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Abstract. Starting from an encoding of untyped A-terms with sharing, defined
using synthetic inference rules based on a focused proof system for Gentzen’s
LJ, we introduce the positive A-calculus, a call-by-value calculus with explicit
substitutions. This calculus is closely related to Accattoli and Paolini’s value sub-
stitution calculus but has a different style of reduction rules that provides a good
notion of sharing along the reduction. We also propose a graphical representation
in order to capture the structural equivalence on terms that can be described using
rule permutations. On one hand, this graphical representation provides a way to
remove redundancy in the syntax, and on the other hand, it allows implementing
basic operations such as substitution and reduction in a straightforward way.
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1 Introduction

Terms (or expressions) are essential in different settings: mathematical proofs, program-
ming languages, proof assistants, etc. To prevent redundancy in these systems, a canon-
ical and compact syntactic structure is needed. Proof theory has been broadly used in
the studies of term representation. There have been several different approaches to ad-
dress the question of the canonicity of proofs, such as proof nets [20], expansion trees
[25], focusing [7], combinatorial proofs [22], etc.

Focusing and synthetic inference rules. In this paper, we choose to use focusing as
our main tool. Andreoli introduced the first focused proof system to describe proofs in
linear logic in a more structured way. Inference rules are organized into two different
phases: positive and negative phases. Andreoli [8] and Chaudhuri [11] suggested that
phases should be viewed as large-scale rules for proof construction. In [24], Marin et
al. defined another version of large-scale rules, called synthetic inference rule, which is
essentially composed of a negative phase and a positive phase, in order to provide more
high-level descriptions of proof systems. The invention of synthetic inference rules also
provides a systematic way to extend proof systems such as LJ and LK.

Various focused proof systems have been proposed for LJ [21,18,23] and LK [15,23].
Several authors also designed term calculi for LJT [21], LJQ [18], and LJF [10]. In [27],
Miller and Wu use synthetic inference rules built using the focused proof system LJF to
study term structures. In LJF, formulas are polarized and different polarity assignments
yield different forms of proofs and thus provide different styles of term representation.
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In this paper, we are interested in their encoding of untyped A-terms defined by giving
the positive polarity to every atomic formula. Unlike the usual syntax of untyped A-
terms, this encoding constructs terms in a bottom-up style and allows sharing within a
term using named structures, or explicit substitutions. This term representation is, how-
ever, not compact, in the sense that a lot of named structures can be permuted or put
in parallel. These permutations correspond, in fact, to phase permutations in focused
proof systems, and to rule permutations in terms of synthetic inference rules.

Focusing and graphical structures. Several authors have proposed multi-focused proof
systems to illustrate this phenomenon for MALL [26,16,13], LK [12], and LJ [28].
Moreover, in each of [13] and [12], an isomorphism has been established between the
multi-focused proof system and a graphical representation of proofs (proof nets and ex-
pansion trees, respectively). This is where our graphical representation for terms comes
in. Though inspired by these works on multi-focusing, we choose to put our focus on
terms, i.e. (single-)focused proofs, and define the structural equivalence that can also
be justified by rule permutations. Also, note that the structural equivalence considered
in this paper does not cover all the possible permutations that are captured by multi-
focused proof systems.

Explicit substitution and proof nets. Historically, there have been several attempts to
connect A-calculus with sharing, or explicit substitution [1], to proof nets. This connec-
tion was first proposed by Di Cosmo and Kesner [17] to study cut-elimination. Recently,
proof nets have also been connected to calculi such as the call-by-value A-calculus [2]
and the linear substitution calculus [3]. In this paper, like in each of [2] and [3], we
show that the structural equivalence on terms is exactly the same as the one captured
by the graphical representation. In contrast to these works that often introduce boxes
to deal with sharing, we decide to use the notion of bodies, which is closely related to
the notion of level in these works. This choice does not make a huge difference in our
theoretical results, but it provides a clear way to establish the correspondence between
the usual syntax and the graphical one.

Graphs and sharing. Graphs have been widely used in the studies of sharing. Since
Wadsworth [29], several authors have proposed different graphical structures to study
full laziness (see [9] for an overview), a concept related to evaluation based on the call-
by-need mechanism. Another aspect about sharing, called sharing equality, whose goal
is to decide whether the unfoldings of two terms with sharing are equal, has also been
discovered in recent years. A linear algorithm was proposed in [14] based on a graph-
ical representation called A-graphs for untyped A-terms. This graphical representation
is close to the one studied in our work, which allows us to apply the algorithm without
any difficulty.

Contribution.

1. We propose a rewrite system for the encoding of untyped A-terms proposed in [27],
called the positive A-calculus. Note that it is inspired by proof theory but does not
follow the usual "redex = cut” paradigm. This rewrite system follows a call-by-
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value discipline and is closely related to the value substitution calculus [6] and the
linear substitution calculus [4].

2. We propose a graphical representation, called A-graphs with bodies, for this encod-
ing of untyped A-terms and provide a one-to-one correspondence between A-graphs
with bodies and terms up to permutations of independent named structures (Theo-
rem 5).

3. We describe how substitution and reduction can be easily implemented on A-graphs
with bodies.

Proofs. Some proofs are ignored and can be found in Appendix.

2 Preliminaries: the focused proof system LJF and synthetic
inference rules

Fix a set atom of atomic formulas. Formulas are built with implications and atomic for-
mulas. An atomic bias assignment is a map 6 from atom to {+, —}. A polarized formula
(resp. polarized theory) is a formula (resp. multiset of formulas) together with an atomic
bias assignment. Implications are negative and atomic formulas can be either positive
or negative following the atomic bias assignment. In LJF, there are two kinds of se-
quents: f-sequents I' 1 @ + A4 T4’ and |-sequents I" |} @ + 4 || A’. Here, I, 0,4, 4" are
multisets of formulas. I" and A’ are called storage zones and @ and 4 are called staging
zones. In a |J-sequent, exactly one of @ and 4 can be non-empty and contains exactly
one formula. To simplify the notation, we drop an arrow whenever its corresponding
staging zone is empty. As a result, sequents without any arrow are fj-sequents as any
J-sequent has exactly one non-empty staging zone. Furthermore, 4 U 4’ is a singleton,
as we are in an intuitionistic setting. The rules of the implicational fragment of LJF are
presented in Figure 1. LJF proofs have a two-phase structure: f]-phases and |J-phases.

