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Proof as terms
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Proofs as terms

• Proof theory has been widely used in studying terms and programs,
often via Curry-Howard correspondence.

• Which proof system to choose?
Natural deduction: not sophisticated enough
Sequent calculus: too little structure and too many redundancies

• Focusing: a light canonical form for (sequent) proofs with more
structure

• Focused proof system LJF for Gentzen’s LJ: Focusing and
polarization
▶ Connectives and atomic formulas are polarized
▶ Different polarizaions do not affect provability, but they induce different

forms of proofs
↪→ different styles of term structures 1

1Dale Miller and Jui-Hsuan Wu. A positive perspective on term representation. CSL
2023.
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Two encodings of untyped λ-terms

Using LJF , with the two axioms D ⊃ D ⊃ D and (D ⊃ D) ⊃ D where D is
atomic, and by considering only sequents of the form:

D, . . . ,D ⊢ D

we have the following rules:

D is given the negative polarity

D ∈ Γ nvar
Γ ⊢ D

Γ ⊢ D Γ ⊢ D
napp

Γ ⊢ D

Γ,D ⊢ D
nabs

Γ ⊢ D

D is given the positive polarity

D ∈ Γ pvar
Γ ⊢ D

Γ,D ⊢ D
{D,D} ⊆ Γ papp

Γ ⊢ D

Γ,D ⊢ D Γ,D ⊢ D
pabs

Γ ⊢ D
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Two encodings of untyped λ-terms

• The negative bias syntax corresponds to the usual representation
of untyped λ-terms: tree-structure, top-down

• The positive bias syntax gives a term structure where sharing is
possible via named structures, or explicit substitutions: DAG,
bottom-up

• What does cut-elimination do in these two cases?
▶ Terms considered here correspond to cut-free proofs.
▶ Cut-elimination , Computation
▶ If we introduce a cut between two cut-free proofs, cut-elimination

provides a natural notion of substitution. As expected, in the negative
case, the cut-elimination procedure of LJF yields the usual meta-level
substitution for untyped λ-terms. What about the positive case?
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positive λ-calculus
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The positive λ-calculus

In the following, we are interested in the positive bias syntax.
Fix a set name = {x, y, z, . . .} of names (or variables). Terms, contexts
and left contexts are defined as follows:

Terms s, t B x | t[x ← yz] | t[x ← λy.s]
Contexts C B □ | C[x ← yz] | C[x ← λy.s] | t[x ← λy.C]

Left Contexts L B □ | L [x ← yz] | L [x ← λy.s]

A term can be viewed as a list of named structures (or explicit
substitutions) followed by a variable. Also note that every term can be
written uniquely (up to α-equivalence) as L⟨x⟩ for some left context L and
variable x.
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The positive λ-calculus: Structural equivalence

If two named structures are independent of each other, we should be
able to permute them. By defining fv(yz) = {y, z} and
fv(λy.s) = fv(s) \ {y}, this can be expressed using the equation:

t[x1 ← p1][x2 ← p2] ∼str t[x2 ← p2][x1 ← p1]

if x1 < fv(p2) and x2 < fv(p1)

Definition (Structural equivalence)

We define an equivalence relation ≡str on terms, called the structural
equivalence, as the smallest congruence containing ∼str.
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The positive λ-calculus: Substitution

Definition (Substitution on terms)

Let t , u be terms and x a name such that x < fv(u). We define the result
of substituting u for x in t , written t[x/u], as follows:

t[x/y] = t{x/y}

t[x/s[y ← zw]] = t[x/s][y ← zw]

t[x/s[y ← λz.u]] = t[x/s][y ← λz.u]

Note that by expressing the term u uniquely as L⟨y⟩, we have
t[x/u] = L⟨t{x/y}⟩ by a straightforward induction.

An example:
Let t be the term y[y ← λz.w[w ← za]][x ← aa] and u the term
a2[a2 ← a1a1][a1 ← a0a0]. Then

t[a/u] = y[y ← λz.w[w ← za2]][x ← a2a2][a2 ← a1a1][a1 ← a0a0]
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The positive λ-calculus: Unfolding

How to compare a term of the positive λ-calculus with a usual
λ-term?

We can unfold all the named structures.

Definition (Unfolding)

The unfolding t of a term t is the untyped λ-term defined as follows:

x = x t [x ← yz] = t{x/yz} t[x ← λy.s] = t{x/λy.s}

where {·/·} is the meta-level substitution of untyped λ-terms.

Note that, this definition can also be justified by manipulating LJF proofs
via cut-elimination.
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The positive λ-calculus: Reduction

How should we evaluate a term t in the positive λ-calculus?

