
TIFA

Tools for Integer FActorization

An open source library for factoring

small to medium-size composite integers

User’s guide
Early draft – work in progress

June 16, 2011

Legal notices

About the TIFA library

The TIFA library is Copyright © 2011 CNRS, École Polytechnique and INRIA.

The TIFA library is free software; you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.

The TIFA library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.

The TIFA library has been registered at the french agency for software protection (APP)
with the Inter Deposit Digital Number:

IDDN.FR.001.220019.000.S.A.2011.000.3123.

About the TIFA logo

The TIFA “puzzle cube” logo was created by Jérôme Milan and is Copyright © 2011
CNRS, École Polytechnique and INRIA. All rights reserved.

About this document

This document is Copyright © 2011 CNRS, École Polytechnique and INRIA.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.

i

http://www.cnrs.fr/index.php
http://www.polytechnique.edu
http://en.inria.fr
http://www.gnu.org/licenses/lgpl.html
http://www.fsf.org/
http://www.gnu.org/licenses/lgpl.html
http://app.legalis.net/
http://www.cnrs.fr/index.php
http://www.polytechnique.edu
http://en.inria.fr
http://www.cnrs.fr/index.php
http://www.polytechnique.edu
http://en.inria.fr
http://www.gnu.org/licenses/fdl.html
http://www.fsf.org

Contents

Legal notices i

Document scope 1

1 Overview of the TIFA package 1

1.1 About the TIFA library . 1

1.2 Content of the TIFA package . 1

2 Obtaining and installing the TIFA package 2

2.1 Obtaining TIFA . 2

2.2 Installation requirements . 2

2.3 Compiling and installing TIFA . 3

3 The TIFA base library 6

3.1 Main TIFA types . 6

3.1.1 The type array t types . 6

3.1.2 The algo params t types . 7

3.2 Factorization functions . 7

3.3 Changing the list of precomputed primes 9

4 Utilities provided in the TIFA package 9

4.1 Factoring programs . 9

4.2 The factoring.pl script . 10

5 Benchmark framework of the TIFA library 11

5.1 Perl scripts . 11

5.1.1 tifa/tools/scripts/benchmarker.pl 11

5.1.2 tifa/tools/scripts/extractres.pl 11

5.1.3 tifa/tools/scripts/plotmaker.pl 11

6 The TIFA Perl modules 12

6.1 tifa/tools/scripts/Tifa/Bencher.pm 12

6.2 tifa/tools/scripts/Tifa/DataDescriptor.pm 12

6.3 tifa/tools/scripts/Tifa/FormatConverter.pm 12

6.4 tifa/tools/scripts/Tifa/GnuPlotter.pm 12

6.5 tifa/tools/scripts/Tifa/NumberGenerator.pm 12

ii

6.6 tifa/tools/scripts/Tifa/Program.pm 12

6.7 tifa/tools/scripts/Tifa/ProgramRepository.pm 13

6.8 tifa/tools/scripts/Tifa/Rotor.pm . 13

6.9 tifa/tools/scripts/Tifa/SimpleConfigReader.pm 13

A Help page of the genprimes.pl script 14

B Help page of the factorize.pl script 15

C Help page of the benchmarker.pl script 17

D Help page of the extractres.pl script 19

E Help page of the plotres.pl script 20

F Man page of the Tifa::Bencher.pm Perl module 23

G Man page of the Tifa::DataDescriptor.pm Perl module 27

H Man page of the Tifa::FormatConverter.pm Perl module 31

I Man page of the Tifa::GnuPlotter.pm Perl module 34

J Man page of the Tifa::NumberGenerator.pm Perl module 38

K Man page of the Tifa::Program.pm Perl module 40

L Man page of the Tifa::ProgramRepository.pm Perl module 47

M Man page of the Tifa::Rotor.pm Perl module 49

N Man page of the Tifa::SimpleConfigReader.pm Perl module 52

iii

Document scope

The purpose of this document is to describe the TIFA library from a high level, user-
oriented perspective. Specifically, it intends to show you how to:

• use the public TIFA functions in your programs;

• directly run the included stand-alone factorization programs;

• use TIFA’s basic benchmark framework for your own tests or programs.

This document does not focus on TIFA’s internal functions or architecture, nor is it in-
tended to explain implementation specifics. Readers interested in TIFA’s inner working
are invited to refer to the detailled Doxygen documentation.

Furthermore, it is expected that the user has some basic knowledge of the implemented
factorization algorithms. This guide is not intended to be a introduction to basic number
theory or integer factorization techniques.

1 Overview of the TIFA package

1.1 About the TIFA library

TIFA is an acronym standing for “Tools for Integer FActorisation”. As its (utterly un-
original) name implies TIFA is an open source library for integer factorization. Its goal
is to provide portable and reasonably fast implementations for several algorithms, with
a particular emphasis on the factorization of small to medium-size composites, typically
from 40 bits to about 200 bits.

Although it obviously won’t break any record by itself, TIFA may be a good companion
to more ambitious factorization attempts such as a distributed implementation of the
Number Field Sieve, where it could be used to factor the numerous smaller-sized by-
products.

1.2 Content of the TIFA package

Actually, TIFA is a little bit more than a library per se. The TIFA package supplies:

• a C99 library providing implementations for the following factorization algorithms:

– CFRAC (Continued FRACtion factorization)

– ECM (The Elliptic Curve Method)

– FERMAT (McKee’s “fast” variant of Fermat’s algorithm)

– SIQS (Self-Initializing Quadratic Sieve)

– SQUFOF (SQUare FOrm Factorization)

– TDIV (the naive trial-division method :-);

1

• a set of stand-alone factorization programs for each algorithm implemented:

– cfrac factors

– ecm factors

– fermat factors

– siqs factors

– squfof factors

– tdiv factors;

• a set of Perl 5 scripts wrappers and launchers;

• a basic benchmarking framework written in Perl 5 used to assess the performance
of TIFA’s implementations.

Each of these items will be explained in more details in the next few sections.

2 Obtaining and installing the TIFA package

2.1 Obtaining TIFA

The source code of the TIFA package is available as a compressed tarball at:

http://www.lix.polytechnique.fr/Labo/Jerome.Milan/tifa/download.html

Be warned that the development versions may be sometimes highly experimental, so don’t
be surprised should these crashes more often than not.

2.2 Installation requirements

The TIFA library relies extensively on the GNU Multi Precision library (GMP) version 4.2
or (preferably) higher, which is downloadable from:

http://gmplib.org/

The TIFA library will not build if GMP is not available on your system.

Quite a few Perl scripts are distributed with the library, so of course, a distribution of
Perl is required. TIFA has been developed with a distribution of Perl 5.8, but chances are
that older versions can adequately run TIFA’s scripts.

Moreover, to correctly use the scripts provided in the ./tools directory, you will also
need the GMP Perl modules. There are available as part of the GMP distribution but be
aware that they are not built per default, so if you did not set up the GMP library yourself,
chances are that these modules have not been generated. In this case, you’ll have to head
over to http://gmplib.org/ to download a whole new distribution and generate the Perl
modules. Instructions for building the modules are given in GMP’s demos/perl/INSTALL
file. Make sure that the distribution you download matches the one installed on your
system, otherwise the Perl modules could fail to compile.

2

http://www.lix.polytechnique.fr/Labo/Jerome.Milan/tifa/download.html
http://gmplib.org/
http://gmplib.org/

Documentation is directly embedded in the code and extracted with the Doxygen tool,
available from:

http://www.stack.nl/~dimitri/doxygen

The TIFA code matches the C99 standard so you’ll obviously need a somewhat C99-
compliant compiler (knowing that there’s not a lot of fully C99-compliant compilers!).
TIFA has been developed and tested with the GCC C compiler version 3.3, 4.0, 4.1 and
4.2, but older versions should probably work too.

TIFA does not use the autotools (autoconf, autoheader, automake, etc.) as its build system
but relies on the more modern, Python-based SCons build tool. You will consequently
need the SCons tool version 2.0 or higher available at:

http://www.scons.org

to compile the TIFA library. Note that you’ll also need a distribution of Python version
2.4 or later. Pythoncan be obtained at:

http://www.python.org/

TIFA was essentially developed under Mac OS X and tested under both Mac OS X and
GNU/Linux (mainly Fedora). It should compile and run “as is”, or at worst with minimal
modifications, under most of the Unix1 or unix-like platforms. It should be stressed that
no particular effort was made to ensure compatibility with non-unix systems (such as
versions of the widespread Windows operating system) although TIFA should be fairly
easy to adapt should there be a need.

2.3 Compiling and installing TIFA

TIFA uses the Python-based SCons build tool in place of the more traditional autotools
suite. Provided that you have the SCons tool installed and a relatively recent distribution
of Python (2.4 or higher), building the TIFA library should be as easy as, if not easier
than, with the autotools. Here are the basic steps to follow:

1. Edit the Python file BuildOptions.py in TIFA’s top directory. This file describes
the parameters used during the compilation and installation tasks, so you should
adapt it to your set-up or default values will be used, which is certainly not what
you want. The provided BuildOptions.py is extensively commented so it should
not be difficult to adapt it to suit your needs. For a short overview of all of the
relevant parameters, type scons -h.

! While the BuildOptions.py file is actually interpreted as a Python
script, we recommand to keep its syntax very simple. In other words,
do not try to tap into Python’s expressive power in that file. Also, be
aware that the environment variables are not interpolated within this
file. For example, setting the PREFIX variable to ’$HOME’ will not give
the expected result. You should actually do the interpolation yourself
and write PREFIX=’/home/my_user_name’ instead.

1Unixr is a Registered Trademark of the Open Group.

3

http://www.stack.nl/~dimitri/doxygen
http://www.scons.org
http://www.python.org/
http://www.opengroup.org

2. Compile the library and its programs by invoking SCons without argument:

prompt> scons

Note that for the time being, only a static version of the library is generated. Later
releases of the library will probably provide an option to build both static and shared
versions.