Decide, Release, and Store Rules

N,TUN+A Pl I‘ﬂPFAR I'-N1
NIrA ' TrP U TUPFA | TrNU
LCnoerana rnerA
rne.crana " rreraAq
Initial Rules Introduction Rules for implication
6(A) =+ / 0(A) = — I'tBl T|JBFrA L 'te,BrB 1
r o) P ————
ATFAL FiArA rUB->B+A rMerB>B |

Fig. 1. The implicational fragment of the focused proof system LJF. Here, P is positive, N is
negative, A is atomic, and B, B’ and C are arbitrary formulas.



4 J.-H. Wu

Definition 1 (Synthetic inference rules, [24]). A synthetic inference rule is a rule of
the form

I'ivA - T, b A,

I'ivA - T,+A, N justified by an LIF 17
kA derivation of the form I'INEFA D,
I'rA

Here, N is a negative formula that appears in I', n > 0, and within I1, a ||-sequent never
occurs above an )-sequent. The structure of LJF proofs implies N € I'; forall 1 <i < n.
This rule is called the synthetic inference rule for N.

I'D+ D
D+ D — S//S,
f Si/R r'nDreDN
I'rD]| rlD+D — D
., DL I'-D>DT I D+ D
Ir'eDJ I'VD>D+D R, S//R;
DL I'-D>DJ ryDv+D
Irl'D>D>DvD
D, ry(bD>D)>D+D
I'vD D,

I'+D

Fig. 2. Two derivations justifying synthetic inference rules (D is atomic and polarized positively).

Synthetic inference rules show how a formula can be used in a proof and they can
be used to extend sequent systems such as LJ. Since the synthetic inference rules for
atomic formulas are exactly the same as the initial rule of LJ, we will only consider
synthetic inference rules for non-atomic formulas. We give in Figure 2 two LJF deriva-
tions justifying synthetic inference rules for two different formulas. In [24], it is shown
that the synthetic inference rules for certain formulas are particularly simple and can be
easily used to extend LJ with a (polarized) theory. To express this, we first define the
order of a formula.

Definition 2. The order of a formula B, written ord(B), is defined as follows: ord(A) =
0 if A is atomic and ord(B) D By) = max(ord(B)) + 1, ord(B>)).

Definition 3 (Extensions of LJ by polarized theories, [24]). Let 7 be a finite multiset
of formulas of order one or two, and let 6 be an atomic bias assignment. We define
the extension LJ| T, 0] of LJ by the polarized theory (T°,0) to be the two-sided proof
system built as follows. The only sequents in the LI|T, 6] proof system are of the form
I' v A where A is atomic and I is a multiset of atomic formulas. The inference rules of
LIJ|\7, 6] include the initial rule of LJ and for every synthetic inference rule

N,I'y/+A, ... NIT,+A, N
N,T+A

where N € T, then the rule
IvA ... T,+A,
I'rA

N
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:Dell ———— x:Dell —— pvar
* rrx:p " rvx:n’

. . Ix:Dvrt:D
Frs:D FI-I.Dnapp {yv:D,z:D}CI' ———  papp
I'vrst:D I'+tlx «yz]: D

Ix:Dvrt:D Iy:D+rs:D Ix:Dvrt:D
—— nabs pabs
I'rAxt:D I'+tlx < Ady.s]:D

Fig. 3. Annotated inference rules of the systems LJ| 1,6 ] (left) and LJ|[ Ty, 6] (right) where
6 (D)=-,6"(D)=+and Iy ={D>D>D,(D>D)>D}.

is included in LI|T,6].

Note that in the original version proposed in [24], 7 is a set instead of a multiset.
In fact, each formula in 7~ corresponds to a combinator in annotated proofs. Different
occurrences of the same formula define different combinators. This is why we consider
multisets instead of sets of formulas.

The following theorem justifies Definition 3.

Theorem 1. Let T be a finite multiset of formulas of order one or two, and let 6 be
an atomic bias assignment. Then for any atomic formula A and I" containing atomic
formulas only, I',T + A is provable in LJ if and only if I' + A is provable in LJ|T,6].

3 The positive A-calculus

The notion of terms, which is usually a primitive notion in most of the literature, is a
derived notion here: they are annotations of proofs. By annotating inference rules in
the proof system LJ| 7, d], we obtain rules for various combinators, each one of which
corresponds to a formula in 7. In [27], Miller and Wu give an encoding of untyped
A-terms by considering the theory Iy = {D > D > D,(D > D) > D} where D is an
atomic formula. If D is given the negative polarity, we get the negative bias syntax, i.e.,
the usual tree structure for untyped A-terms. If D is given the positive polarity, we get
the positive bias syntax, a structure where explicit sharing is possible. The annotated
inference rules obtained using both polarity assignments are shown in Figure 3. As
an example, the papp and pabs rules are obtained from the two derivations given in
Figure 2. Note that the branches ended with [, rule become a side condition on the
schema variable I'.

In the following, we introduce a calculus called positive A-calculus based on terms
built using the positive bias syntax. Since the sequents and inference rules considered
only involve the atomic formula D, we often replace the annotated formula x : D (resp.
t : D) with simply its annotation x (resp. ).

Terms. Fix a set NAME = {x,y,z,...} of names (or variables). The set TERM of terms,
denoted by s, 1, u, .. ., is generated by the following grammar:

TerRMS 5,1 := x| t{x « yz] | t[x < Ay.s]
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A term is essentially a list of constructs [x « p], called explicit substitutions or
named structures, preceded by a name, which we call the output of the term.

