Proofs as Terms, Terms as Graphs

Jui-Hsuan Wu (Ray)

LIX, Institut Polytechnique de Paris \& Inria Saclay

APLAS 2023, Taipei, Taiwan

27 November 2023

Outline

Proof as terms

positive λ-calculus
λ-graphs with bodies

Generalization and Conclusion

Proof as terms

Proofs as terms

- Proof theory has been widely used in studying terms and programs, often via Curry-Howard correspondence.
- Which proof system to choose?

Natural deduction: not sophisticated enough
Sequent calculus: too little structure and too many redundancies

- Focusing: a light canonical form for (sequent) proofs with more structure
- Focused proof system LJF for Gentzen's LJ: Focusing and polarization
- Connectives and atomic formulas are polarized
- Different polarizaions do not affect provability, but they induce different forms of proofs
\hookrightarrow different styles of term structures ${ }^{1}$

[^0]
Two encodings of untyped λ-terms

Using $L J F$, with the two axioms $D \supset D \supset D$ and $(D \supset D) \supset D$ where D is atomic, and by considering only sequents of the form:

$$
D, \ldots, D \vdash D
$$

we have the following rules:
D is given the negative polarity $\quad D$ is given the positive polarity

$$
\begin{aligned}
& D \in \Gamma \frac{}{\Gamma \vdash D} \text { nvar } \\
& D \in \Gamma \frac{}{\Gamma \vdash D} \text { pvar } \\
& \frac{\Gamma \vdash D \quad \Gamma \vdash D}{\Gamma \vdash D} \text { napp } \\
& \frac{\Gamma, D+D}{\Gamma \vdash D} \text { nabs } \\
& \{D, D\} \subseteq \Gamma \frac{\Gamma, D \vdash D}{\Gamma \vdash D} \text { papp } \\
& \frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \text { pabs }
\end{aligned}
$$

Two encodings of untyped λ-terms

Using $L J F$, with the two axioms $D \supset D \supset D$ and $(D \supset D) \supset D$ where D is atomic, and by considering only sequents of the form:

$$
D, \ldots, D \vdash D
$$

we have the following rules:
D is given the negative polarity $\quad D$ is given the positive polarity

$$
\begin{array}{cc}
x: D \in \Gamma \frac{D \in \Gamma \frac{\Gamma \vdash x: D}{\Gamma \vdash D} \text { nvar }}{\Gamma \vdash x} \\
\frac{\Gamma \vdash s: D}{\Gamma \vdash t: D} \text { napp } & \{D, D\} \subseteq \Gamma \frac{\Gamma, D \vdash D}{\Gamma \vdash D} \text { papp } \\
\frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash \lambda x . t: D} \text { nabs } & \frac{\Gamma, D \vdash D}{\Gamma \vdash D} \text { 盀 }
\end{array}
$$

Two encodings of untyped λ-terms

Using $L J F$, with the two axioms $D \supset D \supset D$ and $(D \supset D) \supset D$ where D is atomic, and by considering only sequents of the form:

$$
D, \ldots, D \vdash D
$$

we have the following rules:
D is given the negative polarity

$$
\begin{gathered}
x: D \in \Gamma \frac{\Gamma \vdash x: D}{\Gamma v a r} \\
\frac{\Gamma \vdash s: D \quad \Gamma \vdash t: D}{\Gamma \vdash s t: D} \text { napp } \\
\frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash \lambda x \cdot t: D} \text { nabs }
\end{gathered}
$$

D is given the positive polarity

$$
\begin{gathered}
x: D \in \Gamma \frac{\overline{\Gamma \vdash x: D}}{} \text { pvar } \\
\{y: D, z: D\} \subseteq \Gamma \frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash t[x \leftarrow y z]: D} \text { papp } \\
\frac{\Gamma, y: D \vdash s: D \quad \Gamma, x: D \vdash t: D}{\Gamma \vdash t[x \leftarrow \lambda y \cdot s]: D} \text { pabs }
\end{gathered}
$$