Optionally, you can also generate the Doxygen documentation:

prompt> scons doc

3. Finally, install the library (and, if applicable, the generated documentation):

prompt> scons install

prompt> scons doc-install

For most users, the above procedure should probably be all they need to know. However,
several other SCons commands are available to allow for a finner control on what gets
build. The table 1 lists all of these commands, together with brief explanations.

scons Build the TIFA library and its associated programs

scons doc Generate the Doxygen documentation

scons tests Build the test programs (even though they are not
really useful as is...)

scons install Install the library and its programs, the Perl mod-
ules and scripts, the man pages but not the Doxygen
documentation

scons install-doc Install the Doxygen documentation

scons -c Clean everything

scons -c doc Clean the Doxygen documentation

scons -c tests Clean the test programs

scons dist Create a tgz archive for distribution. Note that due to
current limitations of SCons, the generated tgz archive
will expand in the current directory instead of creat-
ing a tifa-X.X.X directory and expanding the archive
there.

continued on next page ...

4

... continued from previous page

scons install-lib Install the library only

scons install-bin Install the factorization programs only

scons install-script Install the Perl scripts only

scons install-conf Install the Perl scripts’ configuration files only

scons install-perlmod Install the TIFA Perl modules only

scons install-man Install the TIFA Perl modules’ man pages only

Table 1: Available SCons commands

As already mentioned, the installation process depends on the variables defined in BuildOptions.py.
Consequently:

• the TIFA library libtifa.a is installed in LIBDIR;

• TIFA’s header files are installed in INCLUDEDIR. Quite a few headers are installed,
so it is advised to put them all in a dedicated folder such as /usr/include/tifa or
~/include/tifa;

• the four factorization programs (cfrac factors, qs factors, siqs factors and squfof factors)
are installed in BINDIR;

• Perl scripts are installed in SCRIPTDIR;

• configuration files for the Perl scripts are installed in CONFDIR;

• Perl modules are installed in PERLMODDIR;

• man pages for the Perl modules are installed in MANDIR;

• the Doxygen documentation is installed in DOCDIR.

For more information on SCons build options, type scons -h on the command line.

5

3 The TIFA base library

As stated previously, the TIFA “library” is more than just a library since it also offers
stand-alone programs and a wealth of Perl 5 scripts and modules. This section however
will deal exclusively with the library part of the TIFA package, which we shall call the
“base library”. Now, since this document is written with the end user in mind, we will
leave aside any discussion about TIFA’s internals, focusing instead on pragmatic items
more likely to be of interest to a user. We refer the reader to the Doxygen documentation
for a more thourough description of TIFA’s internals.

3.1 Main TIFA types

The user willing to use the factorization functions provided by TIFA only needs to know
a few types, namely the <type>_array_t and the <algo>_params_t types.

This section just gives the minimal information to get started. Please refer to the Doxygen
documentation for a complete description of the data types available and the functions
used to handle them.

3.1.1 The type array t types

The <type>_array_t structures define a special kind of arrays which know their current
lengths and their allocated memory spaces. These structures are all very similar – the only
true difference being the type of the data they can contain. The main <type>_array_t

structures are mpz_array_t (to hold GMP’s mpz_t large integers) and uint32_array_t

(to hold the native C99 uint32_t integers).

The <type>_array_t structures are defined as:

struct struct_<type>_array_t {

uint32_t alloced;

uint32_t length;

<type>* data;

};

typedef struct struct_<type>_array_t <type>_array_t;

where:

• alloced is the memory space allocated for this array’s data field, given as a multiple
of sizeof(<type>). This is the maximum number of <type> that the array can
accommodate. This allocated memory will be dynamically increased if needed.

• length gives the current number of type hold in the array pointed by the structure’s
data field.

• data is an array of <type> whose size is given by the alloced field.

Two functions are provided to create and destroy <type>_array_t structures.

<type>_array_t* alloc_<type>_array(uint32_t length)

6

Allocates a new <type>_array_t structure with room for length <type> items and
returns a pointer to this newly allocated structure.

void free_byte_array(byte_array_t* array)

Frees a <type>_array_t and associated memory.

3.1.2 The algo params t types

The <algo>_params_t structures defines the algorithm-dependant parameters to use to
perform a given factorization. To each <algo>_params_t structure is associated a
set_<algo>_params_to_default function setting the parameters’s values to the default
ones, which often gives nearly optimal values. Again, we refer the reader to the Doxygen
documentation for a full description.

<algo> can be one of the following:

• cfrac – the continued fraction factorization

• ecm – the elliptic curve method

• fermat – McKee’s variant of the venerable Fermat algorithm

• siqs – the self-initializing quadratic sieve

• squfof – the square form factorisation

• tdiv – the naive trial division

3.2 Factorization functions

TIFA provides several factoring modes defined by the factoring_mode_t type. A factoring
mode can have one the the following values:

• SINGLE_RUN – perform only a single run of the factorization algorithm.

• FIND_SOME_FACTORS – run the factorization algorithm until either some factors are
found or the abort limit (defined on a per-algorithm basis) is reached.

• FIND_SOME_COPRIME_FACTORS – run the factorization algorithm until either some
coprime factors are found or the abort limit (defined on a per-algorithm basis) is
reached.

• FIND_SOME_PRIME_FACTORS – run the factorization algorithm until either some prime
factors are found or the abort limit (defined on a per-algorithm basis) is reached.

• FIND_COMPLETE_FACTORIZATION – run the factorization algorithm until either the
complete factorization (as a product of prime numbers) is found or the abort limit
(defined on a per-algorithm basis) is reached.

The specific factorization functions have the following prototype :

7

ecode_t

<algo> (

mpz_array_t *const factors,

uint32_array_t *const multis,

const mpz_t n,

const <algo_name>_params_t *const params,

const factoring_mode_t mode

)

These functions attempt to factor the non perfect square integer n with the <algo> algo-
rithm, using the set of parameters given by params and the factoring mode given by mode.
The found factors are then stored in factors. Additionally, if the factoring mode used is
set to FIND_COMPLETE_FACTORIZATION, the factors’s multiplicities are stored in the array
multis. If the factoring mode used is different from FIND_COMPLETE_FACTORIZATION,
multis is allowed to be the NULL pointer. Otherwise, using a NULL pointer will lead to a
fatal error.

These functions return an exit code, of type ecode_t, whose possible values are detailled
in the Doxygen documentation.

The previous functions let you choose a given factorization algorithm. Alternatively, the
function tifa_factor will automatically choose the most suitable algorithm.

ecode_t

tifa_factor (

mpz_array_t *const factors,

uint32_array_t *const multis,

const mpz_t n,

const factoring_mode_t mode

)

Example 1. Try to factor a number given as an argument on the command line.

In this (unsafe) toy-example, we suppose that the number to factor is not a prime nor a
prime power.

#include <stdlib.h>

#include <stdio.h>

#include <gmp.h>

#include <tifa.h>

int main(int argc, char **argv) {

// Read the number to factor given on

// the command line.

mpz_t n;

mpz_init_set_str(n, argv[1], 10);

// Note that the allocated memory for the factors

// array will be dynamically increased if needed.

mpz_array_t* factors = alloc_mpz_array(8);

8

// We cast to (void) since we won’t handle the

// error code in this basic example.

(void)tifa_factor(factors, NULL, n, SINGLE_RUN);

// Print the found factors of n.

for (int i = 0; i < factors->length; i++) {

gmp_printf("%Zd\n", factors->data[i]);

}

// Clean up and turn off the lights.

free_mpz_array(factors);

mpz_clear(n);

return 0;

}

3.3 Changing the list of precomputed primes: the genprimes.pl script

Most of the factorization algorithms available in the TIFA library belong to a family of
algorithms known as “congruences of squares” methods. Basically speaking, the idea is to
factor a lot of smaller numbers on a “factor base” and to use these easier-to-find decompo-
sitions to deduce a factor of the number. TIFA uses a list of precomputed primes declared
in lib/data/include/first_primes.h and defined in lib/data/src/first_primes.c.
By default, a list of 65536 primes is used, which should be enough for any small to
medium-sized integer factorizations. If, for whatever reason, you want to change this
precomputed list (for example to reduce the memory footprint of the library) the Perl 5
script lib/data/scripts/genprimes.pl can be used. This script generates in the cur-
rent directory a C header file and a C source file that can then be used to replace the
original first_primes.h and first_primes.c files.

Example 2. Generate header and source files for 8192 primes.

The following command would create in the current directory the files primes.h and
primes.c by generating a list of the 8192 smallest prime numbers.

prompt> ./genprimes.pl --out primes --nprimes 8192

For more information, type ./genprimes.pl --help on the command line. Alternatively,
the complete help page of the genprimes.pl script is given in appendix A.

4 Utilities provided in the TIFA package

4.1 Factoring programs

Together with the libtifa library, a set of stand-alone factorization programs are avail-
able:

• cfrac factors

9

• ecm factors

• fermat factors

• siqs factors

• squfof factors

• tdiv factors

4.2 The factoring.pl script

The previous programs can be used on the command-line but their usage can quickly
become cumbersome when manually setting algorithm-dependant parameters. To make
these programs easier to use, the tifa/tools/scripts/factoring.pl Perl script can be
invoked.

Example 3. Factor a number with CFRAC using “optimal” parameters

factorize.pl --exe=cfrac --use_defaults 31418716710282142372441

Example 4. Factor a number with SIQS using custom parameter values.

factorize.pl --exe=siqs --sieve_half_width=200000 \

--nprimes_in_factor_base=256 --nprimes_tdiv_smooth_nb=256 \

--nrelations=32 --linalg_method=0 --use_large_primes \

--nprimes_tdiv=256 23283795980376989165117

Since it can quickly become annoying to type all the options directly on the command line,
factorize.pl can optionally read them in a configuration file with a "<option> = <value>"

kind of syntax. Refer to the provided factorize.conf file for a detailed example of a
configuration file.