The set fv(f) of free variables of a term ¢ is given by: fv(x) = {x}, fv(t[x « yz]) =
(v \ {x}) U {y, 2} and fv(r[x < Ay.s]) = (fv(s) \ {yD) U (fv(®) \ {x}). Note that every
name x introduced by the construct [x « p] is bound. We should consider terms up to
a-equivalence and assume that all bound names are distinct from each other and from
any free variables.

A signature is a finite subset 2 of NaME. We write 2, x for 2 U {x} and this also
implies that x ¢ 2. We say that ¢ is a X-term if X' + t using the pvar, papp, and pabs
rules in Figure 3.

Contexts. We define contexts and left contexts by the following grammar:

Contexts C:=0|C[x « yz] | C[x « Ay.s] | t{x « Ay.C]
Lerr Contexts L :=0]|L[x < yz] | L[x < Ay.s]

The plugging C(t) (resp. L(t)) of ¢ in the context C (resp. left context L) is obtained from
C (resp. L) by replacing the placeholder O with . Every term can be written uniquely
as L{x) for some left context L and variable x. Note that we allow plugging in a context
to capture variables. A congruence on terms is an equivalence relation that is closed by
context.

Structural equivalence. Named structures can be seen as intermediate definitions within
a term. If two definitions are independent of each other, we should be able to permute
them. By defining fv(yz) = {y,z} and fv(dy.s) = fv(s) \ {y}, this can be expressed using
the equation:

t{x1 « pillxz < p2]l ~ser tHxo < pallx1 < pil if x1 ¢ fv(p2) and x2 ¢ fv(p1)

Definition 4 (Structural equivalence). We define an equivalence relation =gy on terms,
called the structural equivalence, as the smallest congruence containing ~str.

Note that the structural equivalence can also be justified by rule permutations.

Substitution. In [27], there is a big-step (atomic) cut-elimination procedure for proofs
built using synthetic inference rules. This procedure provides a definition of substitution
for terms.

Definition 5 (Substitution on terms, [27]). Let t, u be terms and x a name such that
x & fv(u). We define the result of substituting u for x in t, written t[x/u), as follows:

tlx/sly « zw]] = t[x/s][y < zw] tlx/sly « Az.ul] = t[x/s]ly « Az.u]

Here, t[x/y] is obtained from t by renaming x to y. Note that by expressing the term u
uniquely as L(y), we have t[x/u] = L{t[x/y]) by a straightforward induction.

Unfolding and reduction. Term reduction is often related to cut-elimination in the lit-
erature. However, terms considered here correspond to cut-free proofs. A natural ques-
tion to ask is: How should we evaluate them? Of course, we could unfold all the named
structures of a term and get its corresponding untyped A-term.
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Tor-LEVEL RULES

Ctlz « xwD[x & Ay.LY)] pera CUAH/Y DY/ WHIX & Ay.LO)]
tx « Ay.s] g t if x ¢ fv(r)

REWRITE RULES

C<l> beta C(”) if ¢ Fpeta U
C(t) —gc C{u) if £ g u
t —pos U if t —peta UOT T —gc U

Fig. 4. Rewrite rules of the positive A-calculus.

Definition 6. The unfolding t of a term t is the untyped A-term defined as follows:
x=x 1lx < yz] = t{x/yz} i[x < Ay.s] = t{x/Ay.s}

where {-/-} is the meta-level substitution of untyped A-terms.

For example, we have y[y « fz][f « Ax.x] = (dx.x)z. This definition provides a way
to translate from the positive bias syntax to the negative bias syntax. Note that the
unfolding of a term is not necessarily a S-normal untyped A-term. For a term ¢, we
could refer to the B-normal form of its unfolding as its meaning. However, computing
unfoldings of terms might require exponential costs.

Therefore, we proceed in a different way here: we look for a reduction procedure
that only involves the positive bias syntax and is compatible with the S-reduction in the
negative bias syntax (a reduction step should not change the meaning of a term). We
now define beta-redexes and the beta-rule. Consider the following annotated proof:

1D
2. x:D,z:Dvrt:D
DPHPP

2 x:Drtlz «— xw]:
it :
2y:Dvrs:D X x:DrC{tlz < xw]): D

pabs
2+ C{tlz « xw)[x « Ay.s] : D

withw : D € 27, x : D and C a context. In the term annotating the conclusion, the name
x is used to introduce an abstraction Ay.s and is later applied to an argument w. We call
the named application pattern xw here a beta-redex. To eliminate this beta-redex, we
shall consider the following proof:

11} 11,
2ix:Drsfywy:D X ,x:D,z:Dvrt:D
2, x: D+ Cut(zt, s{y/w}) : D

cut

where 1] is obtained from /7 by variable renaming and weakening. By eliminating this
cut, we obtain a cut-free proof of the conclusion 27, x : D + t[z/s{y/w}] : D. This gives
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the following beta-rule:
C(tlz < xwD)[x < Ay.s] —pera C{tz/s{y/wiDx < Ay.s]

that can also be expressed using left contexts as shown in Figure 4. We also consider
a garbage collection rule for named abstractions. This rule can be justified by the fact
that if a formula is never used in a proof, then we can remove the rule that introduces it.

Intuitively, to eliminate a beta-redex, it suffices to make a copy of the abstraction
body, make a variable renaming within this copy and a variable renaming in the rest of
the term. We illustrate these steps in the following example:

Xlx & fxillxr « fxollf « Axzlz < yylly « xx]] —beta
x[xa < fzillzr < yiyillyr < xoxollf < Ax.zlz < yylly < xx]] —beta
2z «— yoy2lly2 <« zizillzr < yiyillyr < xoxollf < Ax.zlz < yylly < xx]]  —gc
2lz2 < yay2ll2 < z1z1llz1 < yiy1llyr < xoxol

Like the VSC, the positive A-calculus enjoys the confluence property.
Theorem 2. The positive A-calculus is confluent.

The — s is not terminating as shown by the term wiw « xx][x < Ay.z[z < yy]].
The following proposition shows that —p,s does not affect the meaning of a term.