Two encodings of untyped λ-terms

Using $L J F$, with the two axioms $D \supset D \supset D$ and $(D \supset D) \supset D$ where D is atomic, and by considering only sequents of the form:

$$
D, \ldots, D \vdash D
$$

we have the following rules:
D is given the negative polarity

$$
\begin{gathered}
x: D \in \Gamma \frac{\Gamma \vdash x: D}{} \text { nvar } \\
\frac{\Gamma \vdash s: D \Gamma \vdash t: D}{\Gamma \vdash s t: D} \text { napp } \\
\frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash \lambda x . t: D} \text { nabs }
\end{gathered}
$$

negative bias syntax
D is given the positive polarity

$$
\begin{gathered}
x: D \in \Gamma \frac{\Gamma^{-x: D}}{} \text { pvar } \\
\{y: D, z: D\} \subseteq \Gamma \frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash t[x \leftarrow y z]: D} \text { papp } \\
\frac{\Gamma, y: D \vdash s: D \quad \Gamma, x: D \vdash t: D}{\Gamma \vdash t[x \leftarrow \lambda y \cdot s]: D} \text { pabs }
\end{gathered}
$$

positive bias syntax

Two encodings of untyped λ-terms

- The negative bias syntax corresponds to the usual representation of untyped λ-terms: tree-structure, top-down
- The positive bias syntax gives a term structure where sharing is possible via named structures, or explicit substitutions: DAG, bottom-up
- What does cut-elimination do in these two cases?
- Terms considered here correspond to cut-free proofs.
- Cut-elimination $=$ Computation
- If we introduce a cut between two cut-free proofs, cut-elimination provides a natural notion of substitution. As expected, in the negative case, the cut-elimination procedure of $L J F$ yields the usual meta-level substitution for untyped λ-terms. What about the positive case?

positive λ-calculus

The positive λ-calculus

In the following, we are interested in the positive bias syntax.
Fix a set name $=\{x, y, z, \ldots\}$ of names (or variables). Terms, contexts and left contexts are defined as follows:

$$
\begin{array}{rr}
\text { Terms } & \text { s, } t
\end{array}:=x|t[x \leftarrow y z]| t[x \leftarrow \lambda y . s] ~ 子|C[x \leftarrow y z]| C[x \leftarrow \lambda y . s] \mid t[x \leftarrow \lambda y . C]
$$

A term can be viewed as a list of named structures (or explicit substitutions) followed by a variable. Also note that every term can be written uniquely (up to α-equivalence) as $L\langle x\rangle$ for some left context L and variable x.

The positive λ-calculus: Structural equivalence

If two named structures are independent of each other, we should be able to permute them. By defining $f v(y z)=\{y, z\}$ and $f v(\lambda y . s)=f v(s) \backslash\{y\}$, this can be expressed using the equation:

$$
\begin{aligned}
t\left[x_{1} \leftarrow p_{1}\right]\left[x_{2} \leftarrow p_{2}\right] \sim_{\text {str }} t[& \left.x_{2} \leftarrow p_{2}\right]\left[x_{1} \leftarrow p_{1}\right] \\
& \text { if } x_{1} \notin f v\left(p_{2}\right) \text { and } x_{2} \notin f v\left(p_{1}\right)
\end{aligned}
$$

Definition (Structural equivalence)

We define an equivalence relation $\equiv_{\text {str }}$ on terms, called the structural equivalence, as the smallest congruence containing $\sim_{\text {str }}$.

