ, a0, . . . , an−1, an ` A
Γ, a0, . . . , an−1 ` A · · ·

B a shortest proof of linear size
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Proofs as terms

We want to use terms to annotate proofs.
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Proofs as terms

We want to use terms to annotate proofs.

How much information do we need?

Consider the formula A ⊃ A ⊃ A in LJ .

How many proofs are there?

init
A,A ` A

⊃ R
A ` A ⊃ A ⊃ R
` A ⊃ A ⊃ A

⇒ λx .λy .y

B each formula on the left hand side is given a label.
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Untyped λ-terms

We fix a theory T = {Φ : D ⊃ D ⊃ D,Ψ : (D ⊃ D) ⊃ D} with D atomic
and consider proofs of sequents of the form T , x1 : D, · · · , xk : D ` t : D
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and consider proofs of sequents of the form T , x1 : D, · · · , xk : D ` t : D

When D is given the negative bias, we have

Γ ` D Rr/Sr
Γ ` D ⇓

Γ ` D Rr/Sr
Γ ` D ⇓

Il
Γ⇓ D ` D

⊃ L2

Γ⇓ D ⊃ D ⊃ D ` D
Dl

Γ ` D
Γ,D ` D

Rr/Sl/Sr
Γ ` D ⊃ D ⇓

Il
Γ⇓ D ` D

⊃ L
Γ⇓ (D ⊃ D) ⊃ D ` D

Dl
Γ ` D
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Untyped λ-terms

We fix a theory T = {Φ : D ⊃ D ⊃ D,Ψ : (D ⊃ D) ⊃ D} with D atomic
and consider proofs of sequents of the form T , x1 : D, · · · , xk : D ` t : D

When D is given the negative bias, we have

Γ ` t : D Rr/Sr
Γ ` D ⇓

Γ ` u : D Rr/Sr
Γ ` D ⇓

Il
Γ⇓ D ` D

⊃ L2

Γ⇓ D ⊃ D ⊃ D ` D
Dl

Γ ` D
Γ,D ` D

Rr/Sl/Sr
Γ ` D ⊃ D ⇓

Il
Γ⇓ D ` D

⊃ L
Γ⇓ (D ⊃ D) ⊃ D ` D

Dl
Γ ` D

Here we use the λκ-calculus1 to annotate terms.

1Taus Brock-Nannestad, Nicolas Guenot, and Daniel Gustafsson. Computation in
focused intuitionistic logic. PPDP 2017.
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Untyped λ-terms

Two different polarity assignments give two different term structures:
• D is negative:

x _ε nvar x x
Φ_(btc :: buc :: ε) napp t u tu
Ψ_(bλx .tc :: ε) nabs (x\ t) λx .t
→ Top-down / tree-like structure

• D is positive:
dxe pvar x x
Φ_(x :: y :: κz .t) papp x y (z\ t) name z = xy in t
Ψ_(bλx .tc :: κy .s) pabs (x\ t) (y\ s) name y = λx .t in s
→ Bottom-up / DAG structure

J.-H. Wu and D. Miller A positive perspective on term representation 17 / 24



Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z

B Arguments of app are all names
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Cut-elimination for LJ〈T 〉

The following theorem2 states that cut is admissible for the extensions of
LJ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for LJ〈T 〉)
Let T be a finite polarized theory of order 2 or less. Then the cut rule is
admissible for the proof system LJ〈T 〉.

2Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to
synthetic inference rules via focusing. Annals of Pure and Applied Logic 173(5).
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admissible for the proof system LJ〈T 〉.

The proof is based on a cut elimination procedure for LJF
B This defines the notion of substitution for terms.

When we restrict to atomic cut formulas, the cut elimination procedure
can be presented in a big-step style.
B Cuts are permuted with synthetic rules instead of LJF rules.
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Untyped λ-terms (substitution)

The cut-elimination procedure of LJF gives us the following definitions of
substitutions.

t y p e nsubst , p s u b s t tm −> ( v a l −> tm ) −> tm −> o .

n s u b s t T ( x \ n v a r x ) T .
n s u b s t T ( x \ n v a r Y) ( n v a r Y) .
n s u b s t T ( x \ napp (R x ) ( S x ) ) ( napp R ’ S ’ ) :−

n s u b s t T R R ’ , n s u b s t T S S ’ .
n s u b s t T ( x \ nabs y \ R x y ) ( nabs y \ R ’ y ) :−

p i y \ n s u b s t T ( x \ R x y ) (R ’ y ) .

p s u b s t ( papp U V K) R ( papp U V H) :− p i x \ p s u b s t
(K x ) R (H x ) .

p s u b s t ( pabs S K) R ( pabs S H) :− p i x \ p s u b s t
(K x ) R (H x ) .

p s u b s t ( p v a r U) R (R U) .

J.-H. Wu and D. Miller A positive perspective on term representation 20 / 24



An example

appy

appz

output

x

appy’

appz’

output

a

name y = app x x in
name z = app y y in z

name y’ = app a a in
name z’ = app y’ y’ in z’

name y’ = app a a in
name z’ = app y’ y’ in
name y = app z’ z’ in
name z = app y y in z
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Untyped λ-terms (equality)

We have now two different formats for untyped λ-terms.

When should two such expressions be considered the same?
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We have now two different formats for untyped λ-terms.

When should two such expressions be considered the same?

”White box” approach:
B Look at the actual syntax of proof expressions.
⇒ not working since we have two different sets of synthetic
inference rules.

”Black box” approach:
B Describe paths by probing a term.
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Path equality

We use λProlog programs to illustrate the idea.
B npath T P (resp. ppath T P) if P is a path in the T.

type npath , ppath tm -> path -> o.

npath (napp M _) (left P) :- npath M P.
npath (napp _ N) ( right P) :- npath N P.
npath (nabs R) (bnd P) :- pi x\pi p\ npath (nvar x) p =>

npath (R x) (P p).

ppath (papp U V K) P :-
pi x\ (pi P\ ppath (pvar x) (left P) :- ppath (pvar U) P) =>

(pi P\ ppath (pvar x) ( right P) :- ppath (pvar V) P) =>
ppath (K x) P.

ppath (pabs R K) P :-
pi x\ (pi Q\ ppath (pvar x) (bnd Q) :-

pi p\ pi u\ ppath (pvar u) p => ppath (R u) (Q p))
=> ppath (K x) P.

J.-H. Wu and D. Miller A positive perspective on term representation 23 / 24



Related and future work

• Generalize to full LJF .

• Multi-focusing:
B Parallel actions (parallel name introductions).
B Maximal multi-focused proofs ↔ graphical representations.
B Conjecture: MMF proofs are isomorphic to λ-graphs in the case

for untyped λ-terms.
• Big-step cut-elimination for arbitrary cut formulas
B At the level of synthetic rules (not phases)!

• Connection with the literature in programming language theory
(A-normal form, etc)

• There exist some other frameworks for term structures, such as
terms-as-graphs by Grabmayer. Are there some connections or
overlaps?

• Proof-theoretic methods for checking term equality.
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