Proposition 1. Let s and t be terms such that s —pos t. Then s —7 t.

It is easy to see that, for every named application [x < yz] in a normal term ¢, y is
not a name introducing an abstraction. We have thus the following proposition.

Proposition 2. If s is a normal term, then s is f-normal.

The converse is however not true as shown by the term 7 = 7'[z « wx][x « Ay.s]. t =2

is B-normal but ¢ is normal if and only if s is normal.

This rewrite system follows a call-by-value discipline that can be observed in the
example above as there is no way to remove the named application [z < wx]. Also,
note that it is a strong calculus as we allow reduction under an abstraction.

The positive A-calculus is closely related to the value substitution calculus (VSC) of
[6], presented in Figure 5, and the linear substitution calculus (LSC) of [4], presented in
Figure 6. In both systems, m stands for multiplicative and e stands for exponential (these
terms come from the literature on linear logic). On one hand, the positive A-calculus has
a call-by-value behavior similar to that of the VSC, and on the other hand, it admits a
micro-step exponential rule (for named abstractions) as in the LSC. Another difference
between the positive A-calculus and the VSC is that in the positive A-calculus, a named
abstraction is only duplicated when it is applied to an argument in a named application.
This is also connected to an optimization sometimes called substituting abstractions
on-demand. For example, consider the term

t=wlw « fxI[f « Az0.23[23 < G(22)][z2 « G(z)][z1 < G(z0)]1[x « Ay.s].
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where G(t) = Awg.wi[ws «— wiwy][w, « gt][w; « gf] with g a fixed name and s a
normal term in positive A-calculus. In the positive A-calculus, after one beta-step and
one gc-step, we obtain

%z « Gz « GEDIZ) « G)]lx « Ay.s].

which is a normal term in the positive A-calculus. However, in the VSC, we have

7%z « G2z «— GEDIIZ] « G()][x « Ay.s] e
7%l7 « G « G@IIZ] « G(Ay.s)] e
3l « G, « G(G(Ay.9))] e
775 « G(G(G(Ay.9)))] e
G(G(G(1y.s)))

which contains 23 = 8 copies of Ay.s. From this example, we can see that the positive
A-calculus allows more sharing and avoids some possible exponential blow-ups that can
occur in the VSC. Also, note that one has s = ¢ for s —. t. As a result, these e-steps
can be seen as redundant since they do not create any redex and can be ignored with the
positive A-calculus.

More formally, we can consider a variant of the VSC that treats substitutions in a
linear style. That is, the e-rule is replaced by the following two rules:

COx « L] e LICW)[x < v])
Hx « L{v)] Pgo t if x ¢ fv(t)

Then the beta-rule can be expressed as a sequence of m, e’, and gc’-steps.

C(tlz & xwhx « Ay.L{Y)] e
C{tlz < (y.LYMWDIx « Ay.LY')] —n
C{tlz — LYy « wihlx « y.LY)] =5 —ge
C{tlz « LY HMy/wiDlx « Ay.LY)] = o —ge
C{LLHz/y Wy/whx « Ay.L{')]

This shows that the reduction in the positive A-calculus can be seen as a reduction strat-

egy in the VSC that only applies useful substitutions to abstractions (a substitution is

useful if it creates new redexes) and thus allows more sharing within a term. Therefore,

we can say that the reduction of the positive A-calculus works better than that of the

VSC in terms of sharing on terms of the positive A-calculus. However, we cannot say

that the positive A-calculus is better in general as the VSC contains more terms.
Furthermore, = is a bisimulation with respect to —pos.

Theorem 3. Let t and u be two terms. If t =s¢r u and t —pos t', then there exists u’ such
that u —pes u' and t’ Zgr '

Proof. Tt suffices to see that ~g¢, never creates or removes redexes.
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L{Ax.t)u vy L{t[x < u])
tflx & L{v)] e L{H{x/v])

Fig. 5. Reduction rules of the value substitution calculus [2]. Here, v is either a variable or an
abstraction.

L{Ax.thu > L{t[x < u])
C)x « u] > Cux < u]

tx — u] g t if x ¢ fv(r)

Fig. 6. Reduction rules of the linear substitution calculus [3].

A few more comments on the positive A-calculus:

1. The positive bias syntax resembles the A-normal form [19]. A similar representa-
tion called crumbled forms has also been adapted in [5] to build an abstract machine
for strong call-by-value. One issue common to calculi with explicit substitutions is
the need for commutation rules to preserve specific syntactic forms. Terms in the
positive bias syntax or crumbled forms can, however, be evaluated without using
these rules.

2. While the beta-step keeps the sharing structure used to define the argument, there
are still some redundancies in the positive A-calculus. Consider the term x;[x; «
fxillx1 « fxollf < Axz[z « xyl[y < aa]]l. To eliminate the two beta-
redexes fxo and fx;, we have to make two copies of the abstraction body. Thus,
the structure aa is introduced twice. To solve this redundancy, a possible solution
is to lift the named structure [y < aa] to top-level before evaluation and obtain
Xo[x2 «— fxillx1 « fxollf « Ax.z[z « xy]lly « aa]. This observation is often
related to full laziness [29], a concept that has been widely studied in call-by-need
settings, often using some graphical structures. However, we do not explore this
aspect in this paper, and we leave it as a future work.

4 A graphical representation for terms: A-graphs with bodies

In this section, we introduce a graphical representation for terms, called A-graphs with
bodies, that will be proved to capture the structural equivalence on X-terms given in
Section 3. The definition of A-graphs with bodies is split into two parts: we first define
pre-graphs, and then define A-graphs with bodies by giving additional structures and
properties to deal with abstractions.

Definition 7. A pre-graph is a directed acyclic graph built with the following three
kinds of nodes:

— Application: an application node is labeled with @and has two incoming edges (left
and right). An application node is also called an @-node.
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— Abstraction: an abstraction node is labeled with A and has one incoming edge. Its
only direct predecessor is called the output of the abstraction node. An abstraction
node is also called a A-node.