The positive λ-calculus: Substitution

Definition (Substitution on terms)

Let t, u be terms and x a name such that $x \notin f v(u)$. We define the result of substituting u for x in t, written $t[x / u]$, as follows:

$$
\begin{aligned}
t[x / y] & =t\{x / y\} \\
t[x / s[y \leftarrow z w]] & =t[x / s][y \leftarrow z w] \\
t[x / s[y \leftarrow \lambda z . u]] & =t[x / s][y \leftarrow \lambda z . u]
\end{aligned}
$$

Note that by expressing the term u uniquely as $L\langle y\rangle$, we have $t[x / u]=L\langle t\{x / y\}\rangle$ by a straightforward induction.

An example:
Let t be the term $y[y \leftarrow \lambda z . w[w \leftarrow z a]][x \leftarrow a a]$ and u the term $a_{2}\left[a_{2} \leftarrow a_{1} a_{1}\right]\left[a_{1} \leftarrow a_{0} a_{0}\right]$. Then

$$
t[a / u]=y\left[y \leftarrow \lambda z . w\left[w \leftarrow z a_{2}\right]\right]\left[x \leftarrow a_{2} a_{2}\right]\left[a_{2} \leftarrow a_{1} a_{1}\right]\left[a_{1} \leftarrow a_{0} a_{0}\right]
$$

The positive λ-calculus: Unfolding

How to compare a term of the positive λ-calculus with a usual λ-term?

We can unfold all the named structures.

Definition (Unfolding)

The unfolding \underline{t} of a term t is the untyped λ-term defined as follows:

$$
\underline{x}=x \quad \underline{t}[x \leftarrow y z]=\underline{t}\{x / y z\} \quad \underline{t}[x \leftarrow \lambda y \cdot s]=\underline{t}\{x / \lambda y \cdot \underline{s}\}
$$

where $\{\cdot / \cdot\}$ is the meta-level substitution of untyped λ-terms.
Note that, this definition can also be justified by manipulating LJF proofs via cut-elimination.

The positive λ-calculus: Reduction

How should we evaluate a term t in the positive λ-calculus?
A possible way is to compute its unfolding \underline{t} and evaluate it in the untyped λ-calculus. In this case, we can refer to the β-normal form of \underline{t} (if it exists) as the meaning of t.

However, this can be costly as the unfolding of a term might have exponential size with respect to the original term.

As a result, we look for a reduction system for the positive λ-calculus that is compatible with the β-reduction in the untyped λ-calculus.

The positive λ-calculus: Reduction

We propose the following beta-rule and gc-rule.

$$
\begin{array}{cc}
C\langle t[z \leftarrow x w]\rangle\left[x \leftarrow \lambda y . L\left\langle y^{\prime}\right\rangle\right] & \mapsto_{\text {beta }} C\left\langle L\left\langle t\left\{z / y^{\prime}\right\}\right\rangle\{y / w\}\right\rangle\left[x \leftarrow \lambda y . L\left\langle y^{\prime}\right\rangle\right] \\
t[x \leftarrow \lambda y . s] \mapsto_{\mathrm{gc}} t & \text { if } x \notin f v(t)
\end{array}
$$

How we define the beta-rule:

1. for a given term t, consider its corresponding (cut-free) proof Π
2. identify a certain pattern (that actually corresponds to a beta-redex) in Π and transform the proof into a proof with cut Π^{\prime}
3. apply cut-elimination to Π^{\prime}

The positive λ-calculus: Reduction

$$
\begin{array}{rll}
C\langle t[z \leftarrow x w]\rangle\left[x \leftarrow \lambda y . L\left\langle y^{\prime}\right\rangle\right] & \mapsto_{\text {beta }} & C\left\langle L\left\langle t\left\{z / y^{\prime}\right\rangle\right\rangle\langle y / w\rangle\right\rangle\left[x \leftarrow \lambda y \cdot L\left\langle y^{\prime}\right\rangle\right] \\
t[x \leftarrow \lambda y . s] & \mapsto_{\mathrm{gc}} & t
\end{array}
$$