Example 5. Use the factorize.pl script with a configuration file

factorize.pl --conf=factorize.conf 40705262292383555756957

You can also input a whole list of numbers to factor by writing them on a file (one number
on each line – comments beginning by # are allowed). In this case, you should also provide
an output directory where the traces of the C program executions will be saved.

Example 6. Factor with SIQS a list of numbers given in a file

factorize.pl --exe=siqs --use_defaults --number_file=numbers.txt \

--outdir=./traces

Refer to appendix B for the partial help page of the factorize.pl script.

10

5 Benchmark framework of the TIFA library

A very basic benchmark framework has been developed in Perl to assess the performance
of the implemented algorithms. It is basically composed of three stages:

• Macro-generation of the launching script according to various parameters

• Extraction of results in formated text files

• Graphical representation using Gnuplot.

The next section describes the Perl scripts involved in those processes.

5.1 Perl scripts

5.1.1 tifa/tools/scripts/benchmarker.pl

This script macro-generate another Perl script aimed at benchmarking TIFA’s factoring
programs. The generated benchmark script is not automatically executed and should
therefore be launched manually.

benchmark.pl takes as input a configuration file listing the program to bench and all its
relevant parameters, and another file listing the arguments the program will be benched
with.

Type ./benchmarker.pl --help in the tifa/tools/scripts/ directory or refer to ap-
pendix C for more information.

5.1.2 tifa/tools/scripts/extractres.pl

As its name suggests, extractres.pl extracts timing information from trace files to
generate a complete result files.

Type ./extractres.pl --help in the tifa/tools/scripts/ directory or refer to ap-
pendix D for more information.

5.1.3 tifa/tools/scripts/plotmaker.pl

The plotmaker.pl script takes as input a result file from a script generated by benchmarker.pl

and creates several plots according to the different parameters involved during the bench-
marks (with can results in a substantial amount of graphs).

For the time being, only Gnuplot (http://www.gnuplot.info/) is supported.

Type ./plotmaker.pl --help in the tifa/tools/scripts/ directory or refer to ap-
pendix E for more information.

11

http://www.gnuplot.info/

6 The TIFA Perl modules

As seen in the previous sections, TIFA comes with several Perl scripts. These scripts
uses special TIFA Perl modules which can be found in the tifa/tools/scripts/Tifa

directory.

In this section, we merely list the available modules and give a very brief description. Each
of these modules are described in its own unix man page built during the build process.
Once the TIFA library is build and installed, information about a particular module can
be accessed using a command similar to ‘man Tifa::<module_name>’.

6.1 tifa/tools/scripts/Tifa/Bencher.pm

Implements a general purpose benchmark framework and is used by the benchmarker.pl

script to benchmark the various factorization programs for a wide selection of parameters
values.

Type ‘man Tifa::Bencher’ or refer to appendix F for more information.

6.2 tifa/tools/scripts/Tifa/DataDescriptor.pm

Writes and reads data description/entries in a file according to a TIFA specific text file
format.

Type ‘man Tifa::DataDescriptor’ or to appendix G for more information.

6.3 tifa/tools/scripts/Tifa/FormatConverter.pm

A mere wrapper for image format conversion utilities.

Type ‘man Tifa::FormatConverter’ or to appendix H for more information.

6.4 tifa/tools/scripts/Tifa/GnuPlotter.pm

Generates 2D plots from 3D data with Gnuplot.

Type ‘man Tifa::GnuPlotter’ or to appendix I for more information.

6.5 tifa/tools/scripts/Tifa/NumberGenerator.pm

Generates prime or composite integers using the GMP Perl module.

Type ‘man Tifa::NumberGenerator’ or to appendix J for more information.

6.6 tifa/tools/scripts/Tifa/Program.pm

Provides an abstraction of a “launchable” and “benchmarkable” command line program.

Type ‘man Tifa::Program’ or to appendix K for more information.

12

6.7 tifa/tools/scripts/Tifa/ProgramRepository.pm

A repository of all available (factoring) Tifa::Program’s.

Type ‘man Tifa::ProgramRepository’ or to appendix L for more information.

6.8 tifa/tools/scripts/Tifa/Rotor.pm

Implements an odometer-like counter that can be used to generate all possible n-tuples
from n sets of values.

Type ‘man Tifa::Rotor’ or to appendix M for more information.

6.9 tifa/tools/scripts/Tifa/SimpleConfigReader.pm

A truly minimalist configuration file reader used by TIFA’s perl scripts.

Type ‘man Tifa::SimpleConfigReader’ or to appendix N for more information.

13

Appendices

A Help page of the genprimes.pl script

genprimes.pl - Outputs list of primes as C header and source files

--

Usage:

genprimes.pl [--nprimes <number_of_primes>] [--help]

--out <output_prefix>

This script is part of the TIFA (Tools for Integer FActorization) library.

It generates a list of prime numbers and declares them as a uint32_t array

in a C header and source file.

General parameters/options:

--out = s

Output file prefix. The header file and the C source file names

are given by appending respectively ".h" and ".c".

--nprimes = i

Number of primes to generate.

Default value: 8192

--help

Prints this help message.

14

B Help page of the factorize.pl script

factorize.pl - A Perl wrapper for TIFA’s factorization programs

Usage:

factorize.pl [parameters] [options] <number_to_factor>

or:

factorize.pl [parameters] [options] --numbers <file> --outdir <directory>

The factorize.pl script wraps the various TIFA factorization programs and offers

a user-friendly command line interface which can be easily extended to support

new factoring program, as far as the new programs are wrapped in a

Tifa::Program object and registered in the Tifa::ProgramRepository module.

This script can be used to factor a single composite integer given as an

argument on the command line or to factor a whole set of composite numbers

given in a text file.

General parameters/options:

--algo=s?

(optional, but --exe should then be defined)

Name of the factorization algorithm to use. Should be one of the

following value:

cfrac (The Continued FRACtion algorithm)

ecm (The Elliptic Curve Method)

fermat (Fermat’s algorithm (McKee’s speedup))

siqs (The Self-Initializing Quadratic Sieve algorithm)

squfof (The SQUare FOrm Factorization algorithm)

tdiv (The naive trial division algorithm)

<empty> (if empty, infers algorithm from program’s default name)

--exe=s

(optional, but --algo should then be defined)

Name of the executable command line program. Note that the default value

is only used if the algo parameter is set to a known algorithm name

and the exe parameter is not defined or left empty.

Default: vary according to algorithm used.

Type factorize.pl --help <algo_name> for more information.

--cmd

Print the command line used to call the underlying C program and exit.

15

--conf=s

(optional, on command-line only)

Name of the configuration file listing the values of the factorization

algorithms’ parameters written as: "<option_name> = <value>".

Type factorize.pl --help config for information about the configuration

file format.

--numbers=s

(optional, on command-line only)

Do not read the number to factorize on the command line but read a

set of numbers given in a text file. Numbers can be separated by any

kind of non digit characters. Comments beginning by # and blank lines

are allowed in the file. If this option is used the number passed as

argument -if any- will be discarded.

--outdir=s

(mandatory if --numbers is used, on command-line only)

Name of the directory to contain the various execution traces. Only

used if the --numbers option is used. If the number to factor is

directly given on the command line, no trace will be saved.

--help=s?

(optional, on command-line only)

Without argument, prints this help message.

With an algorithm name, prints the help message related to the use of

this script with this particular algorithm.

Algorithm-specific parameters/options:

Type factorize.pl --help <algo_name> (where <algo_name> can take one of the

value mentionned in the above description of the --algo option) for more

information about algorithm specific parameters and options.

16

C Help page of the benchmarker.pl script

benchmarker.pl - A (mostly) generic benchmark script

--

Usage:

benchmarker.pl [--conf <config_file>] [--macro <output_macro>]

[--outdir <output_directory>] [--args <argument_file>]

[--args <output_directory>] [--help]

The benchmarker.pl script provides an (almost!) generic framework for

benchmarking programs. It takes as input a configuration file listing the

program to bench and all its relevant parameters, and another file listing the

arguments the program will be benched with. If no argument file is provided, the

benchmarker.pl script will make one by generating composite numbers (a feature

clearly inherited from its non-generic, integer factorization-oriented days).

In any case, this script will create (but NOT execute!) the "real" benchmarking

Perl script which will (once manually launched) execute the program to benchmark

for the whole range of parameters given in the configuration file.

Note that this script can be used to bench any kind of programs as long as

they are wrapped in a Tifa::Program object and declared in the

Tifa::ProgramRepository module. Users willing to extend the list of available

programs should then have a closer look at these two modules.

Usage of this script can be hard to grasp, so the easiest way to get used to

it is probably to just read the provided benchmark.conf configuration file in

addition to this manual.

General parameters/options:

--args=s

(optional)

Name of the argument file listing the arguments to be passed to the

program to benchmark. If none are provided, composite numbers will be

generated and used as argument (which is fine with TIFA’s factorization

programs). The number generation can be controlled by the

bit_length_of_n and nprime_factors_in_n fields in the configuration

file. See the provided benchmark.conf configuration file for more

information.

Default value: none

17

--conf=s

(optional, default value used if none provided)

Name of the configuration file listing the values of the parameters

relevant to the program to benchmark. This program will be benchmarked

using each possible combination of the parameter values provided in this

file. The configuration file syntax should match the one defined by the

Tifa::SimpleConfigReader module. See the man page associated to that

module for more information. Reading the provided benchmark.conf

configuration file is also highly advised.

Default value: benchmarker.conf

--macro=s

(optional, default value used if none provided)

Name of the "real" benchmarking perl script that will be generated by

benchmarker.pl. Note that this generated script has to be launched

manually to proceed to the benchmarks.

Default value: bench.pl

--outdir=s

(optional, default value used if none provided)

Name of the directory where bench results and trace files will be saved.