— Variable: a variable node has no incoming edge.

A direct predecessor of a node is also called a child of the node.

Internal nodes (application and abstraction) of a pre-graph are used to represent
intermediate expressions defined using constructs [x <« p] within a term. We orient
edges in such a way that there is an edge from n to m if and only if the definition of m
requires the definition of 7. In other words, nodes are defined in a botfom-up fashion.

In the following, we denote by Ng and Eg C Ng x Ng, respectively, the set of nodes
and the set of edges of a graph G.

Definition 8. An unlabeled A-graph with bodies is a pre-graph G together with two
functions bv : Ag = Vg and body : Ag — 2N¢\Vé where Ag is the set of abstraction
nodes of G and Vg is the set of variable nodes of G:

1. body(l) N body(l') =0 forl +1.
2. The graph Bg = (Ag, {(LLI') | I € Ag,l € body(l')}), called the scope graph of G,
is a DAG.
3. If a node n is bv(l) or is in body(l) and there is an edge (n,m) € Eg, then we have
-m=1 or
— m € body(l') such that there is a path from I’ to | in Bg. Note that this path is
unique.

We call bv(l) the bound variable node and body(l) the body of the abstraction node I. A
node that does not belong to any body is called body-free and we denote by body(G) the
set of body-free non-variable nodes in G. A free variable node is a variable node that
is not a bound variable node and a global node is a body-free node that is not a bound
variable node.

Intuitively, Point 3 of Definition 8 checks that every definition in a term is used in a
valid scope: a name introduced in an abstraction can only be used within the abstraction.

Definition 9. A well-labeled A-graph with bodies, or simply a A-graph with bodies, is
an unlabeled A-graph with bodies with a unique label assigned to each free variable
node, and with a global node chosen, called the output of the A-graph with bodies. A
2-A-graph with bodies is a A-graph with bodies with a free variable node labeled by
each element of a signature X.

In order to visualize the maps bv(-) and body(-), we color the labels of abstraction
nodes to distinguish them and color the frame of the nodes in their bodies with the
same color. We proceed similarly for bound variables. In particular, a global node has
its frame colored in black. Figure 7(a) shows a A-graph with bodies, while Figure 7(b)
shows an example that breaks Point 3 of Definition 8. In Figure 7(b), n belongs to the
red body, m belongs to the blue body and there is an edge (n, m). m is not the red A-node
and there is no path from the blue A-node to the red A-node in the scope graph.
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OUTPUT OUTPUT

OUTPUT OUTPUT

Fig. 7. Various figures.

5 2-A-graphs with bodies and 2'-terms

In this section, we prove that there is a one-to-one correspondence between 2-A-graphs
with bodies and X-terms up to =4,. In order to establish such a correspondence, we
first establish a one-to-one correspondence between ordered X-A-graphs with bodies
and 2-terms where ordered 2-A-graphs with bodies are refinements of 2-A-graphs with
bodies with some additional structure.

Dependency. Terms are expressed in a linear style. In other words, all the intermediate
expressions within a term are defined in some (linear) order. However, graphs do not
usually have this kind of structure. In order to establish the correspondence between
terms and graphs, we have to give some more structure to our graphical representation.
To do that, we first define dependency relations on nodes.

Definition 10. Let G be a A-graph with bodies and | an abstraction node. We define a
relation <, called the dependency relation of I, on the set body(l) of nodes as follows:

- n<;mif(n,m) € Eg.
- n<ymif(n,m’) € Eg for some m’ € body(l') with I # 1, and there is a path from I
to m in Bg.

Definition 11. Let G be a A-graph with bodies. We define the dependency relation <g
of G on the set body(G) of body-free non-variable nodes of G as follows:

- n<gmif(n,m) € Eg.
- n<gmif(n,m’) € Eg for some m’ € body(l), and there is a path from | to m in Bg.

Definition 12. Let G be a A-graph with bodies. We define

— the dependency graph of G, as the graph Dg = (body(G),{(n,m) | n <g m}), and
— for all abstraction node |, the dependency graph of I, as the graph D; = (body(l),{(n, m) |
n <; mj).
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Proposition 3. Let G be a A-graph with bodies. Then we have:

— Dg is a DAG, and
— for all abstraction node | of G, D; is a DAG.

For example, for the A-graph with bodies G in Figure 7(a), the dependency graph of
the red (resp. blue) A-node is the subgraph of G induced by its body, while the depen-
dency graph Dg of G has an edge from the application node to the blue A-node.

As mentioned previously, our graphical representation should be equipped with
some linear orderings on internal nodes. Moreover, these orderings should be com-
patible with the dependency relations defined above: they should be topological sorts
of their corresponding dependency graphs.

Definition 13. A topological sort of a directed graph G is a sequence containing each
of its vertices such that for every edge (n,m), n appears before m in the sequence.

Definition 14. An ordered A-graph with bodies G is a A-graph with bodies G together
with a topological sort Tg of the graph Dg and a topological sort T; of the graph D,
for each L.

Figures 7(c) and 7(d) show two ordered A-graphs with bodies whose underlying
A-graphs with bodies are the same. As an example, the term corresponding to 7(c) is

X[x = Ab.b3[b3 < bybi1[by « Arg.r3lr3 « rinllr: < abollri < rorolllb1 < abyl].

Before giving a one-to-one correspondence between ordered A-graphs with bodies
and terms, we give a notion of boxes that is useful in the following.

Definition 15. Let G be a A-graph with bodies and | an abstraction node. We define the
box of | as the union of bodies together with their bound variable nodes below [:

box(l) = U (body(I') U {bv(')})

I'~>lin Bg
where I' ~> [ in Bg means that there is a path from I’ to l in Bg.

In 7(a), the box of the red A-node contains all the red-framed nodes while the box of the
blue 1-node contains all the blue-framed and red-framed nodes.

Intuitively, for a A-node [ of a A-graph with bodies G, the graph obtained from the
subgraph of G induced by box(I) corresponds to the abstraction it introduces.