An example:

$$
\begin{aligned}
& x_{2}\left[x_{2} \leftarrow g x_{1}\right]\left[x_{1} \leftarrow f x_{0}\right][f \leftarrow \lambda x . z[z \leftarrow y y][y \leftarrow x x]] \\
\rightarrow_{\text {beta }} & x_{2}\left[x_{2} \leftarrow g z_{1}\right]\left[z_{1} \leftarrow y_{1} y_{1}\right]\left[y_{1} \leftarrow x_{0} x_{0}\right][f \leftarrow \lambda x . z[z \leftarrow y y][y \leftarrow x x]] \\
\rightarrow_{\text {gc }} & x_{2}\left[x_{2} \leftarrow g z_{1}\right]\left[z_{1} \leftarrow y_{1} y_{1}\right]\left[y_{1} \leftarrow x_{0} x_{0}\right]
\end{aligned}
$$

We define $\rightarrow_{\text {pos }}$ as $\rightarrow_{\text {beta }} \cup \rightarrow_{\mathrm{gc}}$.

The positive λ-calculus: Reduction

$$
\begin{array}{rll}
C\langle t[z \leftarrow x w]\rangle\left[x \leftarrow \lambda y . L\left\langle y^{\prime}\right\rangle\right] & \mapsto_{\text {beta }} & C\left\langle L\left\langle t\left\{z / y^{\prime}\right\rangle\right\rangle\langle y / w\}\right\rangle\left[x \leftarrow \lambda y . L\left\langle y^{\prime}\right\rangle\right] \\
t[x \leftarrow \lambda y . s] & \mapsto_{\mathrm{gc}} & t
\end{array}
$$

Proposition

Let s and t be terms such that $s \rightarrow_{\text {pos }} t$. Then $\underline{s} \rightarrow_{\beta}^{*} \underline{t}$.

Proposition

If s is a normal term with respect to $\rightarrow_{\mathrm{pos}}$, then \underline{s} is β-normal.

The positive λ-calculus and the VSC

The value substitution calculus (VSC) is a call-by-value λ-calculus with explicit substitutions proposed by Accattoli and Paolini.

The syntax and the reduction rules of the VSC are shown below:

$$
\begin{array}{rcl}
\text { Terms } & t, u & :=v|t u| t[x \leftarrow u] \\
\text { Values } & v & :=x \mid \lambda x . t \\
\text { Contexts } & C & :=\square|t C| C t|\lambda x . C| C[x \leftarrow t] \mid t[x \leftarrow C] \\
\text { Left Contexts } & L & :=\square \mid L[x \leftarrow t] \\
& \\
L\langle\lambda x . t\rangle u & \mapsto_{\mathrm{m}} \quad L\langle t[x \leftarrow u]\rangle \\
t[x \leftarrow L\langle v\rangle] & \mapsto_{\mathrm{e}} \quad L\langle t\{x / v\}\rangle
\end{array}
$$

It is easy to see that all terms and contexts of the positive λ-calculus are included in the VSC.

Usefulness

For example, consider the term
$t=w[w \leftarrow f x]\left[f \leftarrow \lambda z_{0} \cdot z_{3}\left[z_{3} \leftarrow G\left(z_{2}\right)\right]\left[z_{2} \leftarrow G\left(z_{1}\right)\right]\left[z_{1} \leftarrow G\left(z_{0}\right)\right]\right][x \leftarrow \lambda y . s]$.
where $G(t)=\lambda w_{0} \cdot w_{3}\left[w_{3} \leftarrow w_{1} w_{2}\right]\left[w_{2} \leftarrow g t\right]\left[w_{1} \leftarrow g t\right]$ with g a fixed name and s a normal term in positive λ-calculus. After one beta-step and one gc-step, we obtain a normal term

$$
z_{3}^{\prime}\left[z_{3}^{\prime} \leftarrow G\left(z_{2}^{\prime}\right)\right]\left[z_{2}^{\prime} \leftarrow G\left(z_{1}^{\prime}\right)\right]\left[z_{1}^{\prime} \leftarrow G(x)\right][x \leftarrow \lambda y . s] .
$$