A possible way is to compute its unfolding t and evaluate it in the untyped
λ-calculus. In this case, we can refer to the β-normal form of t (if it exists)
as the meaning of t .

However, this can be costly as the unfolding of a term might have
exponential size with respect to the original term.

As a result, we look for a reduction system for the positive λ-calculus that
is compatible with the β-reduction in the untyped λ-calculus.
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The positive λ-calculus: Reduction

We propose the following beta-rule and gc-rule.

C⟨t[z ← xw]⟩[x ← λy.L⟨y′⟩] 7→beta C⟨L⟨t{z/y′}⟩{y/w}⟩[x ← λy.L⟨y′⟩]

t[x ← λy.s] 7→gc t if x < fv(t)

How we define the beta-rule:

1. for a given term t , consider its corresponding (cut-free) proof Π

2. identify a certain pattern (that actually corresponds to a beta-redex)
in Π and transform the proof into a proof with cut Π′

3. apply cut-elimination to Π′
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The positive λ-calculus: Reduction

C⟨t[z ← xw]⟩[x ← λy.L⟨y ′⟩] 7→beta C⟨L⟨t{z/y ′}⟩{y/w}⟩[x ← λy.L⟨y ′⟩]
t[x ← λy.s] 7→gc t if x < fv(t)

An example:

x2[x2 ← gx1][x1 ← fx0][f ← λx.z[z ← yy][y ← xx]]

→beta x2[x2 ← gz1][z1 ← y1y1][y1 ← x0x0][f ← λx.z[z ← yy][y ← xx]]

→gc x2[x2 ← gz1][z1 ← y1y1][y1 ← x0x0]

We define→pos as→beta ∪ →gc.
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The positive λ-calculus: Reduction

C⟨t[z ← xw]⟩[x ← λy.L⟨y ′⟩] 7→beta C⟨L⟨t{z/y ′}⟩{y/w}⟩[x ← λy.L⟨y ′⟩]
t[x ← λy.s] 7→gc t if x < fv(t)

Proposition

Let s and t be terms such that s →pos t . Then s →∗β t .

Proposition

If s is a normal term with respect to→pos, then s is β-normal.
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The positive λ-calculus and the VSC

The value substitution calculus (VSC) is a call-by-value λ-calculus with
explicit substitutions proposed by Accattoli and Paolini.

The syntax and the reduction rules of the VSC are shown below:

Terms t , u B v | tu | t[x ← u]
Values v B x | λx.t

Contexts C B □ | tC | Ct | λx.C | C[x ← t] | t[x ← C]
Left Contexts L B □ | L [x ← t]

L⟨λx.t⟩u 7→m L⟨t[x ← u]⟩
t[x ← L⟨v⟩] 7→e L⟨t{x/v}⟩

It is easy to see that all terms and contexts of the positive λ-calculus are
included in the VSC.
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Usefulness

For example, consider the term

t = w[w ← fx][f ← λz0.z3[z3 ← G(z2)][z2 ← G(z1)][z1 ← G(z0)]][x ← λy.s].

where G(t) = λw0.w3[w3 ← w1w2][w2 ← gt][w1 ← gt] with g a fixed
name and s a normal term in positive λ-calculus. After one beta-step
and one gc-step, we obtain a normal term

z′3[z
′
3 ← G(z′2)][z

′
2 ← G(z′1)][z

′
1 ← G(x)][x ← λy.s].

in the positive λ-calculus. However, in the VSC, we have

z′3[z
′
3 ← G(z′2)][z

′
2 ← G(z′1)][z

′
1 ← G(x)][x ← λy.s] →e

z′3[z
′
3 ← G(z′2)][z

′
2 ← G(z′1)][z

′
1 ← G(λy.s)] →e

z′3[z
′
3 ← G(z′2)][z

′
2 ← G(G(λy.s))] →e

z′3[z
′
3 ← G(G(G(λy.s)))] →e

G(G(G(λy.s)))
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The positive λ-calculus and the VSC

We can actually consider a variant of the VSC, called micro-step as
substitutions are treated one by one instead of using meta-level
substitution.