Ordered A-graphs with bodies can actually be defined inductively as terms. We first
give the following useful definitions.

Definition 16. Let X be a signature and x € X. We define (x)x as the ordered X-A-graph
with bodies that contains a free variable node labeled by each element of 2’ and has the
one labeled by x as the output.

Definition 17. Let 2 and 2’ be signatures, x,y, X1, X, be names such that {x,x,} C 2,
x¢Xandy ¢ 2, G an ordered (X, x)-A-graph with bodies and G’ an ordered (X', y)-
A-graph with bodies. Then
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- Glndx — x,@xy} is defined as the graph H obtained from G by replacing the
free variable node labeled by x with an @-node whose left (resp. right) child is
the variable node labeled by x; (resp. x;). We then extend the topological sort Tg
by having this application node as the minimal node. It is clear that H is also an
ordered X-A-graph with bodies.

- Gind x « Ay.é’} is defined as the graph H obtained from by merging G and G’
and by replacing the free variable node labeled by x with a new abstraction node |
constructed as follows:

e its only child is the output of G,

e its bound variable is the free variable node labeled by y in G’ (we erase the

label y),

e its body contains all the body-free non-variable nodes of G', and

e its topological sort T} is that of G’
Note that G and G’ can share some free variable nodes: they are merged so that
there is only one free variable node labeled by each element of XNX". In the end, we
extend the topological sort Tg by having this new abstraction node as the minimal
node. It is not difficult to see that H is an ordered (X U 2")-A-graph with bodies.

Note that we can also use these definitions for A-graphs with bodies by forgetting topo-
logical sorts.

Proposition 4. Let X be a signature. Then G is an ordered X-A-graph with bodies if
and only if X + G where X + G is defined by the following rules.
Zx+G SyrG  ZxrG
_ xXrG @ y " G x ? 1
2+ Glnd x — y@z} 2+ Gind x — 1y.G'}
Proof. (=) Immediate from Definition 16 and Definition 17.
(e)LetG = (G, Tg,{T; | I € Ag}) be an ordered 2-A-graph with bodies. We proceed

by induction on the number of non-variable nodes and consider each time the minimal
node with respect to Tg. Details can be found in Appendix B.

xeXr Zik (x)z var {y’ Z} cx

Note that the rules defining terms (pvar, papp, pabs) have the same structure as those
in Proposition 4.

Theorem 4. Let X be a signature. Then there is a one-on-one correspondence between
ordered 2-A-graphs with bodies and X-terms.

Proof. We can define translations [[ - |5 from 2-terms to ordered 2-A-graphs with bodies
and [ - ]y from ordered 2-A-graphs with bodies to 2-terms by induction on the rules
pvar, papp, pabs and those in Proposition 4. For the base cases, let [x][s = (x)s and
[(x)s]s = x. We then have [[[f]ls]y = t and H[Q] s = Q for all 2-term ¢ and ordered
X-A-graph with bodies G.

We have established an isomorphism between 2-terms and ordered 2-A-graphs with
bodies. In Section 3, terms are considered equivalent up to =s¢,. How about ordered
A-graphs with bodies? It is natural to consider that ordered A-graphs with bodies are
equivalent if they share the same underlying A-graph with bodies. The following propo-
sition shows that topological sorts of a DAG can be connected to each other via swaps,
similar to permutations of named structures for terms.
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Proposition 5. Let G be a DAG and S a topological sort of G. We call swapping two
non-adjacent nodes of G in a sequence of nodes a valid swap. Then a sequence of nodes
can be obtained from S by a sequence of valid swaps if, and only if, it is a topological

sort of G.
Proof. A proof is given in Appendix C.

The following theorem is a consequence of Theorem 4 and Proposition 5. Details
can be found in Appendix D.

Theorem 5. We have a one-to-one correspondence between X-A-graphs with bodies
and X-terms up 10 =gty.

In the following, we also use [[ - [|s (resp. [ - ]x) to denote the (bijective) map from
the set of 2-terms to the set of 2-A-graphs with bodies.

6 Substitution and reduction on A-graphs with bodies

In this section, we show how substitution and reduction can be easily implemented on
A-graphs with bodies.

Substitution. Note that variable renaming, which is required in the case of terms, is not
needed as internal nodes do not come with a label.

Definition 18 (Substitution on A-graphs with bodies). Let G be a X-A-graph with
bodies and G’ a 2'-A-graph with bodies with x ¢ X’. We define the substitution of x for
G’ in G, written G[x/G’), as the (X' \ {x}) U 2")-A-graph with bodies obtained from by
merging G’ into G and, if x € X by replacing the free variable node labeled by x with
the output node of G'. Note that we have to merge common free variable nodes labeled

by elements of (X' \ {x}) N 2" and the output node of G[x/G'] is that of G.

In Figure 8, we present an example for the substitution on A-graphs with bodies. From
this example, we can clearly see that the structure of bodies is kept under substitution.

The substitution on A-graphs with bodies implements indeed the substitution on
terms.

Theorem 6. Lettbe a X-term and u a 2’-term such that x ¢ 2. Then [[t[x/u]llz\(xpus =
[0/ [ulls].

Proof. A straightforward induction on u.

Reduction. We now show how to implement the two rewrite rules on A-graphs with
bodies. We first define contexts for A-graphs with bodies using the following grammar:

C=0|Cndx « y@z] | C[nd x « 1y.G] | G[nd x « Ay.C]

The plugging C(G) of a A-graph with bodies G in the context C is defined inductively
by:
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Fig. 8. An example for the substitution on A-graphs with bodies: (c) is the result of substituting
the free variable node x for (b) in (a).

OUTPUT OUTPUT

Fig. 9. An example of beta-reduction on A-graphs with bodies. The thick dashed box is a beta-
redex and the two thin dashed boxes in the A-graphs with bodies correspond to the box of the red
A-node and its copy, respectively.

oG =G
Cnd x « y@z(G) = C(G){nd x «— y@cz}
Cnd x « y.G'KG) = C(G){nd x — 1y.G'}
G'Ind x — 1y.CKG) = G'{nd x — 1y.C(G)}.