in the positive λ-calculus. However, in the VSC, we have

$$
\begin{array}{ll}
z_{3}^{\prime}\left[z_{3}^{\prime} \leftarrow G\left(z_{2}^{\prime}\right)\right]\left[z_{2}^{\prime} \leftarrow G\left(z_{1}^{\prime}\right)\right]\left[z_{1}^{\prime} \leftarrow G(x)\right][x \leftarrow \lambda y . s] & \rightarrow_{\mathrm{e}} \\
z_{3}^{\prime}\left[z_{3}^{\prime} \leftarrow G\left(z_{2}^{\prime}\right)\right]\left[z_{2}^{\prime} \leftarrow G\left(z_{1}^{\prime}\right)\right]\left[z_{1}^{\prime} \leftarrow G(\lambda y \cdot s)\right] & \rightarrow_{\mathrm{e}} \\
z_{3}^{\prime}\left[z_{3}^{\prime} \leftarrow G\left(z_{2}^{\prime}\right)\right]\left[z_{2}^{\prime} \leftarrow G(G(\lambda y \cdot s))\right] & \rightarrow_{\mathrm{e}} \\
z_{3}^{\prime}\left[z_{3}^{\prime} \leftarrow G(G(G(\lambda y \cdot s)))\right] & \rightarrow_{\mathrm{e}} \\
G(G(G(\lambda y . s))) &
\end{array}
$$

The positive λ-calculus and the VSC

We can actually consider a variant of the VSC, called micro-step as substitutions are treated one by one instead of using meta-level substitution.

$$
\begin{array}{rll}
L\langle\lambda x . t\rangle u & \mapsto_{\mathrm{m}} & L\langle t[x \leftarrow u]\rangle \\
C\langle x\rangle[x \leftarrow L\langle v\rangle] & \mapsto_{\mathrm{e}^{\prime}} & L\langle C\langle v\rangle[x \leftarrow v]\rangle \\
t[x \leftarrow L\langle v\rangle] & \mapsto_{\mathrm{gc}} & t
\end{array}
$$

The beta-rule can actually be simulated by the VSC as follows:

$$
\begin{gathered}
C\langle t[z \leftarrow x w]\rangle\left[x \leftarrow \lambda y \cdot L\left\langle y^{\prime}\right\rangle\right] \rightarrow_{\mathrm{e}^{\prime}} \\
C\left\langle t\left[z \leftarrow\left(\lambda y \cdot L\left\langle y^{\prime}\right\rangle\right) w\right]\right\rangle\left[x \leftarrow \lambda y \cdot L\left\langle y^{\prime}\right\rangle\right] \rightarrow_{\mathrm{m}} \\
C\left\langle t\left[z \leftarrow L\left\langle y^{\prime}\right\rangle[y \leftarrow w]\right]\right\rangle\left[x \leftarrow \lambda y \cdot L\left\langle y^{\prime}\right\rangle\right] \rightarrow_{\mathrm{e}^{\prime}}^{*} \rightarrow \mathrm{gc}^{\prime} \\
C\left\langle t\left[z \leftarrow L\left\langle y^{\prime}\right\rangle\langle y / w\}\right]\right\rangle\left[x \leftarrow \lambda y \cdot L\left\langle y^{\prime}\right\rangle\right] \rightarrow_{\mathrm{e}^{\prime}}^{*} \rightarrow \mathrm{gc}^{\prime} \\
C\left\langle L\left\langle t\left\langle z / y^{\prime}\right\rangle\right\rangle\langle y / w\rangle\right\rangle\left[x \leftarrow \lambda y \cdot L\left\langle y^{\prime}\right\rangle\right]
\end{gathered}
$$

λ-graphs with bodies

λ-graphs with bodies

We also propose a graphical representation for the positive λ-calculus.