Default value: bench_results

--mode=s

(optional, value in configuration file used if none provided)

Program’s mode to use.

--filter=s

(optional, value in configuration file used if none provided)

Impose a condition on the set of parameters. A run will be performed only

if this expression evaluates to non zero. This condition should be written

as Perl 5.8 code.

--help

Prints this short manual.

See also:

The documentation for the Tifa::Program and Tifa::ProgramRepository modules.

18

D Help page of the extractres.pl script

Usage:

extractres.pl --in <input_file> --out <output_file>

--tracedir <trace_directory> --nfactors <nfactors>

[--help]

The extractres.pl script is used after executing a benchmark macro created by

the benchmarker.pl script. It reads the original result file (in the

Tifa::DataDescriptor format) and the trace files generated during benchmarks to

create a more complete result file by adding extra information found in the

trace files. This script is not genering and is tailored to be used if and only

if a TIFA program has been benchmarked since it expects to find specific

information in the trace files.

General parameters/options:

--in=s

(mandatory)

Name of the input result file as generated by the benchmarking script

created by benchmarker.pl.

--out=s

(mandatory)

Name of the output result file. This file will contain information

from the original input file and extra information read in the

trace files generated during the benchmarks.

--tracedir=s

(mandatory)

Name of the directory containing the trace files.

--nfactors=i

(optional, meaningless value used if none provided)

Number of prime factors composing the integers to factor that were used

in the benchmarks. If not provided, -1 will be used to indicate that the

real value is unknown.

See also:

The documentation for the benchmarker.pl script and the Tifa::DataDescriptor

module.

19

E Help page of the plotres.pl script

plotmaker.pl - Automatic generation of plots from result files

--

Usage:

plotmaker.pl --in <infile> --outdir <output dir> [--format <format>]

[--program <plotting_program>] [--conf <config_file>]

[--prefix <prefix>] [--help]

The plotmaker.pl script will generate plotting macros and plots from a result

file created by a benchmark perl script (as generated by the benchmarker.pl

script) and extracted using extractres.pl.

General parameters/options:

--in=s

(mandatory)

Input file containing the benchmark results in a format understandable

by the Tifa::DataDescriptor module. Scripts generated by

extractres.pl follow that convention. See help for extractres.pl and

the Tifa::DataDescriptor module for more information.

--program=s

(optional, default value used it none provided)

Plot program to use. It actually defines which Tifa plotting module will

be used to create the plots.

Available programs:

gnuplot : Create gnuplot macros and plots using Tifa::GnuPlotter

Default: gnuplot

--prefix=s

(optional, default value used it none provided)

Prefix used in naming the generated files:

Data : <prefix>data_xxxx.txt

Macros: <prefix>macro_xxxx.macro_format

Plots : <prefix>plot_xxxx.plot_format

Default: "" (empty string)

--conf=s

(optional, default value used it none provided)

Name of the configuration file describing the plots to generate.

This configuration file should be written in pure Perl as it will be

20

directly interpreted "as is". Each new plot description should be pushed

in the (already defined) @pdesc_array array.

Default: plotmaker.conf

A plot description is a structure (in the Class:Struct sense) that

describes a series of plot. Its member data are:

x : The expression giving the abscissa of the plots

y : The expression giving the ordinate of the plots

z : The variable name of the parameter of the plots

cond : Extra conditionnal expression acting as a filter: the

plots will be generated considering only the data points

verifying this condition

params : List of variable names that has to be considered as fixed

parameters for a given plot. One plot is generated for each

combination of values of the variables named in the params

array

graph_title :

x_axis_title:

y_axis_title: self explanatory

The provided plotmaker.conf configuration file gives an example of the

syntax used.

--outdir=s

(mandatory)

Name of the output directory.

Created files will be arranged in the following fashion:

<output_dir>/<program>/data/:

Contains the <program> data files for each individual plot.

<output_dir>/<program>/macro/:

Contains the <program> macros for each individual plot. There is

a macro_xxxx.ext in this directory for each plot_xxxx.txt datafile

in <output_dir>/<program>/data/, where x is a decimal digit.

The macro extension ’ext’ varies depending on which <program> is used.

<output_dir>/<program>/<format>/:

Depending of the output file format selected, contains the

resulting plot_xxxx.format files, as created by the <program>

macros macro_xxxx.ext in <output_dir>/<program>/macro/.

--format=s

(optional, default value used it none provided)

File format for the various created plots.

Available formats:

gnuplot program: "eps", "pdf", "png"

Default: pdf

21

--help

Prints this help...

22

F Man page of the Tifa::Bencher.pm Perl module

Tifa::Bencher(1) TIFA Documentation Tifa::Bencher(1)

NAME

Tifa::Bencher - A general purpose benchmark module

SYNOPSIS

use Tifa::Bencher;

$program = new Tifa::Bencher();

REQUIRE

Perl 5.006002, Carp, Exporter, Tifa::ProgramRepository and Tifa::Rotor.

SUMMARY

The Tifa::Bencher module implements a general purpose benchmark

framework. Given a program and a set of parameters, it can generate a

benchmark perl script using every combination of the parameters values.

DESCRIPTION

The Tifa::Bencher module implements a general purpose benchmark

framework and is used in the TIFA library by the benchmarker.pl script

to benchmark the various factorization programs for a wide selection of

parameters values.

A Tifa::Bencher object takes its parameters (including the name of the

program to benchmark) from a hashtable mapping each parameter name to

its value or to an array of values (to perform benchmarks for different

values of a given parameter). It can then generate a Perl script

listing all of the commands to execute, that is to say, all the

invocations of the program to benchmark for every possible combination

of the parameter values. The generated script should then be launched

manually to proceed to the benchmarks.

Note that the key ’exe’ must appear in this hashtable since its

associated value(s) give(s) the name(s) of the program(s) to benchmark.

Additionally, the program to benchmark should be wrapped in a

Tifa::Program object and registered in the Tifa::ProgramRepository

module to be useable (this is the case for all of the TIFA’s

factorization programs).

Data members

A Bencher object is defined by the following attributes:

$args_file : Name of the argument file.

$output_dir : Name of the ouput directory where bench results will

23

be saved

$filter : Perl-like conditional expression used to decide

whether or not the program should be benchmarked

with a particular combination of parameters.

%param_values : Hashtable mapping each parameter name to its value

or to an array of values. The ’exe’ key is mandatory

since its associated value gives the name of the

program to benchmark.

Available methods

new()

set_output_dir($outdir)

get_output_dir()

set_args_file($filename)

get_args_file()

set_param_values($hash_ref)

get_param_values()

set_filter($expression)

get_filter()

create_bench_macro($outfile)

Methods description

new()

Basic constructor allocating a Tifa::Bencher object.

set_output_dir($outdir)

Sets the name of the output directory. Trace files will be saved

under $outdir/traces as trace_xxxx.txt with xxxx being a unique

integer identifier.

get_output_dir()

Returns the name of the ouput directory.

set_args_file($filename)

Sets the name of the argument file.

get_args_file()

Returns the name of the argument file.

set_param_values($hash_ref)

Sets the values of the parameters relevant to the program to

bench. $hash_ref is a reference to a hashtable mapping each

parameter name to its value or to an array of values. In

particular, the name(s) and the mode(s) (see documentation for

24

Tifa::Program) of the program to benchmark should be given in

this hashtable.

get_param_values()

Returns a reference to a hashtable mapping each parameter

name to its value or to an array of values.

set_filter($expression)

Sets the conditional expression used to decide whether or not

the program should be benchmarked with a particular combination

of parameters. $expression should follow Perl’s syntax and use

parameter names as given by ’set_param_values’. In addition to

these parameter names, the parameters ’algo’, ’exe’ and ’mode’

are allowed.

get_filter()

Returns the current filter as a string.

create_bench_macro($outfile)

Creates a Perl script named $outfile containing all the program

invocations to benchmark. The created script is not executed and

should consequently be launched manually to proceed to the real

benchmarks.

EXAMPLE

The best example of how to use the Tifa::Bencher module is given by the

benchmarker.pl script, so it is strongly advised to have a look at

benchmarker.pl’s documentation.

Here’s another toy example of the Tifa::bencher module used to

benchmark TIFA’s implementation of the SQUFOF algorithm for several

numbers of trial divisions. Note that this implementation is registered

in the Tifa::ProgramRepository module with the name ’squfof_program’.

$bencher = new Tifa::Bencher;

#

Create an argument file containing some numbers to factors.

#

$argfile = "numbers.txt";

open(OUT, ">$argfile") or die("Cannot open $argfile");

print OUT "816379";

print OUT "123465";

close(OUT);

#

Parameter hashtable

25

#

%params = (

’exe’ => ’./squfof_program’,

’nprimes_tdiv’ => [15, 30, 45]

);

$bencher->set_args_file($argfile);

$bencher->set_output_dir("benchs");

$bencher->set_param_values(\%params);

$bencher->set_filter("nprimes_tdiv >= 30");

$bencher->create_bench_macro("test.pl");

#

The generated test.pl script will execute the following commands:

#

./squfof_program 30 816379 > benchs/traces/trace_0.txt

./squfof_program 45 816379 > benchs/traces/trace_1.txt

./squfof_program 30 123465 > benchs/traces/trace_2.txt

./squfof_program 45 123465 > benchs/traces/trace_3.txt

#

Note that the commands:

#

./squfof_program 15 816379 > benchs/traces/...

./squfof_program 15 123465 > benchs/traces/...

#

will not be executed since the conditional expression passed to the

function set_filter is not satisfied for these parameter values.

#

EXPORT

No functions are exported from this package by default.

SEE ALSO

The benchmarker.pl script and the Tifa::Program and

Tifa::ProgramRepository modules.

26

G Man page of the Tifa::DataDescriptor.pm Perl module

Tifa::DataDescriptor(1) TIFA Documentation Tifa::DataDescriptor(1)

NAME

Tifa::DataDescriptor - Write and read data description/entries in a

file.