The gc-rule can be defined by erasing an abstraction node with no parent and its box.
A beta-redex is simply an @-node that has a A-node as its left child. To eliminate
it, it suffices to duplicate the box of the A-node, replace the @-node with the copy of
the output node of A-node, and then replace the bound variable in this copy with the
argument, i.e., the right child of the @-node. One should be careful about the structure
of bodies: in this copy, all the nodes that were in the body of the A-node should be
moved to the same body as the argument or to the corresponding body if the argument
is a bound variable. Figure 9 shows a beta-reduction step on A-graphs with bodies. We
denote by —¢ the contextual closure of these two steps (gc and beta).

The translation [[ - ]|z is a strong bisimulation between the positive A-calculus and
A-graphs with bodies with —g.

Theorem 7. Let s and t be two X-terms. Then s —pos t if and only if [[s]ls —¢ [[t]ls.
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Proof. This is a consequence of Theorem 6.

In general, strong bisimulations preserve confluence quotient by the translation.
Here, the quotient induced by the translation [ - ]y on 2-A-graphs with bodies is the
identity, so the confluence coincides with the confluence modulo quotient by [ - ]s.
Hence, we have the confluence of —¢ from that of —s.

Theorem 8. — is confluent.
Proof. Straightforward from Theorem 2, Theorem 3 and Theorem 7.

Relations with other graphical representations. In [2], Accattoli revealed a close
relationship between the proof nets and the value substitution calculus. As mentioned
earlier, the VSC is equipped with a small-step but not a micro-step e-rule. By replacing
the e-rule by its micro-step variant, one is actually able to simulate the positive A-
calculus in the VSC. This is also true on the graphical side. However, we have a slightly
different treatment of free variables here: free variable nodes are considered shared
between all the bodies, so no free variable node is explicitly included in any body.
This approach is suggested by the rules papp and pabs where the left hand side of the
conclusion is entirely included in those of the premises (this is actually a feature of
LIJF, where weakenings are delayed and only allowed in initial rules /; and /,). Due to
this choice, the content of a box is no longer a A-graph with bodies (one has to include
all the free variable nodes), which makes induction arguments a bit more complicated.
However, it provides us a clear way to sequentialize A-graphs with bodies.

In [14], A-graphs are used to study the sharing equality. As the name suggests, A-
graphs with bodies can be (almost) seen as an extension of A-graphs with bodies. They
only differ in the following points:

— A-graphs are not pointed: there is no unique output assigned to a A-graph as their
goal is to study if two terms have the same encoding under the same context.

— There is no useless node under an abstraction in A-graphs: an abstraction node has
a unique child (output). Without the notion of bodies, there is no way to define
nodes that are under an abstraction but not used to define the output. This is not a
drawback as these useless nodes do not affect the unfoldings of terms.

7 Generalization

In this section, we explain briefly how this graphical representation can be generalized
using LJF and different polarized theories.

In Definition 3, LJ can be extended by any polarized theory of order one or two. In
our study of untyped A-terms, we use exactly one formula of order one (D > D D D)
and one formula of order two (D D D) D D). Our graphical representation can be
generalized to any positively polarized theory of order one or two in the following way.

Each node comes with a type which is an atomic formula. A formula of order one
or two can be written as By D --- D B, D A with n > 1, B; of order at most one and A
atomic. This formula corresponds to a node of type A that has n incoming edges, each
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of which corresponds to one B;. For 1 < i < n, if B; is atomic, then it corresponds to
simply a node of type B;, and if B; is of order one, then it comes with a notion of body.

A similar notion of reduction can also be defined: a redex is simply a group of nodes
that follow a certain pattern, and reduction rules can be defined using the children (or

boxes) of these nodes.

8 Conclusion

We propose the positive A-calculus based on the encoding of untyped A-terms defined
using the positive bias assignment in [27]. This calculus features a call-by-value rewrite
system and is closely related to the value substitution calculus.

We introduce a graphical representation for terms of the positive A-calculus, called
A-graphs with bodies and show how operations such as substitution and reduction can
be implemented on this structure.

Using the focused proof system LJF as a framework to build term structures makes
it possible to generalize the results in this paper to other kinds of term calculi.

Future work. We plan to explore at least the following directions in the future:

— Fully lazy sharing: As mentioned, the reduction procedure of the positive A-calculus
is not perfect since all the named structures within an abstraction are duplicated. We
hope to explore the possibilities of allowing more sharing along the reduction and
works on full laziness can surely provide more insights.

— Mixing positive and negative term structures: An important feature of LJF is polar-
ization. This paper focuses on the case that atoms are all given the positive polarity.
What if we consider atoms of different polarities? Will this allow expressing more
term structures while having a good notion of sharing? These are the questions we
hope to answer in our follow-up study.

— Connections with the VSC: The VSC has been applied to study the call-by-value
A-calculus and various topics related to it: abstract machines, sharing, etc. Also, a
correspondence between VSC-terms and proof nets has been established. In this
paper, we show how these two calculi are similar but different at the same time.
It seems natural and interesting to look for more connections between these two
calculi and to see if the positive A-calculus can provide a different perspective on
the topics mentioned above.
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A Proof of Proposition 1

To prove this, we define the unfolding C of a context C inductively:

g =<
Clx « yz] = C{x/yz}
Clx « Ay.s] = C{x/Ay.s}
slx < Ay.Cl = s{x/1y.C}

Here ¢ is a variable and C is an untyped A-term. We have C(t) = C{¢/t} by a straight-
forward induction. The case of — . is trivial. It suffices now to prove

C(tlz < xw[x < Ay.s] —pos
C{tlz/sly/wihlx « Ay.s].

We have
C{t[z « xw])[x « Ay.s]
= C(tlz < xw){x/Ay.s}
= Clo/tlz & xwlHx/Ay.s}
= Clo/tz/xwiH{x/Ay.s}
and

C{tz/s{y/wih)lx < Ay.s]
= C{z/sly/wihix/Ay.s}
= Clo/tlz/ s{y/whHx/Ay.s}
= Clo/t{z/ s{y/whx/Ay.s}.