$$
\begin{aligned}
& \mathrm{n}_{1}\left[\mathrm{n}_{1} \leftarrow\left(\lambda \mathrm{~b} \cdot \mathrm{~b}_{3}\left[\mathrm{~b}_{3} \leftarrow \mathrm{~b}_{2} \mathrm{~b}_{1}\right]\left[\mathrm{b}_{2} \leftarrow\left(\lambda \mathrm{r} \cdot \mathrm{r}_{3}\left[\mathrm{r}_{3} \leftarrow \mathrm{r}_{1} \mathrm{r}_{2}\right]\left[\mathrm{r}_{2} \leftarrow \mathrm{ab}\right]\left[\mathrm{r}_{1} \leftarrow \mathrm{rr}\right]\right)\right]\left[\mathrm{b}_{1} \leftarrow \mathrm{ab}\right]\right)\right] \\
& \mathrm{n}_{1}\left[\mathrm{n}_{1} \leftarrow\left(\lambda \mathrm{~b} \cdot \mathrm{~b}_{3}\left[\mathrm{~b}_{3} \leftarrow \mathrm{~b}_{2} \mathrm{~b}_{1}\right]\left[\mathrm{b}_{1} \leftarrow \mathrm{ab}\right]\left[\mathrm{b}_{2} \leftarrow\left(\lambda \mathrm{r} \cdot \mathrm{r}_{3}\left[\mathrm{r}_{3} \leftarrow \mathrm{r}_{1} \mathrm{r}_{2}\right]\left[\mathrm{r}_{1} \leftarrow \mathrm{rr}\right]\left[\mathrm{r}_{2} \leftarrow \mathrm{ab}\right]\right)\right]\right)\right]
\end{aligned}
$$

λ-graphs with bodies: Definition

Definition

A pre-graph is a DAG built with the following three kinds of nodes:

- Application: an application node is labeled with @ and has two incoming edges (left and right).
- Abstraction: an abstraction node is labeled with λ and has one incoming edge.
- Variable: a variable node has no incoming edge.

λ-graphs with bodies: Definition

Definition

An unlabeled λ-graph with bodies is a pre-graph \mathcal{G} together with two functions bv: $\Lambda_{\mathcal{G}} \rightarrow \mathcal{V}_{\mathcal{G}}$ and body : $\Lambda_{\mathcal{G}} \rightarrow 2^{\mathcal{N}_{\mathcal{G}} \backslash V_{\mathcal{G}}}\left(\Lambda_{\mathcal{G}}\right.$: abstraction nodes of \mathcal{G}, $\mathcal{V}_{\mathcal{G}}$: variable nodes of $\left.\mathcal{G}\right)$ such that:

1. $\operatorname{body}(I) \cap \operatorname{body}\left(I^{\prime}\right)=\emptyset$ for $I \neq I^{\prime}$.
2. $\mathcal{B}_{\mathcal{G}}=\left(\Lambda_{\mathcal{G}},\left\{\left(I, I^{\prime}\right) \mid I, I^{\prime} \in \Lambda_{\mathcal{G}}, I \in \operatorname{body}\left(I^{\prime}\right)\right\}\right)$, called the scope graph of \mathcal{G}, is a DAG.
3. If $n=\operatorname{bv}(I)$ or $n \in \operatorname{body}(I)$ and $(n, m) \in \mathcal{E}_{\mathcal{G}}$, then we have

- $m=l$, or

- $m \in \operatorname{body}\left(I^{\prime}\right)$ s.t. there is a path from l^{\prime} to l in $\mathcal{B}_{\mathcal{G}}$.