SYNOPSIS

use Tifa::DataDescriptor;

$descriptor = new Tifa::DataDescriptor();

REQUIRE

Perl 5.006002, Carp and Exporter.

DESCRIPTION

This Perl module is part of the TIFA (Tools for Integer FActorization)

library. Its goal is to provide a consistent interface to document and

write a text data file and to retrieve these documentation and data

entries from a data file in order to process it.

Available methods

This module provides the following methods:

Tifa::DataDescriptor()

set_comment_style($style)

set_field_separator($separator)

get_field_separator()

add_field_description($field_name, $description)

get_field_description($field_name)

get_all_field_names()

write_descriptions($file_handle)

load_descriptions($file_handle)

write_data_entry($file_handle, @data_values)

read_next_data_entry($file_handle)

Methods description

Tifa::DataDescriptor()

Basic constructor allocating a Tifa::DataDescriptor object.

set_comment_style($style)

Sets the comment style used for the data description.

Allowed values: "Perl", "C" and "C++".

Default value : "Perl".

set_field_separator($separator)

27

Sets the motif used to separate the data fields.

Default value: ":".

get_field_separator()

Returns the motif used to separate the data fields.

add_field_description($field_name, $description)

Adds in the data description a field $field_name with its

description given by $description.

get_field_description($field_name)

Gets the description of the field $field_name.

get_all_field_names()

Returns an array containing all of the data fields’ names.

write_descriptions($file_handle)

Writes the data description to an already opened file given

by $file_handle.

load_descriptions($file_handle)

Loads the data description from the opened file referenced

by $file_handle.

write_data_entry($file_handle, @data_values)

Writes a data entry with values given by the array @data_values

in the opened file referenced by $file_hanfle.

read_next_data_entry($file_handle)

Reads the next data entry in the file referenced by $file_handle

and returns it as a hashtable mapping the field names to their

values. If no entry is found, returns an empty hashtable.

EXAMPLES

Example 1: write data description to a file

This following code snippet gives an example of how to use the

Tifa::DataDescriptor module to embed data description in a file.

my $descr = new Tifa::DataDescriptor();

my $filename = "os_mascots.txt";

open(my $handle, ">$filename") or die("Cannot open $filename\n");

#

Fill the descriptor with the data description.

#

$descr->set_comment_style("Perl");

$descr->set_field_separator(":");

$descr->add_field_description("Name", "Name of mascot");

28

$descr->add_field_description("Species", "Species of mascot");

$descr->add_field_description("FavOS", "Favorite OS of mascot");

#

Write the data description in the data file.

#

$descr->write_descriptions($handle);

#

Write some data entries in the data file.

#

my @data = (’Tux’, ’penguin’, ’Linux’);

$descr->write_data_entry($handle, @data);

@data = (’Hexley’, ’platypus’, ’Darwin’);

$descr->write_data_entry($handle, @data);

@data = (’Beastie’, ’daemon’, ’FreeBSD’);

$descr->write_data_entry($handle, @data);

@data = (’Puffy’, ’pufferfish’, ’OpenBSD’);

$descr->write_data_entry($handle, @data);

close(my $handle);

The following description and entries are written at the current

position in the file:

<DataDescription>

#

<format> Name:Species:FavOS </format>

#

<field> Name : Name of mascot </field>

<field> Species : Species of mascot </field>

<field> FavOS : Favorite OS of mascot </field>

#

</DataDescription>

<data> Tux:penguin:Linux </data>

<data> Hexley:platypus:Darwin </data>

<data> Beastie:daemon:FreeBSD </data>

<data> Puffy:pufferfish:OpenBSD </data>

Example 2: read data description in a file

This following code snippet gives an example of how to use the

Tifa::DataDescriptor module to retrieve the data description and

entries embedded within a file.

my $descr = new Tifa::DataDescriptor();

29

my $filename = "data.txt";

open(my $handle, "<$filename") or die("Cannot open $filename\n");

#

Assume that the data file contains comments given in a Perl style.

#

$descr->set_comment_style("Perl");

#

Read the data description embedded in the data file.

#

$descr->load_descriptions($filename);

#

Read all the data entries and print them on stdout.

#

while (%entry = $descr->read_next_data_entry($handle)) {

foreach my $key (keys %entry) {

print("\$entry{$key} = $entry{$key}\n");

}

print("\n");

}

close($handle);

EXPORT

No functions are exported from this package by default.

30

H Man page of the Tifa::FormatConverter.pm Perl module

Tifa::FormatConverter(1) TIFA Documentation Tifa::FormatConverter(1)

NAME

Tifa::FormatConverter - A wrapper for format conversion utilities

SYNOPSIS

use Tifa::FormatConverter;

my $converter = new Tifa::FormatConverter();

$converter->convert($from, $to);

REQUIRE

Perl 5.006002, Carp, Exporter, Tifa::DataDescriptor and the following

programs: convert (from the ImageMagick suite), ps2pdf, ps2eps, pdf2ps,

epstopdf, dvips and dvipdf.

DESCRIPTION

The Tifa::FormatConverter is a mere wrapper for several conversion

utilities popular in the unix/unix-like world, namely convert (from the

very powerful ImageMagick suite), ps2pdf, ps2eps, pdf2ps, epstopdf,

dvips and dvipdf.

File formats are directly inferred from the extension of the filenames.

The following extensions/conversions are supported:

- Pixmap to pixmap/(pseudo-)vectorial (uses convert):

"png" to "pdf", "eps", "ps", "jpg", "jpeg", "gif" and "tiff"

"gif" to "pdf", "eps", "ps", "jpg","jpeg", "png" and "tiff"

"tiff" to "pdf", "eps", "ps", "jpg","jpeg", "gif" and "png"

"jpeg" to "pdf", "eps", "ps", "png", "gif" and "tiff"

"jpg" to "pdf", "eps", "ps", "png", "gif" and "tiff"

- Vectorial to pixmap (uses convert):

"ps" to "png", "jpg", "jpeg", "gif" and "tiff"

"eps" to "png", "jpg", "jpeg", "gif" and "tiff"

"pdf" to "png", "jpg", "jpeg", "gif" and "tiff"

- Vectorial to vectorial (uses either ps2eps, ps2pdf, epstopdf,

31

pdf2ps, dvips or dvipdf):

"ps" to "eps" and "pdf"

"eps" to "pdf"

"pdf" to "ps"

"dvi" to "ps" and "pdf"

The Tifa::FormatConverter module does not check whether or not these

programs are installed on your system. Consequently, one can still use

this module if some of the programs are not available, provided that

the desired format conversion does not rely on them.

Available methods

This module provides the following methods:

new()

convert($from, $to)

Methods description

new()

Basic constructor allocating a Tifa::FormatConverter object.

convert($from, $to)

Converts the file $from to a file $to, provided that the format

conversion is supported. Formats are inferred from the filenames’

extensions.

EXAMPLE

Using the Tifa::FormatConverter is completely straightforward. For

example:

my $converter = new Tifa::FormatConverter();

my $eps_file = "file.eps";

my $pdf_file = "file.pdf";

my $png_file = "file.png";

my $jpg_file = "file.jpg";

$converter->convert($eps_file, $pdf_file);

$converter->convert($pdf_file, $png_file);

$converter->convert($png_file, $jpg_file);

EXPORT

32

No functions are exported from this package by default.

33

I Man page of the Tifa::GnuPlotter.pm Perl module

Tifa::GnuPlotter(1) TIFA Documentation Tifa::GnuPlotter(1)

NAME

Tifa::GnuPlotter - Generate 2D plots from 3D data with gnuplot

SYNOPSIS

use Tifa::GnuPlotter;

$reader = new Tifa::GnuPlotter();

REQUIRE

Perl 5.006002, Carp, Exporter, Tifa::DataDescriptor,

Tifa::FormatConverter and the gnuplot program.

SUMMARY

The Tifa::GnuPlotter module facilitates the generation of 2D plots from

3D data by using the gnuplot program as its underlying engine. However,

it is not intended to be a generic low-level gnuplot wrapper like

Chart::Graph for example since it is way too limited for that.

DESCRIPTION

The Tifa::GnuPlotter module was written during the benchmarking phase

of the factoring tools of the TIFA library to facilitate the

automatization of timing plots. Although it was only ment to fulfills

that very special requirement, it can be helpful in other, similar data

analysis problems.

Tifa::GnuPlotter is specifically designed to generate 2D plots from

3-dimensional data where the extra third dimension is supposed to be a

varying parameter: the output will be several graphs (actually one for

each value of the third parameter) drawn together on one plot.

Generated plots can be in Portable Document Format (PDF), Encapsulated

PostScript format (EPS) or Portable Network Graphics format (PNG).

Available methods

This module provides the following methods:

new()

set_gnuplot_program($path_to_gnuplot)

set_output_format($output_format)

set_data_filename($filename)

set_macro_filename($filename)

set_output_filename($filename)

set_xvar_description($name, $description)

set_yvar_description($name, $description)

34

set_zvar_description($name, $description)

set_xvar_values($values_as_array_ref)

set_yvar_values($values_as_array_ref)

set_zvar_values($values_as_array_ref)

set_xaxis_title($title)

set_yaxis_title($title)

set_graph_title($title)

set_main_label($label)

set_second_label($label)

write_data_file()

generate_macro()

execute_macro()

Methods description

new()

Basic constructor allocating a Tifa::GnuPlotter object.

Plot output format is by default set to "pdf".

set_gnuplot_program($path_to_gnuplot)

Sets the name of the gnuplot executable, including its full path.

set_output_format($output_format)

Sets the file format of the generated plots.

Must be one of "pdf", "eps" or "png".

set_data_filename($filename)

Sets the filename of the gnuplot data file to be generated.

set_macro_filename($filename)

Sets the filename of the gnuplot macro file to be generated.

set_output_filename($filename)

Sets the filename of the gnuplot plot file to be generated.