It is clear that
Clo/Hz/xwiH{x/Ay.s} —=pos
Clo/Hz/s{y/whHx/Ay.s}.

B Proof of Proposition 4

(=) Immediate from Definition 16 and Definition 17.
(=)LetG = (G, Tg, {T | | € Ag}) be an ordered X-A-graph with bodies. We proceed
by induction on the number of non-variable nodes in G.

— G contains only variable nodes and its output is labeled by x: Q =(x)s.
— G contains a non-variable node: in this case, G contains at least one body-free non-
variable node. We consider the minimal one n with respect to Tg.
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application: both of its children are free variable nodes (otherwise, it would
not have been the minimal body-free non-variable node), labeled by y and z,
respectively. Let G’ be the graph obtained from G by replacing this application
node with a fresh free variable node x (with topological sorts inherited). This
graph Q’ is an ordered (X, x)-A-graph with bodies and we have Q = Q'{nd X
y@z}.

abstraction: Consider the subgraph H of G induced by box(n) U 2. By giving
the bound variable node of n in G a label y, we obtain an ordered (X, y)-A-graph
with bodies H’ (with topological sorts inherited). To prove H’ is indeed a A-
graph with bodies, it suffices to prove that "for every node m in box(n), every
child of m in G is either a free variable node or is also in box(n)”. Let m be a
node in box(n) and m’ be a child of m that is not in box(n). We distinguish two
cases:

x m’ is body-free and is not a bound variable node: then it is a free-variable
node. Otherwise, n would not have been minimal w.r.t. T since we have
m’ <g n in this case, a contradiction.

x m’ belongs to body(l) or is bv(l) for some abstraction node /: by Definition
15, m is in body(n’) (m cannot be a bound variable as it has a child) for
some n’ such that there is a path n’ ~ n in Bg. Then by Condition 3 of
Definition 8, we have a path n’ ~> [ in Bg. Since n is body-free and by the
uniqueness of paths between two nodes in Bg (by Conditions 1 and 2 of
Definition 8), we have a path from [ to n in B¢, which implies that m’ is in
box(n) by Definition 15, a contradiction.

Now by removing all the nodes in box(n) from G and by replacing n with a
fresh free variable node x, we get an ordered (X, x)-A-graph with bodies G
Similarly, to prove that G’ is a A-graph with bodies, it suffices to check that the
children of all its nodes except n in G are still in G’, i.e., not in box(n). Suppose
that there is a node m different from » in G’ having a child m’ (in G) in box(n).
Assume that m’ is bv(n’) or in body(n’). Then by Condition 3 of Definition 8§,
we have either (1) m = n’ or (2) m € body(l) such that there is a path [ ~ n’
in Bg. The first case implies that m’ is bv(m) or in body(m) and since m’ is in
box(n), we have a path m ~> n in Bg. The path is non-empty (m is different
from n), so m is also in box(n), a contradiction. For the second case, since m’ is
in box(n), we have a path n’ ~ n in 8g by Definition 15. Thus we have a path
[ ~ n in Bg, which is impossible since m is in body(l) and m is not in box(n).
Then we have Q = Q’{nd X /ly.‘}:l’}.

C Proof of Proposition 5

We only prove the converse implication here since the direct implication is trivial. As-
sume that S = S,...,S¢. LetT =T},..., T} be a topological sort of G. Suppose that i
is the minimal integer such that S; # 7;. We have thus S| = T,...,S,-1 = Ti—;. Now
we construct a sequence S’ from applying a sequence of valid swaps to S such that

SI=Ty,...S|=T. (1)
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Let j be the unique integer such that § ; = T;. It is clear that j > i. We now swap S ;
with S ;_;. This is a valid swap since § is a topological sort and the sequence obtained
is still a topological sort. By repeating this step, we can obtain a topological sort S’ by
moving § ; to the i-th position and S” satisfies clearly (1).

Now repeat the step by considering S’ instead of S, and so on. We can eventually
reach T by a sequence of valid swaps.

D Proof of Theorem 5

We first define bodies and dependency relations on terms in a similar way.

Definition 19. Let t be a X-term. Let x be a name introducing an abstraction in t, i.e.,
we have the pattern [x < Ay.s] in t. We define the body of x, written body(x), as the
set {x1,- -+, xx} of names where s is of the form xii1[xr < pi]---[x1 < p1]. We say
that y is the bound variable of x, denoted by bv(x). It is clear that any name introduced
by the construct [x < p] belongs to at most one body. We denote by body(t) the set of
names introduced by some construct [x < p] that do not belong to any body of any
name introducing an abstraction.

Definition 20. Let t be a X-term. Let x be a name introduced by some [x < p]lint.
We define the dependency set of x, written dep(x), as the set fv(p). We then define the
dependency graphs of t and of its names introducing abstractions:

— The dependency graph D, of t is defined as the graph
(body(1),{(x,y) | x,y € body(t) and x € dep(y)}).

— The dependency graph D, of a name x introducing an abstraction is defined as the
graph
(body(x),{(y,2) | y,z € body(x) and y € dep(2)}).

Note that if x € dep(y), then x cannot be defined later than y in the same body. This
observation leads to the following proposition.

Proposition 6. Let t be a 2-term. Then we have:

- D, is a DAG.

— D, is a DAG for any x introducing an abstraction.

The permutations defining structural equivalence are applied to two consecutive
named structures in the same body and we can permute them if and only if neither of
them is in the dependency set of the other. Thus, we have the following proposition.

Proposition 7. Two consecutive named structures can be permuted using ~sir if and
only if they are not adjacent in their corresponding dependency graph.

The following key lemma can be proved by induction on terms.
Lemma 1. For any 2-term t, t and ([t]|s have the same dependency graphs.

Theorem 5 is simply a consequence of Theorem 4, Proposition 5, Proposition 7, and
Lemma 1.
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