λ-graphs with bodies: Definition

Definition

An unlabeled λ-graph with bodies is a pre-graph \mathcal{G} together with two functions bv: $\Lambda_{\mathcal{G}} \rightarrow \mathcal{V}_{\mathcal{G}}$ and body : $\Lambda_{\mathcal{G}} \rightarrow 2^{\mathcal{N}_{\mathcal{G}} \backslash V_{\mathcal{G}}}\left(\Lambda_{\mathcal{G}}\right.$: abstraction nodes of \mathcal{G}, $\mathcal{V}_{\mathcal{G}}$: variable nodes of $\left.\mathcal{G}\right)$ such that:

1. $\operatorname{body}(I) \cap \operatorname{body}\left(I^{\prime}\right)=\emptyset$ for $I \neq I^{\prime}$.
2. $\mathcal{B}_{\mathcal{G}}=\left(\Lambda_{\mathcal{G}},\left\{\left(I, I^{\prime}\right) \mid I, I^{\prime} \in \Lambda_{\mathcal{G}}, I \in \operatorname{body}\left(I^{\prime}\right)\right\}\right)$, called the scope graph of \mathcal{G}, is a DAG.
3. If $n=\operatorname{bv}(I)$ or $n \in \operatorname{body}(I)$ and $(n, m) \in \mathcal{E}_{\mathcal{G}}$, then we have

- $m=l$, or

- $m \in \operatorname{body}\left(I^{\prime}\right)$ s.t. there is a path from l^{\prime} to l in $\mathcal{B}_{\mathcal{G}}$.

λ-graphs with bodies: Definition

Definition

An unlabeled λ-graph with bodies is a pre-graph \mathcal{G} together with two functions bv: $\Lambda_{\mathcal{G}} \rightarrow \mathcal{V}_{\mathcal{G}}$ and body : $\Lambda_{\mathcal{G}} \rightarrow 2^{\mathcal{N}_{\mathcal{G}} \backslash V_{\mathcal{G}}}\left(\Lambda_{\mathcal{G}}\right.$: abstraction nodes of \mathcal{G}, $\mathcal{V}_{\mathcal{G}}$: variable nodes of $\left.\mathcal{G}\right)$ such that:

1. $\operatorname{body}(I) \cap \operatorname{body}\left(I^{\prime}\right)=\emptyset$ for $I \neq I^{\prime}$.
2. $\mathcal{B}_{\mathcal{G}}=\left(\Lambda_{\mathcal{G}},\left\{\left(I, I^{\prime}\right) \mid I, I^{\prime} \in \Lambda_{\mathcal{G}}, I \in \operatorname{body}\left(I^{\prime}\right)\right\}\right)$, called the scope graph of \mathcal{G}, is a DAG.
3. If $n=\operatorname{bv}(I)$ or $n \in \operatorname{body}(I)$ and $(n, m) \in \mathcal{E}_{\mathcal{G}}$, then we have

- $m=l$, or

- $m \in \operatorname{body}\left(I^{\prime}\right)$ s.t. there is a path from l^{\prime} to l in $\mathcal{B}_{\mathcal{G}}$.

λ-graphs with bodies: Definition

Definition

An unlabeled λ-graph with bodies is a pre-graph \mathcal{G} together with two functions bv: $\Lambda_{\mathcal{G}} \rightarrow \mathcal{V}_{\mathcal{G}}$ and body : $\Lambda_{\mathcal{G}} \rightarrow 2^{\mathcal{N}_{\mathcal{G}} \backslash V_{\mathcal{G}}}\left(\Lambda_{\mathcal{G}}\right.$: abstraction nodes of \mathcal{G}, $\mathcal{V}_{\mathcal{G}}$: variable nodes of $\left.\mathcal{G}\right)$ such that:

1. $\operatorname{body}(I) \cap \operatorname{body}\left(I^{\prime}\right)=\emptyset$ for $I \neq I^{\prime}$.
2. $\mathcal{B}_{\mathcal{G}}=\left(\Lambda_{\mathcal{G}},\left\{\left(I, I^{\prime}\right) \mid I, I^{\prime} \in \Lambda_{\mathcal{G}}, I \in \operatorname{body}\left(I^{\prime}\right)\right\}\right)$, called the scope graph of \mathcal{G}, is a DAG.
3. If $n=\operatorname{bv}(I)$ or $n \in \operatorname{body}(I)$ and $(n, m) \in \mathcal{E}_{\mathcal{G}}$, then we have

- $m=l$, or

- $m \in \operatorname{body}\left(I^{\prime}\right)$ s.t. there is a path from l^{\prime} to l in $\mathcal{B}_{\mathcal{G}}$.