If the provided $filename does not end with the proprer file

extension, the good file extension will be appended according

to the set output format.

set_xvar_description($name, $description)

Sets the name of the x variable together with a short

description to be used in the generated data file.

set_yvar_description($name, $description)

Sets the name of the y variable together with a short

description to be used in the generated data file.

set_zvar_description($name, $description)

Sets the name of the z variable together with a short

35

description to be used in the generated data file.

set_xvar_values(@x_values)

Sets the values of the x variables to the ones in the array

referenced by $values_as_array_ref.

set_yvar_values(@y_values)

Sets the values of the x variables to the ones in the array

referenced by $values_as_array_ref.

set_zvar_values(@z_values)

Sets the values of the x variables to the ones in the array

referenced by $values_as_array_ref.

set_xaxis_title($title)

Sets the title of the x axis.

set_yaxis_title($title)

Sets the title of the y axis.

set_graph_title($title)

Sets the title of the generated graph.

set_main_label($label)

Sets the main label that will appear under the graph title.

set_second_label($label)

Sets the second label that will appear on the plot.

write_data_file()

Writes the gnuplot data file.

generate_macro()

Generates the gnuplot macro file.

execute_macro()

Executes the generated gnuplot macro file.

EXAMPLE

The following code snippet shows how to create a 2D plot:

#

The 3-dimensional toy-data...

#

my @x_array = (1.0, 2.1, 3.1, 4.0, 1.1, 2.1, 3.0, 3.9);

my @y_array = (2.1, 3.9, 5.9, 7.8, 3.2, 6.4, 9.4, 12.2);

my @z_array = (2, 2, 2, 2, 3, 3, 3, 3);

36

$plotter = new Tifa::GnuPlotter();

#

Set the relevant parameters...

#

$plotter->set_xvar_description("time", "Time Elapsed (s)");

$plotter->set_yvar_description("distance", "Travelled Distance (m)");

$plotter->set_zvar_description("acceleration",

"Theoretical Acceleration");

#

Of course, one should in principle check that all the data

arrays have the same length.

#

$plotter->set_xvar_values(\@x_array);

$plotter->set_yvar_values(\@y_array);

$plotter->set_zvar_values(\@z_array);

$plotter->set_xaxis_title("Time (s)");

$plotter->set_yaxis_title("Distance (m)");

$plotter->set_graph_title("Travelled distance as a function of time");

$plotter->set_main_label(’Projectile: book\nWhen: after the final’);

$plotter->set_second_label(’Measured accelerations match theory!’);

$plotter->set_data_filename("flying_book.dat");

$plotter->set_macro_filename("flying_book.gp");

$plotter->set_output_filename("flying_book.pdf");

$plotter->write_data_file();

$plotter->generate_macro();

#

Executing the flying_book.gp macro will produce a PDF file

displaying two graphs drawn on the same plot, one for each

value of the "acceleration" parameter.

#

$plotter->execute_macro();

EXPORT

No functions are exported from this package by default.

37

J Man page of the Tifa::NumberGenerator.pm Perl module

Tifa::NumberGenerator(1) TIFA Documentation Tifa::NumberGenerator(1)

NAME

Tifa::NumberGenerator - Generate prime or composite integers.

SYNOPSIS

use Tifa::NumberGenerator;

use GMP::Mpz;

$generator = new Tifa::NumberGenerator();

REQUIRE

Perl 5.006002, Carp, Exporter, GMP::Mpz and GMP::Rand.

DESCRIPTION

This Perl module is part of the TIFA (Tools for Integer FActorization)

library. It uses the GNU Multi-Precision Perl modules GMP::Mpz and

GMP::Rand to generate (possibly random) prime or composite non-square

numbers.

Available methods

This module provides the following methods:

Tifa::NumberGenerator()

use_random()

dont_use_random()

generate_prime($size)

generate_composite($size, $nfactors)

Methods description

Tifa::NumberGenerator()

Basic constructor allocating a Tifa::NumberGenerator object.

use_random()

Invoke this method to generate numbers randomly.

dont_use_random()

Invoke this method to generate numbers deterministically.

generate_prime($size)

Returns a prime of $size bits as a GMP::Mpz object.

generate_composite($size, $nfactors)

Returns a non-square composite integer of $size bits (obtained

by multiplying $nfactors prime integers of roughly equal sizes)

38

as a GMP::Mpz object.

A note on deterministic generation

(Pseudo-) random generation can be toggled on and off by using the

use_random() and dont_use_random() method.

When a prime is generated deterministically (i.e. when not using a

random generator), the smallest prime of the required bit length is

returned.

When a composite integer is generated deterministically, the smallest

prime numbers of the required bit length are multiplied together to

yield the final composite. In this case, each prime number is used only

once in the multiplication.

A note on primality

The Tifa::NumberGenerator() uses the GMP:Mpz module to check for the

primality of a given number. These tests are actually Miller-Rabin

tests of compositeness rather than primality tests strictly speaking.

However, "prime" numbers generated by the Tifa::NumberGenerator() have

indeed a very good chance of being truly prime, the probability of

returning a composite being extremely small.

EXAMPLE

This following code snippet gives an example of how to use the

Tifa::NumberGenerator() module.

my $generator = new Tifa::NumberGenerator();

#

Generate numbers randomly with $generator->use_random() or in

a deterministic fashion with $generator->dont_use_random().

#

$generator->use_random();

#

Generate a prime of 120 bits.

#

my $prime = $generator->generate_prime(120);

#

Generate a composite of 120 bits from the multiplication

of 4 prime numbers of (roughly) equal lengths.

#

my $composite = $generator->generate_composite(120, 4);

EXPORT

No functions are exported from this package by default.

39

K Man page of the Tifa::Program.pm Perl module

Tifa::Program(1) TIFA Documentation Tifa::Program(1)

NAME

Tifa::Program - An abstraction of a TIFA command line program

SYNOPSIS

use Tifa::Program;

$program = new Tifa::Program();

REQUIRE

Perl 5.006002, Carp, Class::Struct and Exporter.

SUMMARY

The Tifa::Program module is a weird module whose only raison d’etre is

to provide an abstraction of what a launchable and benchmarkable

command line program is. Most, if not all, of TIFA users do not need to

known about this module.

DESCRIPTION

The Tifa::Program module provide an abstraction of what a launchable

and benchmarkable command line program is. In less cryptic words, its

goal is to provide other TIFA’s scripts and modules with a unified way

to describe and interact with the implemented factorization programs.

The motivation for such a module is to be able to add easily new

(factorization) programs that can be launched or benchmarked by TIFA’s

scripts while containing code changes to a few places only. As a TIFA

user you probably do not need to known anything about this module

unless you plan to use TIFA’s benchmarking and plotting framework for

programs other than TIFA’s included factorization programs.

Data members

A Program object is defined by the following attributes:

$algo : Name of the algorithm implemented.

$descr : Short description of the algorithm.

$exe : Name of the command line program that is wrapped.

$help : Help message for the command line program that is wrapped.

%modes : An hashtable mapping mode names to ’modes’. A mode

represents a particular form of invocation of the

program given by $exe, and is defined by:

40

- A description $descr

- A list of relevant parameter names

- A command line template

For example, TIFA’s CFRAC program can be called with

different numbers of parameter according to whether or

not we should let the program choose optimal parameter

values. In this case, we could have a mode where all

parameters have to be specified and another one where

only a few of them are needed. (See example in the next

section.)

$cur_mode : Current mode name.

@cur_param_names : List of parameter names relevant to the current

mode.

@cur_param_descrs: List of parameter descriptions relevant to the

current mode. The descriptions are given in the

same parameter order than in @cur_param_names.

@cur_param_types : List of parameter types relevant to the current

mode. The types are given in the same parameter

order than in @cur_param_names.

$cur_cmdline: Command line template relevant to the current mode.

$default_mode: Default mode name.

@all_param_names : Array listing all of the parameter names

%all_param_to_descrs_hash: Hashtable mapping the parameter names

to their descriptions;

%all_param_to_types_hash : Hashtable mapping the parameter names

to their types

Available methods

This module provides the following methods:

new()

set_algo($algo)

get_algo()

set_descr($descr)

get_descr()

set_exe($exe)

get_exe()

41

set_help($help)

get_help()

set_default_mode($mode)

get_default_mode()

add_mode($key, $name, $descr,

\@parnames, \@pardescs, \@partypes, $cmdline)

set_mode($mode)

get_mode()

get_all_param_names()

get_all_param_to_descrs_hash()

get_all_param_to_types_hash()

get_param_names()

get_param_descrs()

get_param_types()

get_cmdline()

get_mode_descr()

get_all_modes()

get_getopt_strings()

execute(\%hash, $arg, $postcmd)

make_cmd(\%hash, $arg, $postcmd)

Methods description

new()

Basic constructor allocating a Tifa::Program object.

set_algo($algo)

Sets the name of the algorithm implemented by the Program

object to $algo.

get_algo()

Gets the name of the algorithm implemented by the Program object.

set_descr($descr)

Sets the description of the algorithm implemented to $descr.

get_descr()

Gets the description of the algorithm implemented.

set_exe($exe)

Sets the name of the command line program to $exe.

get_exe()

Gets the name of the command line program.

set_help($help)

Sets the help message to $help.

42

get_help()

Gets the help message as a string.

set_default_mode($mode)

Sets the name of the default mode of the Program object to

$mode. Exits if mode $mode does not exist.

get_default_mode()

Gets the name of the default mode of the Program object.

add_mode($key, $name, $descr,

\@parnames, \@pardescs, \@partypes, $cmdline)

Adds a mode to the Program object. The mode is identified by:

- a name $name

- a description string $descr,

- a list of relevant parameter names given by a reference to

an array @parnames

- a list of relevant parameter descriptions given by a

reference to an array @pardescs

- a list of relevant parameter types given by a reference to

an array @partypes

- a template of the command line $cmdline.