L⟨λx.t⟩u 7→m L⟨t[x ← u]⟩
C⟨x⟩[x ← L⟨v⟩] 7→e′ L⟨C⟨v⟩[x ← v]⟩

t[x ← L⟨v⟩] 7→gc′ t if x < fv(t)

The beta-rule can actually be simulated by the VSC as follows:

C⟨t[z ← xw]⟩[x ← λy.L⟨y′⟩]→e′

C⟨t[z ← (λy.L⟨y′⟩)w]⟩[x ← λy.L⟨y′⟩]→m
C⟨t[z ← L⟨y′⟩[y ← w]]⟩[x ← λy.L⟨y′⟩]→∗e′→gc′

C⟨t[z ← L⟨y′⟩{y/w}]⟩[x ← λy.L⟨y′⟩]→∗e′→gc′

C⟨L⟨t{z/y′}⟩{y/w}⟩[x ← λy.L⟨y′⟩]
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λ-graphs with bodies
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λ-graphs with bodies

We also propose a graphical representation for the positive λ-calculus.

a

@ @

@

λ

@

@

λ

OUTPUT

n1[n1 ← (λb.b3[b3 ← b2b1][b2 ← (λr.r3[r3 ← r1r2][r2 ← ab][r1 ← rr])][b1 ← ab])]

n1[n1 ← (λb.b3[b3 ← b2b1][b1 ← ab][b2 ← (λr.r3[r3 ← r1r2][r1 ← rr][r2 ← ab])])]
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λ-graphs with bodies: Definition

Definition
A pre-graph is a DAG built with the following three
kinds of nodes:

• Application: an application node is labeled with @
and has two incoming edges (left and right).

• Abstraction: an abstraction node is labeled with
λ and has one incoming edge.

• Variable: a variable node has no incoming edge.

@ @

@

λ

@

@

λ
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λ-graphs with bodies: Definition

Definition
An unlabeled λ-graph with bodies is a pre-graph
G together with two functions bv : ΛG → VG and
body : ΛG → 2NG\VG (ΛG: abstraction nodes of G,
VG: variable nodes of G) such that:

1. body(l) ∩ body(l′) = ∅ for l , l′.

2. BG = (ΛG, {(l, l′) | l, l′ ∈ ΛG, l ∈ body(l′)}), called
the scope graph of G, is a DAG.

3. If n = bv(l) or n ∈ body(l) and (n,m) ∈ EG, then
we have
▶ m = l, or
▶ m ∈ body(l′) s.t. there is a path from l′ to l in BG.

@ @

@

λ

@

@

λ
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λ-graphs with bodies: Definition

Definition
• A λ-graph with bodies is an unlabeled
λ-graph with bodies with a unique label
assigned to each free variable node, and with
a global node chosen, called the output of
the λ-graph with bodies.

• A Σ-λ-graph with bodies is a λ-graph with
bodies with a free variable node labeled by
each element of a signature Σ.

@ @

@

λ

@

@

λ
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λ-graphs with bodies and terms

λ-graphs with bodies capture the structural equivalence on terms.

Theorem
We have a one-to-one correspondence between Σ-λ-graphs with bodies
and Σ-terms up to ≡str.

Substitution on λ-graphs with bodies can be defined in a straightforward
way:

a x

@ @

@

λ

OUTPUT

a

@

λ

OUTPUT

a

@

λ@

@

@

λ

OUTPUT
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λ-graphs with bodies: Reduction

Definition
Let G be a λ-graph with bodies and l an abstraction node. We define the
box of l as the union of bodies together with their bound variable nodes
below l:

box(l) =
⋃

l′{l in BG

(body(l′) ∪ {bv(l′)})

Reduction can then be defined by duplicating boxes and by applying
substitutions.

a

@

λ @

@ @

@

λ

OUTPUT

a

@

λ @

@@

@

λ

OUTPUT
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Generalization and Conclusion
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Generalization

Here, we use two specific axioms D ⊃ D ⊃ D and (D ⊃ D) ⊃ D to
provide encodings for untyped λ-terms.

In fact, thanks to LJF , similar term structures can be defined using any
set of formulas of order at most 2 where the order ord(B) of a formula B
is defined as follows:

ord(A) = 0 ord(B1 ⊃ B2) = max(ord(B1) + 1,B2)

Note that ord(D ⊃ D ⊃ D) = 1 and ord((D ⊃ D) ⊃ D) = 2.

Any formula F of order at most 2 can be written as B1 ⊃ · · · ⊃ Bn ⊃ A
with A atomic and ord(Bi) ≤ 1. If ord(Bi) = 1 for some i, then the node
corresponding to F comes with a notion of body.
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Conclusion

• We define the positive λ-calculus, whose reduction does not
correspond to cut-elimination but is also inspired by some
proof-theoretic consideration.

• The positive λ-calculus is closely related to the VSC but does useful
substitutions of abstractions.

• λ-graphs with bodies captures the structural equivalence on terms
and operations can be implemented on them in a straightforward
way.

• Some future directions:
▶ Explore more connections between the positive λ-calculus and the

VSC using usefulness
▶ Extend to the settings where mixed polarities for atoms are considered
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