λ-graphs with bodies: Definition

Definition

- A λ-graph with bodies is an unlabeled λ-graph with bodies with a unique label assigned to each free variable node, and with a global node chosen, called the output of the λ-graph with bodies.
- A $\Sigma-\lambda$-graph with bodies is a λ-graph with bodies with a free variable node labeled by each element of a signature Σ.

λ-graphs with bodies: Definition

Definition

- A λ-graph with bodies is an unlabeled λ-graph with bodies with a unique label assigned to each free variable node, and with a global node chosen, called the output of the λ-graph with bodies.
- A $\Sigma-\lambda$-graph with bodies is a λ-graph with bodies with a free variable node labeled by each element of a signature Σ.

λ-graphs with bodies: Definition

Definition

- A λ-graph with bodies is an unlabeled λ-graph with bodies with a unique label assigned to each free variable node, and with a global node chosen, called the output of the λ-graph with bodies.
- A $\Sigma-\lambda$-graph with bodies is a λ-graph with bodies with a free variable node labeled by each element of a signature Σ.

λ-graphs with bodies and terms

λ-graphs with bodies capture the structural equivalence on terms.

Theorem

We have a one-to-one correspondence between Σ - λ-graphs with bodies and Σ-terms up to $\equiv_{\text {str }}$.

Substitution on λ-graphs with bodies can be defined in a straightforward way:

λ-graphs with bodies: Reduction

Definition

Let \mathcal{G} be a λ-graph with bodies and I an abstraction node. We define the box of I as the union of bodies together with their bound variable nodes below I:

$$
\operatorname{box}(I)=\bigcup_{I^{\prime} \sim l \text { in } \mathcal{B}_{G}}\left(\operatorname{body}\left(I^{\prime}\right) \cup\left\{\operatorname{bv}\left(I^{\prime}\right)\right\}\right)
$$

Reduction can then be defined by duplicating boxes and by applying substitutions.

Generalization and Conclusion

Generalization

Here, we use two specific axioms $D \supset D \supset D$ and $(D \supset D) \supset D$ to provide encodings for untyped λ-terms.

In fact, thanks to LJF, similar term structures can be defined using any set of formulas of order at most 2 where the order $\operatorname{ord}(B)$ of a formula B is defined as follows:

$$
\operatorname{ord}(A)=0 \quad \operatorname{ord}\left(B_{1} \supset B_{2}\right)=\max \left(\operatorname{ord}\left(B_{1}\right)+1, B_{2}\right)
$$

Note that $\operatorname{ord}(D \supset D \supset D)=1$ and $\operatorname{ord}((D \supset D) \supset D)=2$.
Any formula F of order at most 2 can be written as $B_{1} \supset \cdots \supset B_{n} \supset A$ with A atomic and $\operatorname{ord}\left(B_{i}\right) \leq 1$. If $\operatorname{ord}\left(B_{i}\right)=1$ for some i, then the node corresponding to F comes with a notion of body.

Conclusion

- We define the positive λ-calculus, whose reduction does not correspond to cut-elimination but is also inspired by some proof-theoretic consideration.
- The positive λ-calculus is closely related to the VSC but does useful substitutions of abstractions.
- λ-graphs with bodies captures the structural equivalence on terms and operations can be implemented on them in a straightforward way.
- Some future directions:
- Explore more connections between the positive λ-calculus and the VSC using usefulness
- Extend to the settings where mixed polarities for atoms are considered

[^0]: ${ }^{1}$ Dale Miller and Jui-Hsuan Wu. A positive perspective on term representation. CSL 2023.