The parameter order used in the arrays @parnames, @pardescs,

and @partypes are assumed to be the same, ie: $parnames[$i],

$pardescs[$i] and $partypes[$i] refer to the same parameter.

The type of a parameter is given by a string with one of the

following value:

- ’string’ if the parameter is a string

- ’int’ if the parameter is a positive integer

- ’extint’ if the parameter is an extended integer

- ’float’ if the parameter is a float

- ’switch’ if the parameter is just an option switch

set_mode($mode)

Sets the current mode to the one name $mode. Reverts to the

default mode if no mode named $mode exists.

get_mode()

Gets the name of the current mode.

get_all_param_names()

Returns an array containing all the potentially relevant

parameter names, regardless of the current mode.

43

get_all_param_to_descrs_hash()

Returns a hashtable mapping all the parameter names (regardless

of the current mode), to their descriptions.

get_all_param_to_types_hash()

Returns a hashtable mapping all the parameter names (regardless

of the current mode), to their types.

get_param_names()

Returns an array containing all the relevant parameter names

in the current mode.

get_param_descrs()

Returns an array containing all the relevant parameter

descriptions in the current mode.

get_param_types()

Returns an array containing all the relevant parameter types

in the current mode.

get_cmdline()

Returns the command line template in the current mode.

get_mode_descr($mode)

Gets the description of the mode named $mode.

get_all_modes()

Returns an array containing all the mode names.

get_getopt_strings()

Returns an array of strings that can be passed as parameters to

the GetOptions function of the Getopt::Long module. These

strings are of the form <param_name>(=(s|i|o|f))?.

For exemple: "help", "infile=s", etc. All of the parameters are

included here, regardless of the current program’s mode. Also

options for selecting the program’s mode are included. These are

of the form <mode_name>=s.

execute(\%param_values, $args, $postcmd)

Executes the command line program $self->{exe} in the current

mode with the parameter values being given by the hashtable

%param_values (whose reference is passed as a parameter) for

the arguments given in $args. Note that the %param_values

hashtable should map the parameter names to their actual

values. Optionnally, a third argument $postcmd can be passed.

It will be appended to the command string and can be used to

implement pipes, i/o redirections, etc.

44

Returns ’undef’ if some parameters were missing in the hashtable,

in which case the program is not executed.

Returns the return-value of the call to the underlying Perl

’system’ function otherwise.

make_cmd(\%param_values, $args, $postcmd)

Identical to the execute function except that the command

obtained is not executed, but is returned as a string.

EXAMPLE

This following code snippet gives an example of how the Tifa::Program

module can be used.

#

Let’s wrap the CFRAC program: cfrac_program

#

$cfrac_program = new Tifa::Program();

$program->set_algo("cfrac");

$program->set_descr("This is the Continued FRACtion algorithm");

$program->set_exe("cfrac_program");

@params = (

"exe",

"nprimes_in_factor_base",

"nprimes_tdiv_smooth_nb",

"nrelations",

"lsr_method",

"use_large_primes",

"nprimes_tdiv",

);

#

The command line template can be used down the road to produce

the exact command to launch the factoring program

#

$cmdline = "exe nprimes_in_factor_base "

."nprimes_tdiv_smooth_nb nrelations lsr_method "

."use_large_primes nprimes_tdiv ";

#

Default mode: We should specify all of the parameter values on

the command line

#

$program->add_mode("default",

"Default mode: specify all parameter values",

@params, $cmdline);

$program->set_default_mode("default");

45

@params = ("exe", "nprimes_tdiv");

$cmdline = "exe nprimes_tdiv";

#

Best mode: Let CFRAC use the precomputed optimal parameter values

depending on the size of the number to factor

#

$program->add_mode("best", "Best mode: let CFRAC choose optimal values",

@params, $cmdline);

$program->set_mode("best");

#

For example, all of the factoring programs are wrapped in such

a way in the Tifa::ProgramRepository module, so that the

other TIFA scripts and/or modules can use them without having to

know any specifics about the programs. This makes possible to

reuse the benchmark framework with an user-defined Tifa::Program

without delving into the scripts’ internals.

#

EXPORT

No functions are exported from this package by default.

SEE ALSO

The Tifa::ProgramRepository module.

46

L Man page of the Tifa::ProgramRepository.pm Perl module

Tifa::ProgramRepository(1) TIFA Documentation Tifa::ProgramRepository(1)

NAME

Tifa::ProgramRepository - A repository of available Tifa::Program’s

SYNOPSIS

use Tifa::ProgramRepository;

%algo_to_program = Tifa::ProgramRepository::get_algo_to_program_hash();

REQUIRE

Perl 5.006002, Carp, Class::Struct, Exporter and Tifa::Program.

SUMMARY

The Tifa::ProgramRepository module acts as a repository of all

available Tifa::Program objects.

DESCRIPTION

The Tifa::ProgramRepository module acts as a repository of all

available (factoring) Tifa::Program’s. The listed Tifa::Program objects

can then be used in other scripts or modules.

Available methods

get_algo_to_program_hash()

get_algo_list()

get_program_list()

get_program_from_name($progname)

get_all_param_names()

get_all_param_to_descrs_hash()

get_all_param_to_types_hash()

Methods description

get_algo_to_program_hash()

Returns a hashtable mapping algorithm names to the Tifa::Program

objects implementing it.

get_algo_list()

Returns an array listing the names of the implemented algorithm.

get_program_list()

Returns an array listing the Tifa::Program objects available.

get_program_from_name($progname)

Returns a reference to the Tifa::Program object whose default

47

program name is given by $progname (or the base name of $progname

if $progname is a path).

get_all_param_names()

Returns an array listing all the parameter names from all

programs.

get_all_param_to_descrs_hash()

Returns a hashtable mapping all the parameter names (from all

programs and regardless of their current modes), to their

descriptions.

get_all_param_to_types_hash()

Returns a hashtable mapping all the parameter types (from all

programs and regardless of their current modes), to their

descriptions.

EXAMPLE

This following code snippet gives an example of how the

Tifa::ProgramRepository module can be used.

%algo_to_program = Tifa::ProgramRepository::get_algo_to_program_hash();

$program = $algo_to_program{"squfof"};

%param_vals = {

"exe" => "./squfof_program",

"ntdiv" => 128,

};

$program->execute(\%param_vals, 816379, "> trace.txt");

EXPORT

No functions are exported from this package by default.

SEE ALSO

The Tifa::Program module’s man page.

48

M Man page of the Tifa::Rotor.pm Perl module

Tifa::Rotor(1) TIFA Documentation Tifa::Rotor(1)

NAME

Tifa::Rotor - A basic odometer-like rotor/counter

SYNOPSIS

use Tifa::Rotor;

$rotor = new Tifa::Rotor(@array);

REQUIRE

Perl 5.006002, Carp, and Exporter.

SUMMARY

The Tifa::Rotor module is yet another weird TIFA module implementing an

odometer-like counter that can be used to generate all possible

n-tuples from n sets of values.

DESCRIPTION

The Tifa::Rotor module implements an odometer-like counter that can be

used to generate, step by step, all possible n-tuples (a, b, ..., n)

from n sets: A={0, 1, ..., a_max}, B={0, 1, ..., b_max}, ..., N={0, 1,

..., n_max}.

In TIFA, it is used in the benchmark.pl and plotmaker.pl scripts to

loop through all of the possible combinations of the parameter values

to either: 1) generate an exhaustive benchmark for a wide set of inputs

or 2) generate plots for each of these combinations.

Available methods

This module provides the following methods:

new(@array)

reset()

get_state()

set_state(@array)

increment()

is_zero()

Methods description

new(@array)

Basic constructor allocating a Tifa::Rotor object from an array

of integer @array. The length of @array gives the number of

"wheels" of the rotor, or in other words, the size of the

n-tuples generated. The values of @array sets the upper limit

49

on each value of a given n-tuple. For example, if

@array = (5, 2, 7) then the 3-tuples generated will be of

the form:

(a, b, c) with 0 <= a < 5; 0 <= b < 2 and 0 <= c < 7.

reset()

Resets the state of the rotor to the (0, ..., 0) n-tuple.

get_state()

Returns the current state of the rotor as an array of integer.

set_state(@array)

Sets the current state of the rotor to @array. @array must have

the required length and its values must be consistent with the

ranges provided to the constructor or an error will be raised.

increment()

Increments the rotor, changing its state and thus providing a

new n-tuple.

is_zero()

Returns 1 if the rotor’s current state is (0, ..., 0).

Returns 0 otherwise.

EXAMPLE

This following code snippet gives an example of how (and why) the

Tifa::Rotor module can be used... No, it is not _that_ useless!

#

In this example, we’d like to perform some operations on every

possible combination of the velocity, angle and height values.

#

%values = (

"velocity"=>[1, 3, 5], # velocity can take one of these 3 values

"angle" =>[20, 45, 70], # angle can take one of these 3 values

"height" =>[10, 20] # height can take one of these 2 values

);

@params = keys %values;

@sizes = ();

foreach $p (@params) {

push(@sizes, scalar @{$values{$p}});

}

$rotor = new Tifa::Rotor(@sizes);

do {

@ntuple = $rotor->get_state(); # initial state is (0, 0, 0)

50

%combo = ();

foreach $i (0 .. scalar(@ntuple)-1) {

#

Fetch the parameter values using the indices given by the

rotor’s state.

#

$parname = $params[$i];

$combo{$parname} = $values{$parname}[$ntuple[$i]];

}

#

Now %combo is an hash holding a possible combination of

the parameter values. It could be represented as:

#

%combo = ("velocity" => <X>, "angle" => <Y>, "height" => <Z>);

#

Do something with it before stepping to the next combination...

#

$rotor->increment(); # step to the next rotor state

} while (! $rotor->is_zero);

In this particularly simple example, there is no real use for the

Tifa::Rotor module as three "for" loops would do the job more

straitforwardly. However in more general cases the %values could be

extracted from a configuration file, passed as a parameter, etc., so

using a Rotor object makes for a much more reuseable code.

EXPORT

No functions are exported from this package by default.

51

N Man page of the Tifa::SimpleConfigReader.pm Perl module

Tifa::SimpleConfigReader(1) TIFA Documentation Tifa::SimpleConfigReader(1)

NAME

Tifa::SimpleConfigReader - Truly minimalist configuration file reader

SYNOPSIS

use Tifa::SimpleConfigReader;

$reader = new Tifa::SimpleConfigReader();

REQUIRE

Perl 5.006002, Carp and Exporter.

SUMMARY

This is a truly minimalist configuration file reader used by the

scripts of the TIFA library. As such, the needs it fits are precisely

defined and consequently its feature set and tolerance to syntax errors

are very limited. This is certainly not a general purpose configuration

file parser, so its use outside of the TIFA libray is really

discouraged.

DESCRIPTION

Full-featured, general purpose configuration file parsers abound on the

Comprehensive Perl Archive Network, from the most simple readers (e.g.

ConfigReader::Simple) to the most sophisticated parsers (e.g.

Config::Scoped) understanding blocks and interpolations. The objective

of the Tifa::SimpleConfigReader module is extremely modest: this module

is not trying to re-invent (a worse version of) the wheel but to fit a

very specific need encountered during the development of the TIFA

library. So, yes, its feature set is very restricted and next to no

syntaxic sugar is allowed in the configuration files (welcome back to

the 70s!).

Configuration file format

Comments beginning by a ’#’ are allowed in the configuration files

provided that they stand on their own line.

Three kinds of parameters are allowed: scalars, arrays and hashtables.

Scalar parameter values are given using the most basic notation:

<scalar_param> = <value>

Array parameter values can be given either by providing a list, or by

providing a range. A list is introduced by the "list" keyword followed

by a comma-delimited list of values in brackets:

52

<array_param> = list(<value1>, <value2>, <value3>)

A range is described by the "range" keyword and its three values given

by the "from", "to" and "increment" keywords:

<array_param> = range(from <value1> to <value2> increment <value3>)

Finally, hashtable parameters are introduced by the "hash" keyword:

<hash_param> = hash(<key1> => <value1>, ..., <keyN> => <valueN>)

Directives can span multiples lines, as long as line breaks are

explicitely marked by ’ \’ (a space followed by a backslash). For

example, the following code will be interpreted correctly:

#

This is correct: line breaks are explicitely indicated

#

my_important_parameter = range(\

from 10 \

to 120 \

increment 5 \

)

However, the following snippet will produce a syntax error:

#

This is incorrect: line breaks are not explicitely indicated

#

my_important_parameter = range(

from 10

to 120

increment 5

)

Another restriction lies in the format of the parameter names: they

should imperatively begin by a letter or by an underscore, although

digits are allowed in the other positions.

Generally speaking, Tifa::SimpleConfigReader is quite leniant with

whitespaces, be it in the beginning of a line, before of after the =

sign, in a list of values or in a range definition.

If several directives for the same scalar parameter are given in the

configuration file, previous values are discarded. However, if several

directives for the same array or hash parameter are given, all the

values will be kept in the array or hash. For example, let’s consider

53

the following configuration snippet:

location = Stanford

location = Hamburg

location = Geneva

#

The final value for the "location" key is Geneva.

#

years = list(1985, 1995)

years = range(from 2010 to 2016 increment 2)

#

The final "years" array will contain 1985, 1995, 2010, 2012, 2014

and 2016.

#

positions = hash(CMS => Octant5)

positions = hash(Atlas => Octant7)

positions = hash(Atlas => Octant1)

#

The final "positions" hashtable will contain the mapping

CMS => Octant5 and Atlas => Octant1.

#

Available methods

This module provides the following methods:

new()

get_parameter_hash()

set_scalar_param_names(@names)

set_array_param_names(@names)

set_hash_param_names(@names)

get_scalar_param_names()

get_array_param_names()

get_hash_param_names()

print_all_param_values()

read_config_file($filename);

accept_unknown_param()

dont_accept_unknown_param()

use_fatal_warnings()

use_non_fatal_warnings()

Methods description

new()

Basic constructor allocating a Tifa::SimpleConfigReader object.

get_parameter_hash()

Returns a hashtable mapping the names of the parameters read in

54

the configuration file to their respective values.

set_scalar_param_names(@names)

Sets the names of the parameters supposed to be scalars. Each

entry in the @names array should be the name of a parameter

expected to be read in the configuration file.

set_array_param_names(@names)

Sets the names of the parameters supposed to be arrays. Each

entry in the @names array should be the name of a parameter

expected to be read in the configuration file.

set_hash_param_names(@names)

Sets the names of the parameters supposed to be hashtables. Each

entry in the @names array should be the name of a parameter

expected to be read in the configuration file.

get_scalar_param_names()

Returns the names of the scalar parameters as an array.

get_array_param_names()

Returns the names of the array parameters as an array.

get_hash_param_names()

Returns the names of the hash parameters as an array.

print_all_param_values()

Prints all of the parameter names and their respective values.

read_config_file($filename);

Reads a configuration file $filename in the current context and

stores the values of the parameters read.

accept_unknown_param()

Accept unknown parameter names to appear in the configuration

file and treat them as if their were declared via the

set_*_param_names() functions. This can be used if the

parameters likely to appear in the configuration file are not

known in advance.

dont_accept_unknown_param()

Do not allowed undeclared parameters names for a strict check

of the configuration file syntax.

This is the default behaviour.

use_fatal_warnings()

Exit if an unknown parameter name if found. (This setting has no

effect if unknown parameter names were explicitely allowed by

55

calling the accept_unknown_param() function.)

This is the default behaviour.

use_non_fatal_warnings()

Warn if an unknown parameter name if found and ignore it, but

do not exit. (This setting has no effect if unknown parameter

names were explicitely allowed by calling the

accept_unknown_param() function.)

EXAMPLE

This following code snippet gives an example of how to use the

Tifa::SimpleConfigReader module to parse a simple configuration file.

Let the configuration file be given by:

#

Write some meaningful comments here...

#

accelerator = Large Hadron Collider

location = Geneva

#

Now, some array definitions...

#

experiments = list(Alice, Atlas, CMS, LHCb, TOTEM)

bunch_nb = range(from 0 to 2834 increment 1)

objectives = list(everything)

#

And finally, a hashtable

#

positions = hash(Atlas => Octant1, CMS => Octant5)

The following code reads this configuration file and prints the values

of the parameters on the standard output:

$reader = new Tifa::SimpleConfigReader();

#

Inform the SimpleConfigReader object about the parameters defined

in the configuration file. Be warned that any parameter not

specified via the set_*_param_names methods could be treated as a

syntax error if the function accept_unknown_param() has not been

called.

#

@scalar_names = ("accelerator", "location");

@array_names = ("experiments", "bunch_nb", "objectives");

$reader->set_scalar_param_names(@scalar_names);

$reader->set_array_param_names(@array_names);

56

$filename = "config.txt";

$reader->read_config_file($filename);

$reader->print_all_param_values();

#

Parameter values are now accessible via the get_parameter_hash()

method

#

%all_params = $reader->get_parameter_hash();

$where = $all_params{"location"};

@detectors = @{$all_params{"experiments"}};

print("$detectors[1] is located near $where.\n");

The (truncated) output is:

location = Geneva

accelerator = Large Hadron Collider

bunch_nb = {

0

1

2

[...]

2833

2834

}

experiments = {

Alice

Atlas

CMS

LHCb

TOTEM

}

objectives = {

everything

}

positions = {

CMS => Octant5

Atlas => Octant1

}

Atlas is located near Geneva.

EXPORT

No functions are exported from this package by default.

57

	Legal notices
	Document scope
	Overview of the TIFA package
	About the TIFA library
	Content of the TIFA package

	Obtaining and installing the TIFA package
	Obtaining TIFA
	Installation requirements
	Compiling and installing TIFA

	The TIFA base library
	Main TIFA types
	The type_array_t types
	The algo_params_t types

	Factorization functions
	Changing the list of precomputed primes

	Utilities provided in the TIFA package
	Factoring programs
	The factoring.pl script

	Benchmark framework of the TIFA library
	Perl scripts
	tifa/tools/scripts/benchmarker.pl
	tifa/tools/scripts/extractres.pl
	tifa/tools/scripts/plotmaker.pl

	The TIFA Perl modules
	tifa/tools/scripts/Tifa/Bencher.pm
	tifa/tools/scripts/Tifa/DataDescriptor.pm
	tifa/tools/scripts/Tifa/FormatConverter.pm
	tifa/tools/scripts/Tifa/GnuPlotter.pm
	tifa/tools/scripts/Tifa/NumberGenerator.pm
	tifa/tools/scripts/Tifa/Program.pm
	tifa/tools/scripts/Tifa/ProgramRepository.pm
	tifa/tools/scripts/Tifa/Rotor.pm
	tifa/tools/scripts/Tifa/SimpleConfigReader.pm

	Help page of the genprimes.pl script
	Help page of the factorize.pl script
	Help page of the benchmarker.pl script
	Help page of the extractres.pl script
	Help page of the plotres.pl script
	Man page of the Tifa::Bencher.pm Perl module
	Man page of the Tifa::DataDescriptor.pm Perl module
	Man page of the Tifa::FormatConverter.pm Perl module
	Man page of the Tifa::GnuPlotter.pm Perl module
	Man page of the Tifa::NumberGenerator.pm Perl module
	Man page of the Tifa::Program.pm Perl module
	Man page of the Tifa::ProgramRepository.pm Perl module
	Man page of the Tifa::Rotor.pm Perl module
	Man page of the Tifa::SimpleConfigReader.pm Perl module

